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1. Introduction

A variety of condensed-matter systems with an intermediate (mesoscopic)
scale have been recently developed. The characteristic quantum effects involv-
ing a macroscopic number of particles cause peculiar properties of all such
devices, which make them appealing for applications. However the sizeable
dimension of the devices implies that the relevant dynamical variables have
to be considered as coupled to a very large (infinite) number of degrees of
freedom of the surrounding environment (or dissipation bath). In these open
systems, interaction with the environment leads in general to dissipation and
decoherence which strongly affect the behavior of the system. It is thus es-
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sential to study both quantum and dissipative effects. Two-dimensional (2D)
arrays of nanosized Josephson junctions, both unshunted [1] and shunted [2]
can indeed be produced, giving the opportunity to experimentally test the ef-
fects of dissipation.

2. Path Integral Monte Carlo for dissipative systems

The quantum dissipation is usually addressed within the Caldeira-Leggett
(CL) framework [3]. Dissipation is described in terms of a linear coupling
of the system with a bath of harmonic oscillators [4–6]. The path integral
expression of the partition function of a quantum dissipative system,

Z =
∮

D[q] e−S[q] , (1)

is given by the Euclidean action

S[q] =
∫ β�

0

du

�

[
1
2

q̇(u)A q̇(u) + V
(
q(u)

)]
+ Sd[q] . (2)

The effects of dissipation are contained in the influence action,

Sd[q] =
1
2�

∫ β�

0
du

∫ β�

0
du′ q(u)K(u−u′) q(u′) . (3)

Here, q ≡ {qi}i=1,...,M denotes the vector whose components are theM coor-
dinates of the investigated system andA ≡ {Aij} is the mass matrix. The ker-
nelK(u) ≡ {Kij(u)} is anM×M matrix, which is in general non local both
in space and imaginary time. It depends on the temperature T = (k

B
β)−1, is a

symmetric and periodic function of the imaginary time u,K(u) = K(−u) =
K(β� − u), with vanishing average over a period.
When Josephson junction arrays (JJA) are considered, the influence ac-

tion (2) is a good description of dissipative effects due to currents flowing
to the substrate or through shunt resistances [7]. For such systems, an alterna-
tive dissipative mechanism due to radiative effects of the electromagnetic field
was also recently suggested [8, 9]. This leads to a so called anomalous (or
p-coupling) dissipation [10] , where the influence action (2) is replaced with:

S
ad

[p(u)]
∫ β�

0

du

2�

∫ β�

0

du′

β�
p(u) K(u−u′) p(u′) , (4)

where p is the M -component vector of the momenta canonically conjugated
to the coordinates q. The physical consequences of the two different types
of dissipation were investigated and discussed in Refs. [6, 11] by the effec-
tive potential method [12]. The relevant difference is that standard dissipation
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quenches the quantum fluctuations of the coordinates, driving their behaviour
towards the classical one, while the anomalous dissipation has an opposite ef-
fect, enhancing the quantum fluctuations of q.
The standard path-integral Monte Carlo (PIMC) method, for computing the

integral in Eq. (1), divides the imaginary-time interval [0, β�] into P slices of
width ε = β�/P where P is called Trotter number. The partition function Z
is obtained as the P → ∞ extrapolation of

ZP = Cβ−MP
2

M∏
i=1

∫
dqi0

∫ P−1∏
�=1

dqi� e−SP [{q�}] , (5)

where the path q(u) turns into the P discrete quantities q� = q(�ε), and
q̇(u) → (P/β�)(q� − q�−1); SP [{q�}] represents the discretized form of the
action (2) and C is a temperature-independent normalization.
The application of the standard PIMC approach to dissipative systems is

made difficult by the fact that the kernel K(u−u′) is a non local (and long
ranged) function of the imaginary time, [5]. Fourier path-integral approaches
[13], possibly supported by the partial-averaging scheme [14] can perform bet-
ter: however, the evaluation of the integral over the continuous path they still
involve is a serious shortcoming in the case of many-body systems.
Recently, we have proposed [15] to start from the finite-P expression (5) of

the standard PIMC for the partition function and make there a lattice (discrete)
Fourier transform, changing the integration variables from qi� to qik by setting:

q� = q̄ +
P−1∑
k=1

qk ei 2π�k/P , (6)

so that the discretized partition function reads:

ZP = Cβ−PM
2

M∏
i=1

∫
dq̄i

∫ P−1∏
�=1

dqik (7)

