Workshop on Novel States and Phase Transitions in Highly Correlated Matter

12 - 23 July 2004

Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points

Markus GARST
Institut für Theorie der Kondensierten Materie
Universität Karlsruhe
Postfach 6900
76128 Karlsruhe
GERMANY

These are preliminary lecture notes, intended only for distribution to participants.
Universally diverging Grüneisen parameter and magnetocaloric effect close to quantum critical points

Markus Garst
<markus@tkm.uni-karlsruhe.de>

Achim Rosch
(Universität zu Köln)

Lijun Zhu and Qimiao Si
(Rice University)
Outline

- Introduction quantum phase transitions
- Thermodynamical quantities
- Scaling analysis
- Expectations & experiment
- Summary
Quantum fluctuations induce 2nd order phase transition at zero temperature.

depending on the material.

controlled by

- pressure $r = \frac{p-p_c}{p_c}$
- doping $r = \frac{x-x_c}{x_c}$
- magnetic field $r = \frac{H-H_c}{H_c}$

(Quantum critical point)

<markus@tkm.uni-karlsruhe.de>
Why is the quantum phase transition interesting?

Singular QCP determines the physics in its vicinity, even at finite temperatures!

⇒ Thermodynamics can probe its properties!

HOW? → this talk!
Why is the quantum phase transition interesting?

QCP may be the endpoint of a line, $T_c(r)$, of finite temperature, i.e., "classical" phase transitions.

Finite temperature transition has its "own" criticality;
differs qualitatively from the quantum phase transition at $T = 0$! belongs to different universality class.
Can we nevertheless discern the QC contribution to thermodynamics?

YES!

Classical criticality is additive; sits on top of the quantum critical background.

We are interested in this BACKGROUND!

Classical critical divergencies dominate over the QC background only within a tiny wedge housing the phase boundary.
What does thermodynamics probe?

Variations of the free energy $F(r, T)$ along the two directions of the phase diagram: control parameter r and temperature T.

Derivatives probe the sensitivity

\[
\frac{\partial^n}{\partial T^n} F(r, T) \quad \text{wrt variation of } T \\
\frac{\partial^m}{\partial r^m} F(r, T) \quad \text{wrt variation of } r \\
\frac{\partial^{n+m}}{\partial T^n \partial r^m} F(r, T) \quad \text{wrt variation of both.}
\]
<table>
<thead>
<tr>
<th>QPT driven by</th>
<th>pressure p</th>
<th>magnetic field H</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\partial^2 F}{\partial T^2}$</td>
<td>specific heat coeff. γ</td>
<td>specific heat coeff. γ</td>
</tr>
<tr>
<td>$\frac{\partial^2 F}{\partial r \partial T}$</td>
<td>thermal expansion</td>
<td>temperature dependence of magnetization: $\frac{\partial M}{\partial T}</td>
</tr>
<tr>
<td>$\frac{\partial^2 F}{\partial r^2}$</td>
<td>compressibility</td>
<td>differential susceptibility</td>
</tr>
</tbody>
</table>

$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} |_p$

$\kappa = -\frac{1}{V} \frac{\partial V}{\partial p} |_T$

$\frac{\partial M}{\partial H} |_T$
Important in the following:

Single prefered direction to approach the classical phase transition.

\[T = \Rightarrow \]

\[T \rightarrow T_c \]

\[\alpha \sim C_p \sim |T - T_c|^{-\alpha} \]
Important in the following:

Two (orthogonal) directions to approach the QCP.

