

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1572 - 4

Workshop on Novel States and Phase Transitions in Highly Correlated Matter

12 - 23 July 2004

Anisotropic properties of nodal superconductors in a magnetic field

> Ilya VEKHTER Louisiana State University Department of Physics & Astronomy 202 Nicholson Hall 70803-4001 La Baton Rouge U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Anisotropic properties of nodal superconductors in a magnetic field

> Ilya Vekhter *Louisiana State University USA*

Collaborators: Peter Hirschfeld (U. Florida) Tony Houghton Elisabeth Nicol (U. Guelph) Jules Carbotte (McMaster)

Many thanks to :

Yuji Matsuda (U. Tokyo)

Anisotropic Superconductors

isotropic gap Δ

Anisotropic: heavy fermions, organics, ruthenates, high-T_c...

Basic question: how to determine the symmetry of the superconducting gap in the bulk?

Low energy excitations

No excitations at low T Activated behavior of thermal properties $exp(-\Delta/T)$

Density of $qp \propto T$ **Power laws:** Specific heat $C(T) \propto T^2$ NMR $T_1^{-1} \propto T^3$ Existence but not position of nodes

Sign of $\Delta(k)$: surface probes

Cuprates: change in the phase of the gap corner junctions, tricrystal, Andreev bound states

Van Harlingen et al.

Kirtley et al.

C.R. Hu, L. Greene, L. Alff

Not always easy/possible

Bulk measurements bargain: shape of the gap in the bulk,

Bulk: thermodynamics and transport (specific heat, NMR, thermal conductivity)

Why magnetic field?

- Need directional probe that provides anisotropy of transport/thermodynamics.
- Magnetic field?
- But also need a directional probe that couples to nodal quasiparticles
- How does H do that?

Transport anisotropic

Magnetic field

Magnetic field induces vortices (type-II superconductors)

• In a superconductor with nodes field excites quasiparticles

Doppler shift $E'(\mathbf{k},\mathbf{r}) = E(\mathbf{k}) + \mathbf{v}_s(\mathbf{r}) \cdot \mathbf{k}$

Contribution of Doppler shifted quasiparticles outside of vortex cores exceeds that of the bound states in the cores

"Volovik" Effect

Magnetic field probes mostly nodal quasiparticles.

 Caveat 1. True for low fields H≪H_{c2}
 Caveat 2. True for line and quadratic point nodes. For linear point nodes cores and nodes contribute almost equally.
 Caveat 3. Semiclassical approximation: v_s nearly uniform

no Aharonov-Bohm phases (cf Franz and Tesanovic)

Caveat 4. Infinite lifetime: no scattering on vortices. Good when the mean free path $l \le 2R$

Intervortex distance

$$R \approx \sqrt{\Phi_0 / H} \approx 450 \text{ Å} / \sqrt{H}$$
, Tesla

Density of states

Characteristic supervelocity $v_s \approx \hbar / 2mR$ **Characteristic Doppler energy** $E_{H} = v_{s} k_{F} \approx v_{F} / R \propto \sqrt{H}$ Competes with T. Density of states $N(\omega, H) / N_0 \approx \omega / \Delta_0$ E_H<< ω **Ε_H>> ω** $N(\omega, H) / N_0 \approx E_H / \Delta_0$ Specific heat for $E_{H} >> T$ $C(T,H) \propto T \sqrt{H}$ G.Volovik 1993 More formally $G^{-1}(k,\omega_n) = i\omega_n - \xi_k \tau_3 - \Delta(k)(i\tau_2)$

In field

$$G(k, i\omega_n; r) = G(k, i\omega_n + v_s(r) \cdot k)$$

Take a realistic $v_s(r)$, compute local N(r), average $N(\omega, H) = A^{-1} \int d^2 r N(\omega, r)$

Quantitative agreement in YBCO

Expt.:

- K. A. Moler et al 1994, B. Revaz et al. 1998
- D. Wright et al. 1999, Y. Wang et al. 2001

Theory:

Kübert, Hirschfeld 1998,

Vekhter et al. 1998-2001

Anisotropic specific heat

Supervelocity $v_s(r) \perp H$ and Doppler shift is $v_s(r) \cdot k_{nodal}$

3D vs 2D

Anisotropy:

Amplitude is smaller in 3D than in 2D: nodal lines are only partially inactive

Anisotropy amplitude depends on the shape of the Fermi surface: (not the salient features)

- a) what areas have v_F parallel to H;
- b) how close these areas are to the nodes.
- I. Vekhter et al `99, K. Maki and H. Won, 2001; K. Maki and P. Thalmeier 2003
- S. Graser, T. Dahm, and N. Schopohl, 2003,

Experiment: borocarbides

 YNi_2B_2C and $LuNi_2B_2C$: T.Park et al, PRL 2003, 2004

Nodes or deep minima?

