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6. Integrating in and out example: SU(2)i x SU(2)2 with matter Q e (2,2).

This theory has a classical moduli space of vacua, parameterized by the gauge invariant

chiral superfield M = Q2, when M gets an expectation value, the group is Higgsed as

SU(2)i x SU(2)2 -> SU(2)D, with SU(2)D the diagonally embedded subgroup. The exact

dynamical superpotential is

where the terms have the following interpretation: the first and second come from instan-

tons in the broken SU(2)i and SU(2)2 factors, with Af and A| the expected instanton

factors. The last term comes from gaugino condensation in the unbroken SU(2)D, indeed

the diagonal subgroup has g^2 = g^2 + <?̂ ~2 (as seen from the action, ~ X)i=i dT^^I •> u P o n

setting F2 = F | = Fp), which leads to

A6 _ i L1^2

upon matching the running couplings at the scale, set by M, of the Higgsing SU(2)i x

SU(2)2 -> SU(2)D.

Using symmetries and holomorphy, it can be argued (ILS) that (6.1) is exact. Here is

another way to get this exact superpotential. Give M a mass term, by adding Wtree = mM.



At energy far below the scale m, the two 577(2) gauge groups are then decoupled and we

have

Wiow = ei2^/mAf + e22y/mA^, (6.2)

coming from independent gaugino condensations in 577(2)i and SU(2)2- Here e* = ±1

(the four choices here correspond to four super symmetric vacua), and we used the running

coupling matching relation, A | = mA5, as in the previous example. Knowing (6.2), we

can re-derive (6.1) by inverse Legendre transform

Wdyn(M,A) = (Wlow(m,A) - mM)
(m) •

This "integrating in" of the field M is often useful, if we can be sure that the low-

energy superpotential was correctly determined. Often, however, its usefulness is limited,

because of the possibility of contributions to the low-energy superpotential that could not

have been naively deduced.

Now something funny happens with (6.1) if we set Ai = A2: there is a branch where

Wdyn — 0. There is an exactly degenerate moduli space of vacua in this case, where the

instantons in the broken groups cancel off the gaugino condensation contribution in the

low-energy SU{2)JJ (this is very weird if you think about it). We should then ask about

what are the light fields everywhere on the moduli space - is it only the field Ml

There are two ways to see that the answer must be no - there must be some additional

massless fields at the origin of moduli space. One way to see this is by adding Wtree = mM:

if there were no additional massless fields, this branch would lead to no supersymmetric

vacua. The other branch of (6.1) would lead to two supersymmetric vacua, from the two

signs of a square root. But there should be a total of four supersymmetric vacua for

the low-energy £77(2) x SU(2) gaugino condensation - so we're missing two vacua. The

other way to see that some additional massless fields are needed is via 't Hooft anomaly

matching. Let's review the idea in this context.

The theory has an anomaly free U(1)R symmetry, under which R(Q) = —1 (draw the

instanton 't Hooft vertices, with their fermion zero modes). The idea of 't Hooft anomaly

matching is to imagine that we want to gauge this global symmetry. There is, however, an

obstruction: triangle diagrams with three U(1)R gauge fields gives a non-zero contribution,

which would make the theory with U(1)R gauged inconsistent (it's not a problem in our



original theory, where U(1)R is a global symmetry). The value of this 't Hooft anomaly

obstruction is easily computed from the triangle diagram:

TvU(l)R = Yl #(/)3 = 3(l)3 + 3(l)3+4(-2)3 = -26,
massless fermions /

where the contributions come from the SU (2)i and SU(2)2 gauginos, and the matter

fermions ipQ, having R = —2. There is also another obstruction, coming from the triangle

diagram with a U(1)R gauge field at one vertex and gravitons at the other two; this

obstruction is proportional to

TrU(l)R=
massless fermions /

't Hooft's observation is that we can cancel the above obstructions with some otherwise

decoupled spectator fields, carrying flavor (in this case U(1)R) charge but neutral under

the original gauge group G (in this case, G = SU{2)\ x SU{2)2)- Now, we can gauge

the flavor symmetry and, whatever the G dynamics does, the gauged flavor symmetry

must remain consistent. Subtracting the contribution from the spectators, which goes for

the ride in terms of the G dynamics, this means that the G dynamics must preserve the