× exp

{
−

P−1∑
k=1

qk

[
2P 2

β�2
sin2 πk

P
A +

β

2
Kk

]
q∗

k − β

P

∑
�

V
(
q�

)}
,

where Kk ≡ {Kij,k} is the Matsubara transform of the dissipation kernel
matrix at the Matsubara frequency νk = 2πk/β�.
In order to get a reliable estimate of statistical averages in the thermody-

namic limit (M →∞), finite-size effects have to be negligible; as a conse-
quence the number M must be large enough, making the extrapolation to
P → ∞ problematic. However, such difficulty can be largely circumvented
by making use of our knowledge of both the finite- and infinite-P exact parti-
tion function of pure bilinear actions [16]. According to Ref. [16], any PIMC
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estimate G(P ) of a given quantity G obtained at finite P can be corrected by

adding the exact (P →∞) value G
(h)
HA and subtracting the finite-P estimate

G
(h)
HA(P ) of the same quantity. This can be done within the self-consistent

harmonic approximation, getting:

GHA(P ) = G(P ) +
[
G

(h)
HA − G

(h)
HA(P )

]
. (8)

As it has been clearly shown in the applications [15], the last step turns out to
be essential and truly effective in the investigation of many-body systems.

3. Josephson Junction Arrays

Two-dimensional (2D) JJA are one of the best experimental realizations of
a model belonging to the XY universality class and permit to check and study
a variety of phenomena related to both the thermodynamics and the dynamics
of vortices. In these systems a Berezinskii-Kosterlitz-Thouless (BKT) transi-
tion [17] separates the low-temperature superconducting (SC) state from the
normal (N) state, the latter displaying no phase coherence [18]. At nanoscale
size of the junctions, the quantum fluctuations of the superconducting phases
cause new interesting features. These appear to be the consequence of the non-
negligible energy cost of charge transfer between SC islands. Indeed small
capacitances are involved and the phase and charge are canonically conjugate
variables. A relevant effect is the progressive reduction of the SC-N transition
temperature as evidenced by experimental data [1] and confirmed for small
quantum coupling g (see definition below) by a semiclassical investigation [7].
Recently, arrays of nanosized junctions, both unshunted [1] and shunted [2],

have given the opportunity to experimentally approach the quantum (zero-
temperature) phase transition. However, the mechanism of suppression of the
BKT in the neighborhood of the quantum critical point and its connection with
the observed reentrance of the array resistance as function of the temperature
is not yet clear [18, 19].
The JJA on the square lattice is described by a quantum XY model action:

S[ϕ] =

�β∫
0

du

�

{∑
ij

�
2Cij

8e2
ϕ̇i(u) ϕ̇j(u) − E

J

2

∑
id

cos ϕid(u)
}

, (9)

where ϕid = ϕi −ϕi+d is the phase difference between the Josephson phases
on the ith and the (i+d)th neighboring superconducting islands, and the index
d labels the 4 nearest-neighbour displacements. The capacitance matrix reads

Cij = C
[
η δij +

(
z δij −

∑
d
δi,j+d

)]
, (10)
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where C0 ≡ η C and C are, the self- and mutual capacitances of the islands re-
spectively. The standard samples of JJA are well decribed by the limits η � 1.
The quantum character of the array is determined by the Coulomb interaction
between the Cooper pairs, described by the kinetic term through Josephson
relation ϕ̇i = 2eVi. The Josephson coupling term causes the Cooper-pair tun-
neling across the junctions.
The quantum fluctuations are ruled by the quantum coupling parameter

g =
√

E
C
/E

J
, where E

C
= (2e)2/2C is the characteristic charging en-

ergy (for η � 1). In the following we use the dimensionless temperature
t ≡ k

B
T/E

J
. We always assume the presence of at least a very weak Ohmic

dissipation due to the currents flowing to the substrate or through shunt resis-
tances [2]: this allows us to consider the phase as an extended variable [18].
Apart from this, dissipative effects are negligible provided that the shunt resis-
tance RS � RQ g2/(2πt), where RQ ≡ h/(2e)2 is the quantum resistance.
For smaller RS an explicit dissipative contribution must be added to the ac-
tion (9), e.g. in the form of the Caldeira-Leggett term [18, 7], as given in (3),
where ϕi(u) play the role of qi(u). The two situations are the cases of the ex-
periments in Ref. [1] and Ref. [2], respectively, where an increase of the BKT
transition temperature was found for increasing dissipation. This can be easily
understood taking into account that the dissipative term (3) results from the
coupling of the phase ϕi with environmental variables constituting an implicit
measurement of ϕi .

