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Why there is still an interest in high
temperature superconductivity?

Non-Fermi liquid 
behavior in the 
normal state

Pseudogap



PseudogapPseudogap



Photoemission intensity in high Tc

∆

Z-X Shen et al
Campuzano et al
Johnson et al
Kordyuk et al

The gap does not vanish at Tc.



Pseudogap
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What is What is pseudogappseudogap??

a novel order in the particle hole channel,a novel order in the particle hole channel,

oror

an instability in the particlean instability in the particle--particle channel particle channel 
(a precursor to superconductivity)?(a precursor to superconductivity)?



FACTS:

• pseudogap transforms into a superconducting gap below Tc

• pseudogap has d-wave symmetry

• there is only one peak in the density of states below Tc

Pseudogap is a precursor to superconductivity



Conventional reasoning

Superfluid stiffness is small

∆<<= 0)(Tsρ

T-0)(TT)( ss == ρρPhase fluctuations:

∆<<= ~T0)(T~T csc ρ



Can small stiffness be an intrinsic property of
a strongly coupled superconductor?

1>λ• Eliashberg theory

Fs E~ρ weak coupling

Stiffness
λρ /E~ Fs strong coupling

Looks, the stiffness can be made as small as possible.



Migdal condition prevents this

Phonon superconductors

Three parameters: interaction, Debye frequency, and Fermi energy

- interaction is larger
than Debye frequency

1>λ2

D

g
=

ω
λ

1
EF

D <<
ω

λEliashberg theory (no vertex corrections) is valid when

( ) F
2/1

DFD EEg <<<<<< ωω

interaction is much smaller than EF



How this affects the stiffness?

g
g

E
g~E~

2

DFF
s >>

ω

λ
ρ

phase fluctuations 
are  irrelevantg s ∆>>≤∆ ρPairing gap

Eliashberg theory is inconsistent with phase fluctuation scenario

[phase fluctuations are small in  Eliashberg theory]

Downward renormalization of        is not enough.sρ



A similarity with an s-wave superconductor
with impurities 

• normal state damping
• superconducting gap

γ
∆

1)( >>∆∆<< τγ Fs E~ρclean limit 

FFs EE~ <<
∆

γ
ρ1)( <<∆∆>> τγdirty limit

∆>>∆
E~ F

s γ
ρHowever, even in dirty limit,

(Tc is not affected by impurieies)



Two ways out  (cuprates)

1. break                 (make interaction larger than the bandwidth)FEg <<

Plus:
no double occupancy constraint enhances phase fluctuations

Minus:
Luttinger theorem is violated in the normal state above Tins

(0,π)

(π,0) (π,π)

Q
h.s.

ARPES
above Tins

physics of x physics of 1-x



Two ways out  (cuprates)

2. keep              (i.e., keep interaction smaller than the bandwidth),

and more carefully analyze Eliashberg theory

FEg <<

(0,π)

(π,0) (π,π)

Q
h.s.Plus:  large, Luttinger type Fermi

surface in the normal state

If the pseudogap exists in the Eliashberg theory,
then  the  crossover from the physics of x to the physics of 1-x
should happen inside the pseudogap phase



Eliashberg theory (again). 
Phonons (again) as an example. 

Previous works: 
Allen & Dynes, Carbotte & Marsiglio, Combescot, Maksimov et al
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gap equation

λω
1--

Dc e~T weak coupling
onset of pairing

g~~Tc λωD
strong coupling

cT~0)( =∆ ω 0N-~E 2
0c <∆gap condensation energy 



Strong coupling

g~~T D
ad
c λω (Allen-Dynes formula, 1975)2

D

g
=

ω
λ

gg~e~T 2
1

-

D
mm
c <<+

λ
ω λ

λ
McMillan formula, 60th

We argue:

is the true superconducting Tc

is the onset of the pseudogap
ad
cT

mm
cT



Where do these two temperatures come from?

• Matsubara technique  (OK for the calculations of Tins)

2
D

2

2g-)(
ωω

ωχ
+

=
m

Pairing interaction: 

,Dωω < Fermi liquid

λ
ω

ωχ -g-)( 2
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interaction mass renormalization
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BCS theory, pairing kernel is
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λ only FL regime
contributesIf  we stop here, we obtain 



Where do these two temperatures come from?