't Hooft anomaly obstructions, e.g. those computed above, 't Hooft anomalies are thus

argued to be constant along all RG flows. Since anomalies can be computed from triangle

diagrams, with only the massless fields needed running in the loop, this provides a very

powerful constraint on the massless spectrum. E.g. in the above example, we can see that

the massless spectrum at the origin of the moduli space (where U(1)R is unbroken) must

contain more than just the field M, whose fermion component contributes to the 't Hooft

anomalies (using R(M) = —2, so R(IPM) = ~3) as

TrU(l)R = - 3 , TrU(l)3
R = (-3)3 = -27, (6.3)

because these do not match the quantities computed above, using the microscopic spec-

trum.

We can fix both of the above two problems by conjecturing that there is a new mass-

less field S at the origin of the moduli space. Away from the origin, it gets a mass via

superpotential

W = -MS2. (6.4)



Since R(W) = 2 and R(M) = -2 , we see R(S) = 2. Adding Wtree = mM to (6.4),

we find vacua (M) = 0, (S) = ±y/m, giving the two vacua that we were missing before.

And adding the R(ips) = 1 contributions to (6.3), we have agreement with the 't Hooft

anomalies computed using the classical spectrum. The fact that R(S) = 2 suggests that

the massless field S is a glueball, associated with SU(2)D- This theory is a special case

of SO(NC) with Nf fundamental flavors in the Nc dimensional vector representation, for

Nc = 4 and Nf = 1. There is an analog of (6.4) for all SO(NC) when Nf = Nc - 3. If we

add one more flavor, so Nf = Nc — 2, there is an Abelian Coulomb phase with massless

monopoles at the origin, similar to the Seiberg Witten solution, and the field S in (6.4)

and its generalizations can be understood as being some of those massless monopoles.

7. Integrating in the glueball field

Given a dynamical superpotential Wdyn(X, Abl,gp),itis sometimes useful to integrate

in the glueball field, by treating S and logA&1 as Legendre transform conjugate variables:

Weff = SlogA61 + WP(Xr,gp,S), (7.1)

with the property that integrating out S leads back to Wdyn(X,Abl,gp). We can get

Wp(Xr,gp,S) by inverse Legendre transform

WP(Xr,gp,S) = (Wdyn(X,Abi = Y,gp) - 51ogy) ( y > . (7.2)

For certain theories with mass gap, the work of DV et. al., as discussed in Narian's

lectures, allows Wp to be independently directly computed, by perturbative computation.

Upon integrating out S, this gives an independent means to compute non-perturbative

superpotentials, associated with instantons etc., from perturbative Feynman diagrams !

8. Superpotentials for SQCD

Consider SQCD with Nf < Nc flavors. Symmetries and holomorphy determine the

superpotential to have the form



for some constants C(Nc,Nf). Consider the case Nf = Nc — 1, by giving the flavors

appropriate vevs, we can Higgs at a very high scale to SU(2) with Nf = 1. Accounting

for matching the running coupling, we find that to recover (5.2), we need C(Nc,Nf =

Nc — 1) = 1 for all Nc. Then we can add mass terms and integrate out the massive flavors

to determine C(NC, Nf) in general, e.g. add Wtree = in^Nf^NiNf and integrate out

to obtain the result for Nf — 1 flavors. The final result is that

\3NC-Nf

) ( 8 ' 2 )

For Nf < Nc — 1, the superpotential (8.2) can be understood as coming from gaugino

condensation in the low energy unbroken SU(NC — Nf), upon using the matching relation.

In obtaining (8.2), we use the following matching relations on the running gauge

coupling, which are useful to remember:

>3NC-Nf

Hieesimr W I M J ^ I )
 IV

Higgsmg,

masses; ANctN)_{ = mNfNfANc>Nf
 f. (8.4)

In general, Higgsing makes the theory less asymptotically free, so more weakly coupled.

And adding masses makes the theory more asymptotically free (since fewer flavors), so the

theory is more strongly coupled. We see these effects in (8.3) and (8.4): when we Higgs

at a high scale, (MjVyjV/) is large in (8.3), so the low-energy scale ANc-i,Nf-i
 ls smaller

than AjVciV/) corresponding to a low-energy theory that is more weakly coupled. On the

other hand, for masses, we see from (8.4) that the factor of m in the numerator makes the

low energy scale on the LHS larger than the high energy scale, corresponding to stronger

coupling.

