

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1572 - 23

Workshop on Novel States and Phase Transitions in Highly Correlated Matter

12 - 23 July 2004

Pseudogap in strongly coupled superconductors

Andrey V. CHUBUKOV University of Wisconsin-Madison Department of Physics 1150 University Avenue Madison, WI 53706-1390 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Pseudogap in strongly coupled superconductors.

Artem Abanov

Los Alamos Natl Lab

Andrey Chubukov University of Wisconsin

Trieste, July 13, 2004

Special thanks to

Boris Altshuler

Princeton/NEC

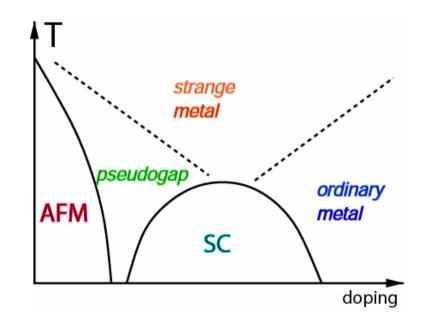
Emil Yuzbashyan Princeton

Inspired by Rolan Combescot

ENS, Paris

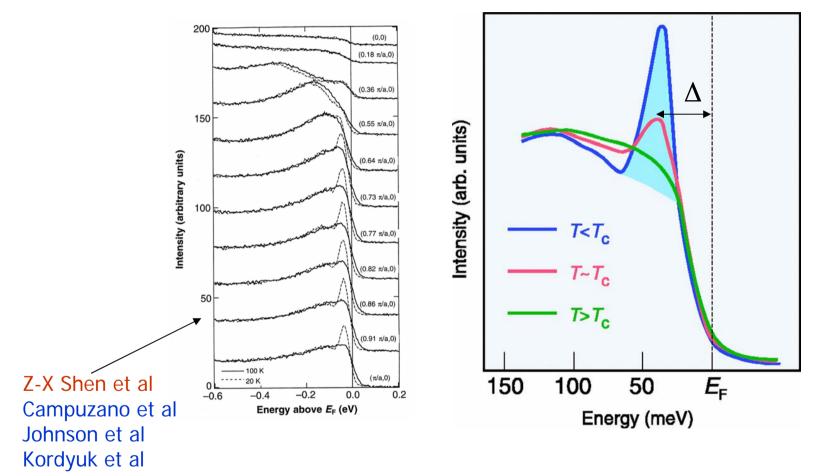
Why there is still an interest in high temperature superconductivity?

- Non-Fermi liquid behavior in the normal state
- Pseudogap



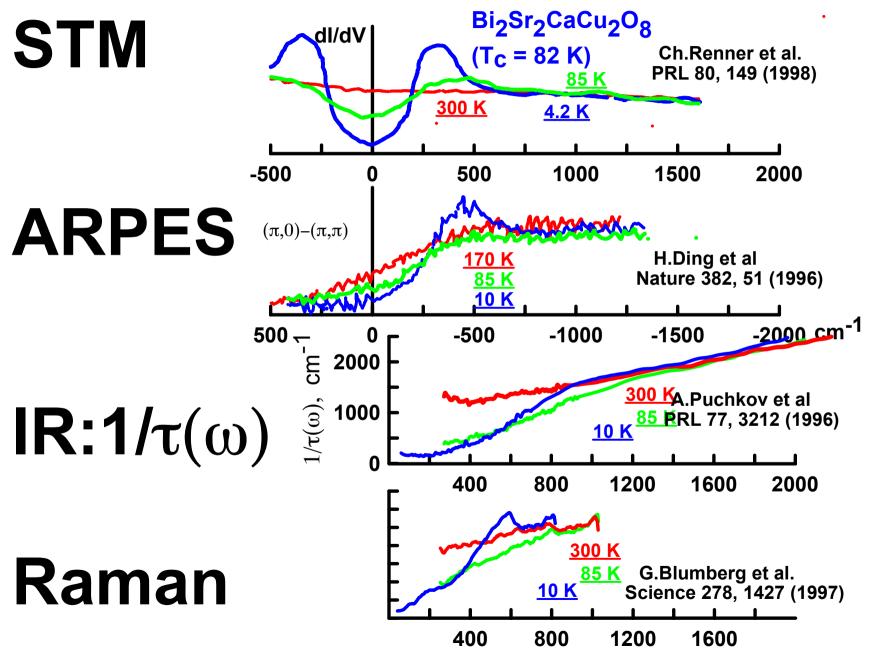
Pseudogap

Photoemission intensity in high Tc



The gap does not vanish at Tc.