• Matsubara technique  (OK for the calculations of Tins)
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Pairing interaction: 

Non-Fermi liquid,Dωω >

Pairing kernel is
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non FL regime
contributesg0.1827Tad

c =numerical computation:



Same story for the spin-fermion model:
two scales

ω a residual coupling between electrons and collective spin modes

ω
λ
ω

ω
4 2sf <<= a spin relaxation frequency

ωλω)( ≈Σsfωω < Fermi liquid

Quantum-critical,
Non-Fermi liquid

behavior

ωωωω >Σ )(~)( 1/2 ωωχ 1/)(, ∝

Pairing kernel:
ωωω
111

=

sfωωω >>

ωωωω <Σ )(~)( 1/2ωω > Fermi gas behavior



Dome of a pairing instability above QCP

sfD , ωω
ωg,



Where do these two temperatures
come from?  (cont’d)

• Real frequencies

2
D

2

2

-
g)(
ωω

ωχ =Pairing interaction: 

λ
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attraction,Dωω <
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λ
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g0.1827Tad
c =

repulsion

Extends to all frequencies when 
Debye frequency vanishes



What is the origin of ?ad
cT

)(i)()( ωχωχωχ ′′+′=

2
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i- DD
D

ωδπωωδωωδ
ω
π

′+

• at weak coupling,                are irrelevant, pairing is due
to the exchange of virtual bosons

• at infinite coupling, the pairing is due to the exchange of
real, on-shell bosons

Dωω >



Gap equation in real frequencies
for vanishing Debye frequency

ω
ω

ω
)()(D ∆

=

)(D-1
)/d(Dd

2
i-)A())B(()(D

2 ω

ωωπ
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22 (x)D-1

D(x)Re
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dx)(A
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ω comes from the imaginary part
of the interaction

gap equation becomes differential!come from the real  (repulsive)
part of the interaction



Approximate solution: 
neglect contributions from the repulsive part of )(ωχ

a)i2(sin
)(

+
=∆

ω
π

ω
ω

a=0, 0(0) ≠∆

a >0, gapless scωω i)1( ∝<<∆

• infinite degeneracy of the ground state

• DOS is finite down to zero frequency 

• position of the maximum in DOS is the
same for all solutions

• a linearized gap equation has a solution

at T=0 

Density of states

)e(e~)(,a /2i-a πωωω∆∞

a is a free parameter (zero mode)

(Combescot, 95)



Exact solution, ∞a

[ ])(DRe
)|(|

d1)(D
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• Solution:

[ ] [ ] 1  tanh,)]0)i[-((logsinei2)(D 22-a =++= πβπβωωβω

(KK is satisfied)
A linearized gap equation has a solution at T=0 

-3ae• Expansion in -- we found the solution to order 
-2ae



What this infinite set of solutions 
physically means?

Order parameter in a superconductor:

N|T|2N) t-(tFi 21 >+<= ++
βααβ ψψ

Time dependence
( )[ ]2-(N)E-2)(NE t i-expF

imfm µ+∝

N∂

initial

If  mf and mi is the same state,          and F (0) is finite,2E
µ=

∂
final

Order parameter in a superconfuctor is F(0)  (equal time correlator) 

[ ]θiexp|F|F(0) =



What this infinite set of solutions 
physically means?

• conventional (equal time) interaction is  repulsive (and irrelevant)

 t
2

(const)ie
2
i)(  ti-

D

D
π

ω
π

ω ω +≈=Σ

from on-shell bosons interaction increases with t

• at t=0, our interaction vanishes (pure retardation)

For all our solutions, superconducting order parameter vanishes



Physics (cont’d)

Our case, ω 0D =A conventional sc

a=3       a=2        a=1         a=0

0D ≠ω

An infinite set of degenerate states
with O(1) particles per state

a single ground state 
with O(N) particles

Our case,

a =3 a=2 a=1 a=0

now contains O(N) particles

soft longitudinal fluctuations



Stiffness at T=0

• When longutudinal gap fluctuations are not soft
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• When longutudinal gap fluctuations are soft
soft longitudinal

fluctuations
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Another way to look at zero mode

order parameter symmetry is enhanced at QCP

(a balance between normal and anomalous self-energies)

const))((Im))((Re)()(Re 222 =Φ+Φ+Σ ωωω

)( Z)()( ωωω ∆=Φ

P2 instead of O(2)

soft longitudinal gap fluctuations at QCP



Conclusions

• Two energy scales in fermionic systems near QCP

upper edge of Fermi liquid behavior
upper edge of quantum-critical behavior

• Two characteristic temperatures

• Gap appears at 

• Superconductivity in a Fermi liquid regime 

• Soft longitudinal fluctuations
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