For Nf > Nc, we know from the observation at the end of sect. 4 that there can be

no dynamically generated superpotential that lifts the moduli space, these theories have

an exactly degenerate quantum moduli space of vacua. It's interesting then, to ask about

the classical singularities at the origin. One way to determine some information about

the theory for general Nf is to add mass terms. So let's consider SQCD with general Nf

massive flavors, coming from addition of Wtree — m^QiQ-,. The low-energy superpotential

is completely fixed here by symmetries and holomorphy and recovering known limits to be

Wlow = Nc (detmA3N<-Nf)1/Nc. (8.5)



In particular, this is obtained from (8.2) upon adding Wtree — m^M^, upon integrating

out M. The result (8.5) can be interpreted as coming from SU(NC) gaugino condensation,

using the generalization of the matching relation (8.4). With this interpretation, we see

that the result (8.5) applies for general Nf, even for Nf > Nc.

If, for Nf > Nc, we blindly Legendre transform (8.5), ignoring the fact that det M = 0

classically (since the rank of M is at most Nc), we obtain that

, (8.6)

which is just the naive continuation of (8.2). We can't take (8.6) seriously in the phase

where there are no masses and a quantum moduli space of degenerate vacua, e.g. it doesn't

recover the classical moduli space limit for large (M). But it does give the right result in

the massive phase, where we add Wtree = mM masses for all flavors. Seiberg duality gives

a way to interpret the result (8.6) as coming from gaugino condensation in a SU(Nf — Nc)

dual theory!

9. Seiberg duality

There is an interesting story to be told for SQCD for the cases Nf = Nc (quantum

deformed moduli space) and Nf = Nc + 1 (extra massless fields at the origin). Because of

time limitations, we'll cut to the chase and describe Seiberg duality. The above phenomena

can be recovered nicely from the Seiberg dual description.

Seiberg duality relates the original "electric" SQCD theory, SU(NC) with Nf funda-

mental flavors Qf and Qf, to another "magnetic" theory, with group SU(Nf — Nc), having

Nf fundamental flavors of dual quarks qf and qf, and Nj singlets Mfg, with superpotential

W = Mfgqfq9. (9.1)

For Nf < 3NC the electric theory is asymptotically free. For Nf > | JVC the magnetic dual is

asymptotically free. In the range |iVc < Nf < 3NC, where both theories are asymptotically

free, the interpretation of the duality is that the two theories, which look very different in

the UV, flow to the same interacting SCFT in the IR. On the other hand, when Nf < §iVc,

the interpretation is that the electric theory, which appears strongly coupled in the IR,

is actually an IR free theory in another set of variables, since the magnetic dual flows to

a free theory in the IR. So the electric theory is then in a free magnetic phase, with IR



free SU(Nf — Nc) gluons and quarks, which are some composite solitonic objects of the

original SU(NC) theory.

The duality map of chiral primary operators is as follows:

QfQg ~ Af/§, (9.2)

Qh • • • QfNc ~ efi...fNcfNc+1...fNf QfNc+1 • • • QfNf , (9-3)

where we omit, for simplicity, factors related to the dynamical scales A of the electric

theory and A of the magnetic theory, that are needed on dimensional grounds.

A very non-trivial check of the duality is that both theories have the same SU(Nf) x

SU(Nf) x U(1)B x U(1)R flavor symmetry, and that all of the 't Hooft anomalies match.

To illustrate this matching, consider

TrSU(NffU(l)R = Nc(-^)=-(Nf-Nc)(-r> ^ c ' • - ^ "Nc

with the contribution on the LHS coming from the fields Qf and those on the RHS coming

from qf and Mfg. One can likewise check that all of the other 't Hooft anomalies, e.g.

TvSU(Nf)3, TrU(l)2
BU(l)R, TrU(l)R, TrU(l)R all match (you'll see that the matching

e.g. of TrU(l)R is quite non-trivial).