Pseudogap



What is pseudogap? a novel order in the particle hole channel, or

an instability in the particle-particle channel (a precursor to superconductivity)?

FACTS:

- pseudogap transforms into a superconducting gap below Tc
- pseudogap has d-wave symmetry
- there is only one peak in the density of states below Tc

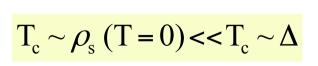
Pseudogap is a precursor to superconductivity

Conventional reasoning

Superfluid stiffness is small

$$\rho_{\rm s} ({\rm T}=0) << \Delta$$

Phase fluctuations: $\rho_{s}(T) = \rho_{s}(T = 0) - T$



Can small stiffness be an intrinsic property of a strongly coupled superconductor?

• Eliashberg theory $\lambda > 1$

 $\rho_{\rm s} \sim E_{\rm F}$ weak coupling

Stiffness

$$ho_{\rm s} \sim {\rm E}_{\rm F} / \sqrt{\lambda}$$
 strong coupling

Looks, the stiffness can be made as small as possible.

Migdal condition prevents this

Phonon superconductors

Three parameters: interaction, Debye frequency, and Fermi energy

$$\lambda = \left(\frac{g}{\omega_{\rm D}}\right)^2$$

 $\lambda > 1$ - interaction is larger than Debye frequency

Eliashberg theory (no vertex corrections) is valid when

$$\lambda \frac{\omega_{\rm D}}{\rm E_{\rm F}} << 1$$

$$\omega_{\rm D} << g << (E_{\rm F} \omega_{\rm D})^{1/2} << E_{\rm F}$$

interaction is much smaller than E_F

How this affects the stiffness?

$$\rho_{\rm s} \sim \frac{{\rm E}_{\rm F}}{\sqrt{\lambda}} \sim g \left(\frac{\sqrt{{\rm E}_{\rm F}} \omega_{\rm D}}{g}\right)^2 >> g$$

Pairing gap
$$\Delta \leq g \implies \rho_s >> \Delta$$

phase fluctuations are irrelevant

Eliashberg theory is inconsistent with phase fluctuation scenario

[phase fluctuations are small in Eliashberg theory]

Downward renormalization of $\rho_{\rm s}$ is not enough.

A similarity with an s-wave superconductor with impurities

- γ normal state damping
- Δ superconducting gap

clean limit $\gamma \ll \Delta \ (\Delta \tau \gg 1)$ $\rho_{\rm s} \sim E_{\rm F}$ dirty limit $\gamma \gg \Delta \ (\Delta \tau \ll 1)$ $\rho_{\rm s} \sim E_{\rm F} \frac{\Delta}{\gamma} \ll E_{\rm F}$

However, even in dirty limit, ρ_{i}

$$\rho_{\rm s} \sim \Delta \frac{{\rm E}_{\rm F}}{\gamma} >> \Delta$$

(Tc is not affected by impurieies)

Two ways out (cuprates)

1. break $g \ll E_F$ (make interaction larger than the bandwidth) Plus:

no double occupancy constraint enhances phase fluctuations

Minus:

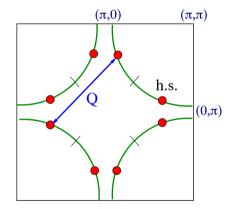
Luttinger theorem is violated in the normal state above Tins

Two ways out (cuprates)

2. keep $g \ll E_F$ (i.e., keep interaction smaller than the bandwidth),

and more carefully analyze Eliashberg theory

Plus: large, Luttinger type Fermi surface in the normal state



If the pseudogap exists in the Eliashberg theory, then the crossover from the physics of x to the physics of 1-x should happen inside the pseudogap phase

Eliashberg theory (again). Phonons (again) as an example.