4. Numerical simulations and phase diagram

Using the PIMC algorithm described in Sec.2, the dependence on g of the
BKT transition temperature of the JJA model described by the action (9) with
the additional dissipative term (3) is obtained.
The discretized path can be written as:

ϕi,l = ϕ̄i + 2
N∑

k=1

�e
[
ϕike−i 2π

P
lk

]
= ϕ̄i + 2

N∑
k=1

[
aikcos 2πlk

P + biksin2πlk
P

]
,

(11)
where ϕ̄i is the zero-frequency component of the Euclidean path, and choosing
an odd Trotter number P = 2N + 1. The advantage of using the transformed
variables {ϕ̄i, aik, aik} is twofold: the influence action (3) becomes diagonal
and PIMC sampling can be performed with an independent move amplitude on
each frequency component.
Using expression (11), the JJA action (9) plus the dissipative term (3) reads

S[ϕ] =
∑
ij

N∑
k=1

Tij,k(aikajk + bikbjk) − 1
2Pt

∑
id

P∑
l=1

cos ϕij,l , (12)
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where ϕij,l = ϕi,l−ϕj,l is to be expressed as in (11), and the ‘kinetic’ matrix

Tij,k =
P 2

βe2
Cij sin2 πk

P
+ βKij,k , (13)

involves Kij,k, i.e., the discrete FT of the dissipative kernel matrix Kij(u).
Any macroscopic thermodynamic quantity is obtained through its estimator as
generated from the discretized action (12).
Actual simulations were made on L×L lattices (up to L = 96) with peri-

odic boundary conditions; the move amplitudes were dynamically adjusted for
each k-component; this procedure is very effective for reproducing the effect
of strong quantum fluctuations in the high-g region, at difference with the stan-
dard PIMC algorithm which showed serious ergodicity problems, though even-
tually giving the same results. Furthermore, an over-relaxation algorithm [22]
for the zero-frequency mode proved to effectively reduce the autocorrelation
times.
In order to determine the transition temperature, a very sensitive method is

provided by the scaling law of the helicity modulus Υ (a quantity proportional
to the phase stiffness),

Υ =
(

∂2f(k0)
∂k2

0

)
k0=0

, (14)

which measures the response of the dimensionless free energy per lattice site
f(k0) = F (k0)/(L2 E

J
) when a uniform twist k0 along a fixed direction u is

applied to the boundary conditions (i.e., ϕi → ϕi + k0u·i, with the unitary
vector u). The PIMC estimator for Υ is easily obtained, in analogy to that of
Ref. [23], by derivation of the discretized path-integral expression of the free
energy

f(k0) =
t

L2
ln ZP (k0) (15)

Eventually we get

ΥP =
1

L2P

∑
id

P∑
l=1

cos ϕid,l − 1
2tL2P 2

∑
d

(∑
i

P∑
l=1

sin ϕid,l

)2

. (16)

Kosterlitz’s renormalization group equations provide the critical scaling law
for the finite-size helicity modulus ΥL:

ΥL(tBKT)
tBKT

=
2
π

(
1 +

1
2 ln(L/L0)

)
, (17)

where L0 is a non-universal constant. Following Ref. [24], the critical tem-
perature t

BKT
can be found by fitting ΥL(t)/t vs L for several temperatures
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according to Eq. (17) with a further multiplicative fitting parameter A(t). In
this way, the critical point can be determined by searching the temperature such
that A(tBKT)= 1, getting results like those reported in Fig 1. This method al-
lows for a precise identification of t

BKT
: at temperature higher (lower) than

the critical one the helicity modulus decreases (increases) much faster with L
than ΥL(t

BKT
). At higher values of the quantum coupling, g > g�, the helicity

modulus scales to zero with L → ∞ and P → ∞ at any temperature [21].
Systematic extrapolations in the Trotter number and in the lattice size have

been done, in order to ascertain the good approach to the quantum and the
thermodynamic limit. In particular, we did not find any anomaly in the finite-P
behavior: the extrapolations in the Trotter number appear to be well-behaved,
in the expected asymptotic regime O(1/P2) [26], for P ∼ 60. Moreover,
the extrapolation to infinite lattice-size clearly indicates that ΥL scales to zero
at t = 0.1, while it remains finite and sizeable at t = 0.2. Therefore, we
conclude that the reentrant behavior of the helicity modulus appears to be a
genuine effect present in the model, rather than a finite-Trotter or finite-size
artifact.