 $E_{H} \approx \Delta \sqrt{H/H_{c2}}$

suggests

$$\Delta_{\min} \le 0.1 \Delta_{\max}$$

 $|\Delta(\mathbf{k})|$

- Not a phase sensitive experiment: only anisotropy of
- Upper limit: E_H is a moderately high energy scale
- Combine with other measurements (low-T NMR, penetration depth, etc.) to improve and decide on true nodes.

Specific heat: summary

- Anisotropic superconductor with a known Fermi surface in a field far below H_{c2}.
- Measure:

 Field dependence of C/T;
 Dependence on the angle

When C/T is at a minimum: $H \mid v_F$ at 'nodes'.

Dirty details

 H_{c2}

1. Multiband SC: interpretation is more difficult.

2. Don't go too close to H_{c2}: it may be anisotropic.

Thermal conductivity

Entropy transport: **only unpaired qps contribute** Cuprates: experiment predates theory

F. Yu, M. Salamon et al. 1995;

H. Aubin, K. Behnia et al. 1997

Not at all what is expected from the density of states

Transport: a challenge

- Depends on density of states and lifetime
- Applied magnetic field
 - enhances the local density of states;
 - modifies scattering;
 - Kübert and Hirschfeld, Vekhter and Hirschfeld
 - introduces vortex scattering
 - Yu et al., Aubin et al.

 $\kappa \propto TN(0) v_F^2 \tau$

Low DOS Reduced scattering

poor transport for H || nodes

good transport for H II nodes

Minima or maxima correspond to nodes?

Semiclassical analysis: questions

- **1.** Is there a well-defined **local** thermal conductivity $\kappa(r)$?
 - $l \leq 2R$ • yes, if
- P. Hirschfeld, P. Hirschfeld and I. Vekhter

possibly otherwise if one takes

$$au^{-1} = \int d^2 r \, au^{-1}(r)$$
 K. Mak

et al.

2. No vortex scattering in the model

Fit to data with field normal to the 2D planes in YBCO at low T and H.

May well describe situation when vortex scattering is unimportant

M. Chiao et al.

What is measured?

к(*r*):

$$\frac{\kappa(T,r)/T}{\kappa_n/T_c} = \frac{3}{2\pi^2} \int_0^\infty \frac{d\omega}{T} \left(\frac{\omega}{T}\right)^2 \operatorname{sech}^2 \frac{\omega}{2T} K(\omega)$$
$$K(\omega) = \frac{\Gamma}{\widetilde{\omega}'\widetilde{\omega}''} \operatorname{Re} \left\langle \frac{(\widetilde{\omega}^2 + |\widetilde{\omega}|^2 - 2|\Delta_k|^2)k_x^2}{\sqrt{\widetilde{\omega}^2 - \Delta_k^2}} \right\rangle_{FS}$$

Input: form of the gap, impurity scattering, Doppler shift.

Mimics gap symmetry: 4-fold for d-wave etc.

Input: local conductivity direction of net current.

Does not mimic gap symmetry

More complicated dependence

$$\kappa \neq \int d^2 r \kappa(r)$$

Twofold angle-dependence

Quasi-2D system: analytic solution possible when

3D vs 2D

2D: Need to rotate H wrt J,

Measured **k** is some convolution of

2-fold (vortex scattering) and nodal patterns (4-fold)

3D:

conical rotation Directly nodal patterns

For all angles ϕ convoluted in the same way with vortex scattering.

Yu. Matsuda et al. 01-04

Effective medium approach

- Treat $\kappa_{\!\scriptscriptstyle \parallel}$ and $\kappa_{\!\scriptscriptstyle \perp}$ as principal axes
- Steady state technique: fixed J_o

K.Izawa et al.

R. Ocaña and P. Esquinazi

 $\begin{array}{c}
H \\
\kappa_{\parallel} \\
\alpha \\
\kappa_{\perp} \\
J_{Q}
\end{array}$

Minima almost always remain at the nodes (tentative).

Thermal Hall of the same order as 4-fold part of κ_{xy}

I. Vekhter, P.HIrschfeld, unpublished

Vortex scattering: lessons from cuprates

Low T,H: density of states effect dominant. Semiclassical theory.

M. Chiao et al. 1998

High T: DOS from T,H - vortex scattering

K. Krishana et al..1997

Ultrapure sample. Low T is also dominated by vortex scattering

R. Hill et al..2004

Theory for H||c

Input:

vortex lattice, account for supervelocity to all orders, average Green's function over vortex unit cell

I. Vekhter and A. Houghton'99 based on U. Brandt, W. Pesch, L. Tewordt '68,

Minima vs. maxima: a conjecture

- Electronic k increases with H
 - Density of states dominates
 - Minima when H || nodes

Electronic κ decreases with H
 – Scattering dominates
 – Maxima when H || the nodes

Example: UPd₂Al₃

CeColn₅: a puzzle

K. Izawa et al. '01

H. Aoki et al. '03

Summary

- System: nodal superconductors
- Foundation:
 - "Volovik Effect": magnetic field probes nearnodal quasiparticles.
- Rotation of magnetic field with respect to nodes:
- Provides: map of the amplitude of the gap.
- Specific heat: direct probe
- Thermal transport: vortex scattering?