Previous works:

Allen & Dynes, Carbotte & Marsiglio, Combescot, Maksimov et al

(1)

gap equation

$$\Delta_{\omega_{m}} = \pi T g^{2} \sum_{n} \frac{\Delta_{\omega_{n}} - \Delta_{\omega_{m}} \frac{\omega_{n}}{\omega_{m}}}{\sqrt{\omega_{n}^{2} + \Delta_{\omega_{n}}^{2}}} \frac{1}{(\omega_{n} - \omega_{m})^{2} + g^{2} / \lambda}$$

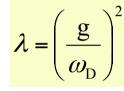
onset of pairing

$$T_{c} \sim \omega_{D} e^{-\frac{1}{\lambda}} \qquad \text{weak coupling}$$

$$T_{c} \sim \omega_{D} \sqrt{\lambda} \sim g \qquad \text{strong coupling}$$

gap $\Delta (\omega = 0) \sim T_c$ condensation energy $E_c \sim -N_0 \Delta^2 < 0$

Strong coupling

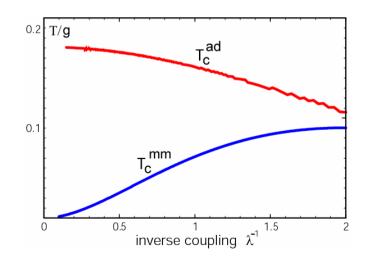


$$T_c^{ad} \sim \omega_D \sqrt{\lambda} \sim g$$

$$T_c^{mm} \sim \omega_D e^{-\frac{\lambda}{1+\lambda}} \sim \frac{g}{\lambda^2} << g$$

(Allen-Dynes formula, 1975)

McMillan formula, 60th



We argue:

- $T_c^{\,mm}\,$ is the true superconducting ${\sf T}_c$
- T_c^{ad} is the onset of the pseudogap

Where do these two temperatures come from?

• Matsubara technique (OK for the calculations of Tins)

Pairing interaction:

$$\chi(\omega) = -\frac{g^2}{\omega_m^2 + \omega_D^2}$$

 $\omega < \omega_{\rm D}$, Fermi liquid

$$\chi(\omega) \approx -\frac{g^2}{\omega_D^2} = -\lambda \qquad \Sigma(\omega_m) = -i \int_0^{\omega_m} \chi(\Omega) d\Omega = i \lambda \omega_m, \quad i\omega_m + \Sigma(\omega_m) = i \omega_m (1 + \lambda)$$

interaction BCS theory, pairing kernel is

If we stop here, we obtain $T_c^{mm} \sim \omega_D e^{-\frac{\lambda}{1+\lambda}} \sim \frac{g}{\lambda^2} << g$

$$\frac{1}{\omega} \left[\frac{\lambda}{1+\lambda} \right]$$

only FL regime contributes

Where do these two temperatures come from?

• Matsubara technique (OK for the calculations of Tins)

Pairing interaction:

$$\chi(\omega) = -\frac{g^2}{\omega_m^2 + \omega_D^2}$$

 $\omega > \omega_{\rm D}$, Non-Fermi liquid

$$\chi(\omega) = -\frac{g^2}{\omega_m^2} = -\lambda \frac{\omega_D^2}{\omega_m^2} \qquad \Sigma(\omega_m) = -i \int_{\omega_D}^{\omega_m} \chi(\Omega) \, d\Omega = i \frac{g^2}{\omega_D} - i \frac{g^2}{\omega_m}$$
Pairing kernel is
$$\frac{1}{\omega_m^2} \omega_m = \frac{1}{\omega_m} \quad \text{up to} \quad \omega \sim g$$

numerical computation:

 $T_{c}^{ad} = 0.1827 \text{ g}$

non FL regime contributes

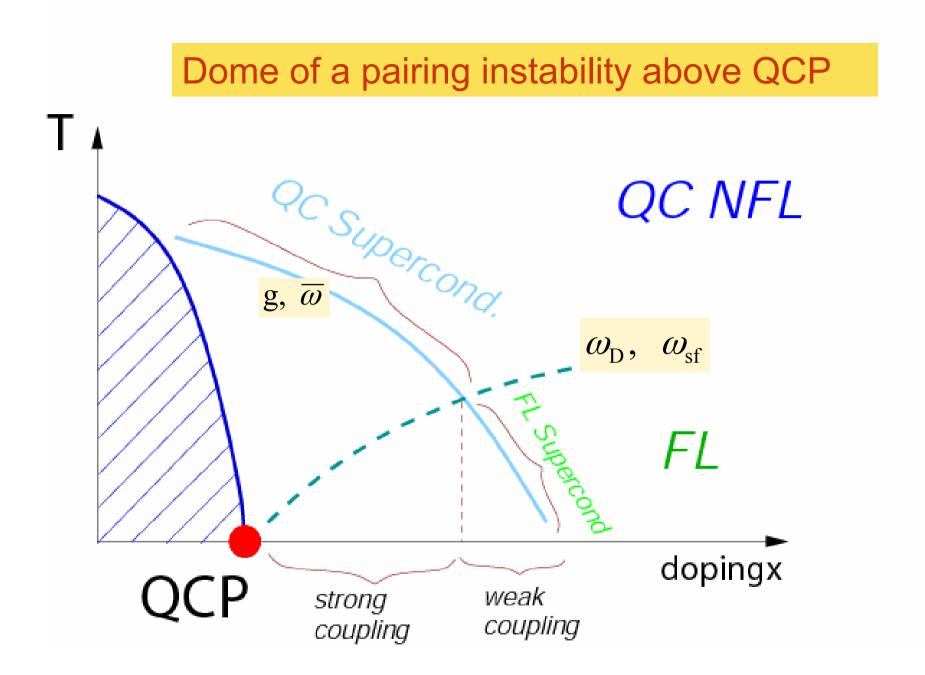
Same story for the spin-fermion model: two scales

 $\overline{\omega}$ a residual coupling between electrons and collective spin modes

$$\omega_{\rm sf} = \frac{\overline{\omega}}{4\lambda^2} << \overline{\omega}$$

a spin relaxation frequency

$$\omega < \omega_{\rm sf}$$
 $\Sigma(\omega) \approx \lambda \omega$ Fermi liquid



Where do these two temperatures come from? (cont'd)

• Real frequencies

Pairing interaction:

$$\chi(\omega) = \frac{g^2}{\omega^2 - \omega_D^2}$$

$$\frac{\omega < \omega_{\rm D}, \text{ Fermi liquid}}{T_{\rm c}^{\rm mm} \sim \omega_{\rm D} e^{-\frac{\lambda}{1+\lambda}} \sim \frac{g}{\lambda^2} << g}$$

$$\chi(\omega) \approx -\frac{g^2}{\omega_D^2} = -\lambda$$
 a

attraction

 $\omega > \omega_{\rm D}$, Non-Fermi liquid $T_{\rm c}^{\rm ad} = 0.1827 \, {\rm g}$

$$\chi(\omega) \approx + \frac{g^2}{\omega^2}$$

repulsion

Extends to all frequencies when Debye frequency vanishes

What is the origin of
$$T_c^{ad}$$
 ?

$$\chi(\omega) = \chi'(\omega) + i \chi''(\omega)$$

$$P\left(\frac{1}{\omega^{2} - \omega_{D}^{2}}\right) - i \frac{\pi}{2 \omega_{D}} \left[\delta(\omega - \omega_{D}) - \delta(\omega + \omega_{D})\right] \Rightarrow \pi \delta'(\omega)$$

- at weak coupling, $\omega > \omega_{\rm D}$ are irrelevant, pairing is due to the exchange of virtual bosons
- at infinite coupling, the pairing is due to the exchange of real, on-shell bosons