As a check of the duality, consider Higgsing in the electric theory, by giving (QJV> QNf)

a nonzero expectation value. This Higges SU(NC) —> SU(NC — 1), with Nf —>• Nf — 1 since

one field is eaten, on the electric side. The dual of that low-energy electric theory should

be SU(Nf — Nc) again, with Nf — 1 light flavors. And that's exactly what we get starting

in the magnetic dual of the original theory: taking {MN ̂  ) / 0 has the effect of giving a

mass to the dual quark flavor qNf qNf. So Higgsing of the electric theory corresponds to a

mass term in the magnetic dual. Conversely, adding a mass term to the electric theory has

the effect of Higgsing in the magnetic dual: the electric mass term maps to an additional

superpotential term Wtree = TTLMN ̂  in the magnetic dual. Then, integrating out the

MN $ massive field in the dual theory, the EOM force (qNf qNf) ^ 0, Higgsing the dual

theory to SU(Nf — Nc — 1), with Nf — 1 light flavors remaining uneaten. That low-energy

theory is precisely that expected, as it's the dual of the low-energy electric theory with

group SU(NC) and Nf - 1 light flavors.

So the duality is preserved by the addition of mass terms and Higgsing, and actually

exchanges the two deformations. Recall that masses take the theory to stronger coupling,



while Higgsing takes the theory to weaker coupling, so we see that making one side more

strongly coupled makes the dual weaker, and visa versa. This is how electric-magnetic

duality should behave. In some contexts (e.g. the SO(NC) generalization, with Nf flavors)

we can really connect the dual quarks to magnetic monopoles, justifying more precisely

the name "magnetic" for the dual theory.

The superpotential (8.6) is recovered in the dual description upon taking (M) to have

generic expectation values. Then (M) acts as masses for all dual quarks and, accounting

for the matching relation, we obtain (8.6) from SU(Nf — Nc) gaugino condensation in the

dual theory. This, again, is appropriate when masses have been added to all flavors on the

electric side.

Suppose, on the other hand, that the electric flavors are all massless. It's interesting

to see, then, how the magnetic dual reproduces the constraint that rank(M) < iVc, as is

clear in the electric theory from M = QQ. This classical electric constraint comes from a

non-perturbative effect in the dual theory: if rank(M) > Nc, the dual SU(Nf — Nc) theory

has fewer than Nf — Nc light flavors. Then a non-perturbatively generated superpotential,

which is analogous to (8.2) in the dual, implies that there is no supersymmetric vacuum

in this case.

Suppose, by adding appropriate masses, we flow down to electric SU(NC), with Nf =

Nc + 1 massless flavors. In the magnetic dual, as mentioned above, this flow corresponds

to Higgsing, and for the case where there are only Nf = Nc + 1 flavors left massless, the

dual SU(Nf — Nc) theory is completely Higgsed. The superpotential thus obtained from

the magnetic theory is

W = A2ATC-I (MyB'BS - det M) , (9.4)
ANf=Nc + l

where the first term is the remaining superpotential coming from (9.1), with the dual

quarks q% and q1 replaced with electric baryons via (9.3). The last term in (9.4) comes

from an instanton in the Higgsed SU(Nf — Nc) theory, with the factor of det M coming

from scale matching relations. The superpotential (9.4), was obtained by Seiberg in a

separate work, that predates Seiberg duality. It's EOM gives the classical moduli space

constraints, so it doesn't lift the classical moduli space and is hence OK, even though

there are powers of A in the denominator. The magic behind this is that (9.4) includes

additional fields, corresponding to not imposing the classical constraints. These extra

fields are massive on the classical moduli space, but become massless at the origin of the



moduli space, explaining the singularity of the classical moduli space at the origin. The

existence of these additional massless fields at the origin satisfies a non-trivial check, t'

Hooft anomaly matching, as shown first by Seiberg.

Adding a mass term for one of the flavors, (9.4) leads to an interesting result for the

theory with Nf = Nc massless flavors:

W = 0 with d e t M - B S = A^c
=iVc. (9.5)

The classical moduli space constraint is quantum deformed by the term on the RHS.

The classical singularity at the origin is neatly eliminated, since it's not on the quantum

deformed moduli space.

Adding W = mMNfNf to (9.5), with the constraint imposed, properly recovers the

superpotential (8.2) for the theory with Nf < Nc flavors. So the various dynamics and

effective superpotentials of the electric theory are properly recovered in the dual descrip-

tion.