Specific heat C_p and thermal expansion α yield *complementary* information about the QPT!
Grüneisen parameter

quotient of thermal expansion

\[\alpha = \frac{1}{V} \left. \frac{\partial V}{\partial T} \right|_p = \frac{1}{V} \frac{\partial^2 F}{\partial T \partial p} = -\frac{1}{V} \frac{\partial S}{\partial p} \left|_T \right. \]

and molar specific heat at constant pressure

\[C_p = -\frac{T}{N_A} \left. \frac{\partial^2 F}{\partial T^2} \right|_p = \frac{T}{N_A} \gamma = \frac{T}{N_A} \frac{\partial S}{\partial T} \left|_p \right. \]

\[\Gamma = \frac{\alpha}{C_p} \]
If physics is dominated by single energy scale E^*:

scaling form of the molar entropy
\[
\frac{S}{N_A} = \Psi \left(\frac{T}{E^*} \right)
\]

\[
\Gamma = -\frac{N_A \partial S/\partial p|_T}{V T \partial S/\partial T|_p} = \frac{1}{V_m E^*} \frac{\partial E^*}{\partial p}
\]

V_m: molar volume

usually E^* varies slowly with pressure, for example for phonons $E^* = \omega_D$

\[
\implies \text{Grüneisen law: } \Gamma \approx \text{const.}
\]

HOWEVER, violated near a quantum critical point!

Typical energy scale vanishes: $\omega_c \sim \xi^{-z}$.
Scaling analysis

Upon scaling the unit length by l:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Scaling</th>
<th>Scaling Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δx</td>
<td>$\Delta x' = \Delta x , l^{-1}$</td>
<td>-1</td>
</tr>
<tr>
<td>r</td>
<td>$r' = r , l^{1/\nu}$</td>
<td>$1/\nu$</td>
</tr>
<tr>
<td>T</td>
<td>$T' = T , l^z$</td>
<td>z</td>
</tr>
<tr>
<td>F</td>
<td>$F' = F , l^\phi$</td>
<td>$\phi = d + z$</td>
</tr>
</tbody>
</table>

Definition of a QCP:

free energy F: scale invariant – physics independent of microscopic details

$$F(r, T) \to l^{d+z} \, F(r, T) \, l^\frac{1}{\nu} = F(r \, l^{1/\nu}, T \, l^z)$$
Scaling dimension of the Grüneisen parameter:

\[\Gamma(r, T) \sim -\frac{1}{T} \frac{\partial^2 F(r, T)}{\partial r \partial T} \]

\[\sim -\frac{1}{T} \frac{\partial^2 l^{-(d+z)} F(r l^{1/\nu}, T l^z)}{\partial T^2} \]

Scaling dimension of \(\Gamma \) equals **minus** the scaling dimension of the control parameter \(r \):

\[\text{dim}[\Gamma] = -\text{dim}[r] \]
Consequences: Γ diverges at the QCP!

1. Quantum critical regime
 choose scale $T l^z = 1$
 \[\Gamma(r, T) = \frac{1}{T^{\frac{1}{\nu z}}} \Gamma(r T^{-\frac{1}{\nu z}}, 1) \]
 \[\rightarrow \frac{1}{T^{\frac{1}{\nu z}}} \Gamma(0, 1) \]

2. Low-T regime
 choose scale $|r| l^{1/\nu} = 1$
 \[\Gamma(r, T) = \frac{1}{|r|} \Gamma(\text{sign}(r), T |r|^{-\nu z}) \]
 \[\rightarrow \frac{1}{|r|} \Gamma(\text{sign}(r), 0) \]

Experiment I: Heavy fermion compound CeNi$_2$Ge$_2$

QCP located at ambient pressure \rightarrow thermal expansion measurements feasible

$$\gamma_{cr} \sim -\sqrt{T} \quad \& \quad \frac{\alpha_{cr}}{T} \sim \frac{1}{\sqrt{T}} \quad \Rightarrow \quad \Gamma_{cr} \sim \frac{1}{T} = T^{-\frac{1}{\nu z}}$$

3D-AF SDW in the quantum critical regime: $\nu z = 1$

<markus@tkm.uni-karlsruhe.de>
Experiment II: Heavy fermion compound YbRh$_2$Si$_2$

in the quantum critical regime:

\[\nu_z \approx 1.4 \]

(beware: energy scale 300mK)

Does not conform to standard Hertz’ theory!