Gap equation in real frequencies for vanishing Debye frequency

$$\mathsf{D}(\omega) = \frac{\Delta(\omega)}{\omega}$$

$$D(\omega)(\omega + B(\omega)) = A(\omega) - i\frac{\pi}{2}\frac{d D(\omega)/d\omega}{\sqrt{1 - D^2(\omega)}}$$
 (set g=1)

$$B(\omega) = \frac{\omega}{|\omega|} \int_{0}^{\infty} \frac{dx}{(|\omega| + x)^{2}} \operatorname{Re}\left[\frac{1}{\sqrt{1 - D^{2}(x)}}\right]$$
$$A(\omega) = \int_{0}^{\infty} \frac{dx}{(|\omega| + x)^{2}} \operatorname{Re}\left[\frac{D(x)}{\sqrt{1 - D^{2}(x)}}\right]$$

come from the real (repulsive) part of the interaction

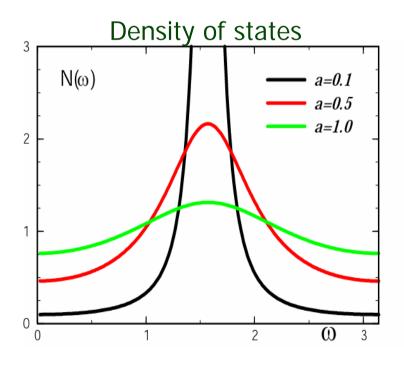
comes from the imaginary part of the interaction

gap equation becomes differential!

Approximate solution:

neglect contributions from the repulsive part of $\chi(\omega)$

$$\Delta(\omega) = \frac{\omega}{\sin\left(\frac{2}{\pi}\omega + i\,a\right)}$$



a is a free parameter (zero mode)

- $a=0, \Delta(0) \neq 0$ (Combescot, 95)
- a >0, $\Delta(\omega << 1) \propto i \omega$ gapless sc
- infinite degeneracy of the ground state
- DOS is finite down to zero frequency
- position of the maximum in DOS is the same for all solutions
- a linearized gap equation has a solution

at T=0
$$a \Rightarrow \infty$$
, $\Delta(\omega) \sim e^{-a} (\omega e^{2i \omega/\pi})$

Exact solution, $a \Rightarrow \infty$

$$-i\frac{\pi}{2}\frac{d D(\omega)}{d \omega} = D(\omega)\left(\omega + \frac{1}{\omega}\right) + \int_{0}^{\infty} \frac{d \omega'}{\left(|\omega| + \omega'\right)^{2}} \operatorname{Re}\left[D(\omega')\right]$$

• Solution:

$$D(\omega) = 2i e^{-a} sin \left[\beta (log[-(\omega+i0)^2] + \omega^2) \right], \quad \pi\beta tanh[\pi\beta] = 1$$

(KK is satisfied)

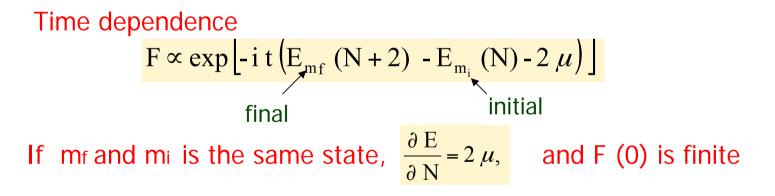
A linearized gap equation has a solution at T=0

• Expansion in e^{-2a} -- we found the solution to order e^{-3a}

What this infinite set of solutions physically means?

Order parameter in a superconductor:

 $i F_{\alpha\beta} (t_1 - t_2) = \langle N + 2 | T \psi_{\alpha}^+ \psi_{\beta}^+ | N \rangle$



Order parameter in a superconfuctor is F(0) (equal time correlator)

 $\mathbf{F}(0) = |\mathbf{F}| \exp[\mathbf{i}\,\theta]$

What this infinite set of solutions physically means?