5. Discussion of the results

In order to understand the physical reasons of the reentrance observed in the
phase stiffness, we have studied the following two quantities:〈

cos ϕij

〉
, ∆2

ϕ =
〈
(ϕij(u) − ϕ̄ij)2

〉
, (18)

0 20 40 60 80 100 120
L

0.62

0.63

0.64

ΥL

0 10 20 30 40 50
L

0.18

0.2

0.22

0.24

0.26

Figure 1. Size scaling of the helicity modulus ΥL at the transition temperature. Symbols are
PIMC data and the dashed-lines are the one-parameter fit with Eq. (17), i.e. with A(t) = 1.
Left panel: g = 0 and t = 0.892 [L0 = 0.456(6)]; right panel: g = 3.4 and t = 0.25
[L0 = 3.32(3)].
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t
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1

Υ
8

g = 1.0

g = 2.0

g = 3.0

g = 3.4

Classical

Figure 2. Temperature behavior of the helicity modulus ΥL at selected values of coupling g .
The data are the results for 8 x 8 lattice with Trotter extrapolation.

0 0.0002 0.0004 0.0006
1/P

2

0

0.05

0.1

0.15

0.2

0.25

Υ
L

t = 0.2

t = 0.1

Figure 3. Trotter extrapolation of helicity modulus for g = 3.4 .

where ϕ̄ij is the phase average on the imaginary path, being ij nearest-neigh-
bor sites. The first quantity, 〈cos ϕij〉, is a measure of the total (thermal plus
quantum) short-range fluctuations of the Josephson phase and its maximum
occurs where the overall fluctuations are lowest. The second quantity repre-
sents instead the pure-quantum spread of the phase difference between two
neighboring islands and has been recently studied in the single junction prob-
lem [27]; more precisely, ∆2

ϕ measures the fluctuations around the static value
(i.e., the zero-frequency component of the Euclidean path), it is maximum at
t = 0 and tends to zero in the classical limit, i.e., (g/t) → 0.
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The quantities (18) on a 8× 8 lattice are compared in Fig. 6 for two val-
ues of the quantum coupling, in the semiclassical (g = 1.0) and in the extreme
quantum (g = 3.4) regime. In the first case 〈cos ϕij〉 decreases monotonically
by increasing t and the pure-quantum phase spread ∆2

ϕ shows a semiclassical
linear behavior which is correctly described by the PQSCHA. At variance with
this, at g = 3.4, where the reentrance of Υ(t) is observed, 〈cos ϕij〉 shows a
pronounced maximum at finite temperature. Besides the qualitative agreement
with the mean-field prediction of Ref. [28], we find a much stronger enhance-
ment of the maximum above the t =0 value. This single-junction effect, in a
definite interval of the quantum coupling ( 3.2 < g < 3.4 ), is so effective to
drive the reentrance of the phase stiffness. As for the transition in the region
of high quantum fluctuations and low temperature, the open symbols in Fig. 5
represent the approximate location of the points (t, g) where Υ(t) becomes
zero within the error bars: in their neighborhood we did not find any BKT-like
scaling law. This fact opens two possible interpretations: (i) the transition does
not belong to theXY universality class; (ii) it does, and in this case the control
parameter is not the (renormalized) temperature, but a more involute function
of both t and g.
When the interaction of the phase variable with a heat bath, as given by

Eq. (3), is present through a variable shunt resistance, the quantum phase fluc-
tuations are decreased by the dissipation so that the BKT transition temperature
rises. This was well reproduced by PQSCHA at low coupling [7].
Two points must be noticed. The reentrance is present also with dissipation

and disappears only with rather significant dissipation strength RQ/RS ∼
0.15. At the highest dissipation, RQ/RS > 0.5 , a change in curvature is
present and the critical temperature asymptotically vanishes.

0 0.04 0.08 0.12 0.16
1/L

0

0.1

0.2

0.3

Υ
L

t = 0.2

t = 0.1

Figure 4. Finite size scaling of helicity modulus for g = 3.4 at P = 101.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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0.0

0.2

0.4

0.6

0.8

1.0
t B

K
T

Figure 5. Phase diagramm. BKT transition temperatures versus coupling g . Full rhombs
represent the BKT transition temperatures for very low dissipations compared with the semi-
classical approach (full line). The full circles refer different intensities of the dissipation from
RQ/RS = 0.15 (lowest), RQ/RS = 0.25 and RQ/RS = 0.15 (highest). Open circles refer
to reentrance phenomena for vanishing and RQ/RS = 0.15 dissipation .
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