<markus@tkm.uni-karlsruhe.de>
Critical Point vs. Critical Line

Disorder might wash out QCP to a quantum critical line?

![Diagram showing critical behaviour along a finite pressure interval along the line: control parameter marginal → zero scaling dimension. Grüneisen can diverge at most logarithmically!]

Algebraic divergence excludes quantum critical line scenario.

Divergence of Γ criterion for the existence of a QCP!
Universality in the low-T regime

choose $r l^{1/\nu} = 1$ in the scaling form, $F(r, T) = l^{-(d+z)} F(r l^{1/\nu}, T l^z)$, for the free energy: $F(r, T) = r^\nu(d+z) f(\frac{T}{r^\nu z})$ ⇒ entropy: $S(r, T) = -r^\nu d f'(\frac{T}{r^\nu z})$

constraint by the third law of thermodynamics: $f'(x) \approx -c x^{y_0}$

no constant contribution and $y_0 > 0$

thermal expansion with $r = (p - p_c)/p_c$

$$\alpha = -\frac{1}{V_m} \frac{\partial S}{\partial p}|_T \approx -\frac{c\nu(d-y_0 z)}{V_m p_c} r^\nu(d-y_0 z)^{-1} T y_0$$

specific heat

$$C_p = T \frac{\partial S}{\partial T}|_p \approx c y_0 r^\nu(d-y_0 z) T y_0$$

universal exponents, non–universal prefactors
In the low-T regime: absence of a residual entropy leads to

Universal Grüneisen parameter

\[\Gamma = \frac{\alpha}{C_p} = -G_r \frac{1}{V_m(p - p_c)} \]

\(V_m \) molar volume

prefactor \(G_r \) given by critical exponents: \[G_r = \frac{\nu(d - y_0z)}{y_0} \]
e.g. SDW transition \(G_r = \frac{d-z}{2} \)

for a gapped system, \(C_p \sim e^{-\Delta/T} \), **effectively** \(y_0 \rightarrow \infty: \)
\[G_r = -\nu z. \]

Assumption of scaling predicts not only exponent, but also prefactor!
Constant entropy curves

\[dS = \left. \frac{\partial S}{\partial p} \right|_T dp + \left. \frac{\partial S}{\partial T} \right|_p dT = -V_m \alpha dp + \gamma dT = 0 \]

\[\Gamma = \frac{\alpha}{T \gamma} = \frac{1}{V_m T} \left. \frac{dT}{dp} \right|_S \]

Grüneisen parameter measures “pressure-caloric effect”

for a magnetic field driven QPT: role of the Grüneisen parameter is taken over by the magnetocaloric effect
Constant entropy curves: Sign change of Γ!

Near the QCP: system has to decide between two different groundstates.

\Rightarrow Accumulation of entropy near the quantum critical point.

Scenario I

- Γ sign change at T_c
- $dS = 0$

Scenario II

- Γ sign change above QCP
- $dS = 0$
Scenario I: Dilute Bose Gas in $d = 3$

\[S = \int dx \left(\phi^*(x) \left[\frac{\partial}{\partial \tau} - \nabla^2 - \mu_0 \right] \phi(x) + \frac{u}{2} |\phi(x)|^4 \right) \]

shows QPT as a function of μ_0

- scaling exponents: $z=2$, $d=3$, $\nu = \frac{1}{2}$

- symmetric phase: gapped spectrum

- condensed phase: Goldstone boson – linear spectrum

applicable to TICuCl$_3$

“Bose-Einstein condensation of magnons”
Hartree-Fock-Bogoliubov approximation:

Pronounced sign change of the thermal expansion at T_c

1^{st} order jump at finite T_c: artefact of the approx.
Grüneisen parameter of the dilute Bose gas

rescaled parameter saturate at the universal values:

symmetric phase: gapped spectrum $y_0 \to \infty \quad \implies \quad -G_r = \nu z = 1$

condensed phase: linear spectrum $y_0 = 3 \quad \implies \quad -G_r = \frac{\nu(y_0z - d)}{y_0} = \frac{1}{2}$
Scenario I: Heavy fermion compound CeCu$_6-x$Au$_x$

\[\frac{C_p}{T} \quad \text{J mol}^{-1} \text{K}^{-2} \]
\[\frac{\alpha_v}{T} \quad (10^{-6} \text{K}^2) \]

\[T (\text{K}) \]

A. de Visser, K. Grube, H. v. Loehneysen

<markus@tkm.uni-karlsruhe.de>

workshop Trieste July 2004 [25]
Scenario II: Ising Chain in a Transverse Field

\[H = -J \sum_i \sigma_i^z \sigma_{i+1}^z + h \sum_i \sigma_i^x \]

as a function of magnetic field \(h \):
QPT between a magnetic and a paramagnetic ground state
continuum theory: fermions with relativistic spectrum

\[\epsilon_k = \sqrt{r^2 + k^2} \]

where \(r = \frac{h - h_c}{h_c} \)

free energy: \[F = -T \int_{-\infty}^{\infty} \frac{dk}{2\pi} \log \left[2 \cosh \frac{\epsilon_k}{2T} \right] \]

scaling exponents: \(z = d = \nu = 1 \)
Temperature sweeps at constant magnetic field:

\[\gamma \frac{3}{\pi^2} \sim e^{-|r|/T} \]

\[\frac{dM}{dT} |_{\Delta} \]

\[r = 0.01 \]
\[r = 0.02 \]
\[r = 0.03 \]

\[r = -0.01 \]
\[r = -0.02 \]
\[r = -0.03 \]
Magnetic Field sweeps at constant temperature:
Scenario II: Heavy fermion compound CeRu$_2$Si$_2$

<markus@tkm.uni-karlsruhe.de>
Restrictions

A simple scaling ansatz might fail.

1. If there are more critical time scales
e.g. spin fluctuations and fermionic quasiparticles.
 — local QCP

2. above the upper critical dimension
 → “dangerously irrelevant” operator may spoil scaling
 → explicit calculation necessary!

3. scaling exponent “resonances”

4. Scaling analysis yields only critical part!
 CAUTION: possibly non-critical contributions
Hertz’ theory of itinerant magnetism

describes spin–density wave (SDW) instability of certain heavy fermions

\[S = \frac{1}{\beta V} \sum_{\omega_n, k} \frac{1}{2} \Phi^T \left[\delta_0 + \xi_0^2 k^2 + \frac{|\omega_n|}{T^* k^{z-2}} \right] \Phi + u \Phi^4 \]

e.g. in the quantum critical regime for \(d=3 \)

<table>
<thead>
<tr>
<th></th>
<th>(d = 3, z = 2)</th>
<th>(d = 3, z = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{cr})</td>
<td>(T^{1/2})</td>
<td>(T^{1/3})</td>
</tr>
<tr>
<td>(c_{cr})</td>
<td>(-T^{3/2})</td>
<td>(T \log \frac{1}{T})</td>
</tr>
<tr>
<td>(\Gamma_{cr})</td>
<td>(-T^{-1})</td>
<td>(\left(T^{2/3} \log \frac{1}{T} \right)^{-1})</td>
</tr>
</tbody>
</table>

logarithmic corrections to scaling
for \(d=z=3 \) “resonance”
Summary: PRL 91 (2003) 066404-1

- Grüneisen parameter and magnetocaloric effect \textit{diverge} at the QCP
- in the low-T regime \textit{universal} behaviour
- thermal expansion more divergent than specific heat
- criterion for the existence of a simple QCP
- characterization of universality class: \(\nu, z \)
- provides mapping of the entropy landscape