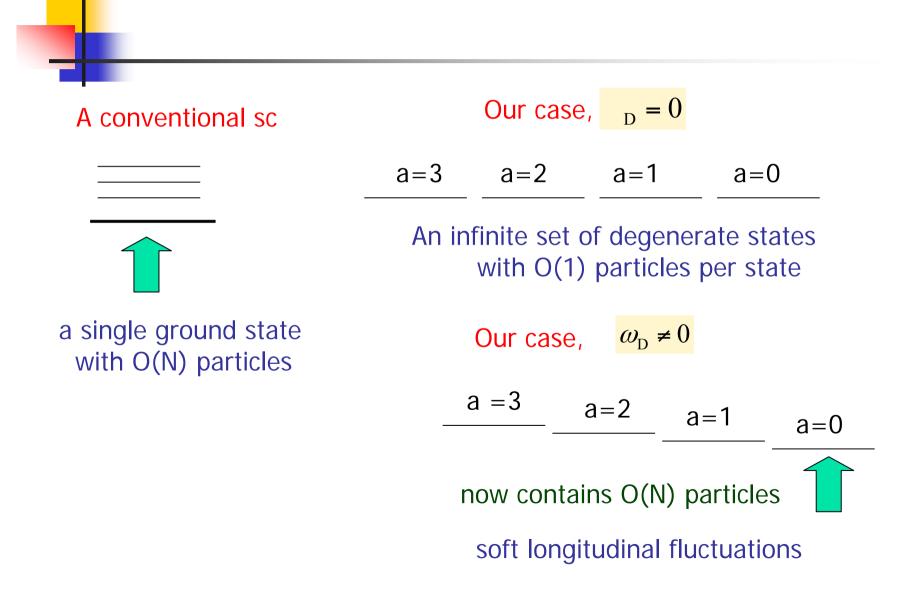
• conventional (equal time) interaction is repulsive (and irrelevant)

$$\Sigma(\omega) = \frac{i\pi}{2\omega_{D}} e^{-i\omega_{D}t} \approx i(const) + \frac{\pi}{2}t$$
from on-shell bosons interaction increases with t

• at t=0, our interaction vanishes (pure retardation)

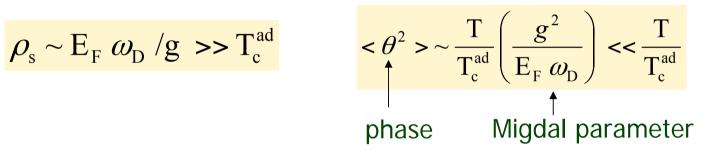
For all our solutions, superconducting order parameter vanishes

Physics (cont'd)



Stiffness at T=0

• When longutudinal gap fluctuations are not soft

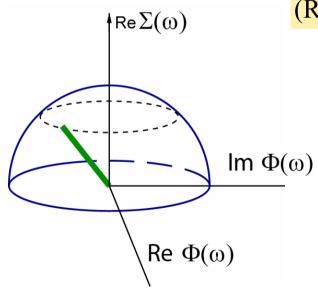


• When longutudinal gap fluctuations are soft

Another way to look at zero mode

order parameter symmetry is enhanced at QCP

(a balance between normal and anomalous self-energies)



 $(\operatorname{Re}\Sigma)^{2}(\omega) + (\operatorname{Re}\Phi(\omega))^{2} + (\operatorname{Im}\Phi(\omega))^{2} = \operatorname{const}$ $\Phi(\omega) = \Delta(\omega) Z(\omega)$

P2 instead of O(2)

soft longitudinal gap fluctuations at QCP

Conclusions

• Two energy scales in fermionic systems near QCP

upper edge of Fermi liquid behavior upper edge of quantum-critical behavior $\omega_{\rm D}$

Two characteristic temperatures

$$T_{c}^{mm} \sim \omega_{D} e^{-\frac{\lambda}{1+\lambda}} \sim \frac{g}{\lambda^{2}} << g \quad T_{c}^{ad} \sim \omega_{D} \sqrt{\lambda} \sim g$$

- Gap appears at $T \sim T_c^{ad}$
- Superconductivity in a Fermi liquid regime
- Soft longitudinal fluctuations

$$< \theta^2 > \sim 1$$
 at $T \sim T_c^{mm}$

g