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ThermaE Conductivity

of

Spin-1/2 Chains and Ladders

Efrat Shimshoni, Achirn Rosch, Edouard Boulat,
Pankaj Mehta, N.A.

• Experimental data
- heat conductivity measurements in spin chains and lad-
ders
- magnetic contribution to heat transport

• Low-energy description (RG)
- traditional effective theory describes the
thermodynamics
- insufficient for transport : conservation laws lead
to anomalous transport
- restore lattice effects : highly irrelevant operators

• Weakly violated conservation laws and
•hydrodynamic approach
- heat current is almost conserved at low temperature
- computation of heat conductivity

• Results and comparison to experiments



Theoretical background

Heat (charge) conductivity of spin-chains
(Luttinger liquids) with Umklapp scattering

Giamarchi (91), (4kF-G) -Umklapp in Lut-
tinger liquids

pertubation theory -> a(T > 0) < oo

Luther-Emery transformation —• a = oo

many papers: reproduce perturbative results

Castella, Zotos et al (95-....):
in integrable systems with oo-many conser-
vation laws
G(T > 0, UJ) = 2TTD(T)S(W) + ...

oo heat conductivity in Id Heisenberg model
(Klumper, Sakai (01))

generic behavior?
Numerics: Alvarez, Gros (02) always oo, Heidrich-

Meisner et al. (03) « < oo •



Experiments - spin chain

Heat transport in quasi Id S = 1/2 chain com-
pound SrCuC>2,

7V(K)

40 60 80 100 200
7(K)

Sologubenko et at. (01)

K ^ eT*/T exponentially large

T* ~ 0.42©£> determined by phonons

Why not by spin-spin interactions, J ~



Experiments - spin ladders
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mechanism for finite conductivity ?

f disorder
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Experiments - soin ladders
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magnetic contribution to heat conductivity

low energy collective modes (magnons) carry heat



RG approach

identify the low energy effective theory

Low
energy

High
energy

/ / j o w : low energy
effective theory

/•flow describes the (low energy) spectrum

thermodynamics

Does describe the dynamics of quasi-particles?

transport ??



Spin chain system

Lattice hamiltonian

(in a real material, # is more complicated
neighbour couplings ...)

next nearest

Low energy description

H * = v j {v^id j PRPL

Reminder:

left mover right mover

X

also need add: PHONONS



The 3D Spin - Phonon System

Array Id spin chains coupled to 3d phonons

Anisotropic Heisenberg model with finite ran-
ge interactions

= £ Jijisfsj + sfsfi+jr j?-5f5|-/» E s

: 3d acoustic phonons

Hs,p coupling of phonons to spin chains
(symmetry!)



Spin ladder system

Lattice hamiltonian
(1)

(2)

TV N

j=la=l,2 j=l

(in a real material, H is more complicated
diagonal / next nearest neighbour couplings ..)

Low energy description
1UW = H* 4-

3
^

a=0 et a/., 1

Spectrum at weak coupling (Jj_ <

Singlet

oc J±

gap ?ns oc 3J±

also need add: PHONONS



Spurious conservation laws o f H'

H* insufficient for transport

For example: Spin Ladder

• iJ*(spin ladder) - free field theory
infinite number of conservation laws

heat current conserved

a

But on the lattice:

spin ladder not integrable
heat current not conserved

ffective theory possesses spurious conservation law*
=> anomalous transport:

D(T) 7 ^ 0 ^ anomalous (dissipationless) transport

Adding leading irrelevant operators to H*
- not enough!
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Transport and conservation laws

When is D(T) non zero ?

Conserved current [if, J] = 0

D(T) = ( J2} IT Drude weight (5 peak)

• Current not conserved but protected by a
conserved quantity Qn '• Xj,g 7̂  0

c r o s s susceptibility)
n

lim ) - I (J(t) J(0)) dt > B = n

(Mazur 1969)

D(T) > BJT

y_Kj2Q_
n XQn,Qn

Protected current

<Qn>

Particular case - INTEGRABLE MODELS
- infinite number of •

- anomalous transport
D(T) > 0



Irrelevant operators -
breaking of conservation laws.

Low
energy

High
energy

Classification of irrelevant operators

H\rr : all translation invariant operators.

Along with //% determines the thermodynamics.

example : £ /dx (fcdgfc + #
a J
a

"conventional" field theory description

// + H-irr = / dx H(x) , H(x) - translation invariant

H-irr breaks many spurious conservation laws
but continuous translation symmetry unbroken
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Irrelevant operators -
breaking of conservation laws

SH = Umklapp processes

necessarily present for a lattice model

breaks translation irwariance

infinitely irrelevant in the RG sense

example :
lead^g Umklapp operator for the spin ladder

. . 3

SH ~ / dxe2tk^x JJ aa(x)
a=0

SU(2) invariant SH = JdxJ(x) - n(x) cos (2ikFx)

all other Umklapp operators have greater scaling dimension

Heat transport determined by SH

13



Weakly violated conservation laws

the spurious conservation laws of the effective theory

• most are violated by H\rr —> strongly violated
• the rest is violated by 8H — • weakly violated

==> the associated approximately conserved
quantities Ja are slow modes (slowly decaying)

—• the slow modes determine long t ime asymp-
totics of protected current correlations

• The translation operator is a slow mode (trans-
lation invariance broken by Umklapp operators)

• The heat current is ALWAYS protected by the
translation operator

it is therefore a slow mode itself

the heat current is degraded by SH

14



The Spin-phonon system -
(Approximately) conserved charges

The low-E Hamiltonian possesses (approximately)
conserved "charges":

Js = vK dx [I/J^R ~ tl^L] = vK I dxU

PT = f dxUdx<f) + d3xPdxq

JQ = - I dxv2lidx<j)~- I cfxv'lPdxq

Where

• Js = spin current

= momentum operator

• JQ = heat current

These are the "slow modes":

• JS,PT commute with H* = HLL and with 6H

• do not commute with Hu =$• slow current decay

• J9,PT "protect" JQ

• other conserved charges decay fast

(approximately) conserved charges strongly affect dynamics

- low energy processes cannot relax the heat current

15



Irrelevant operators
Spin Umklapp:

Hu =
JL JL Y\ WX mmmmm

11 Fermions from L to R
+ m lattice - momenta

- mGm le mover

/

n
ja)4>L(x + ja)

j=o

9nm

(2vra

Spin-Phonon Umklapp:

Hu =
11 HI ^ ^

?i Fermions from L to R
rn lattice - momenta

1 +
le mover

TTU,S-P
7) *m

U,p
^ - /

7ra)n ^(2?ra

Some non Umklapp operators:

h.c]

H
nonU =

16



The Calculation

Pertubation theory for, K(W,T)?

- perturbations are irrelevant operators

K = (JQ, JQ)H*+Hirr+6H

But:

K(UJ,T) - singular function of perturbations:
K = {JQ, JQ)H*+Hii r r

What to calculate?:

Memory Matrix - Matrix of slow decay rates

Mori (65), Zwanzig (61)

Philosophy: Conservation laws weakly violated
—• slow modes:
-» "hydrodynamic" description possible
—»• asymptotically exact for small perturbations

if
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Transport and the Memory Function Formalism I

- Transport in the presence of several approximately

conserved - "slow" - variables: Ji.? J2—

• Scalar product in operator space

A(t)\B) d\(A(t)*B(i\]
JQ

Dynamic Correlation function

•oo

A
UJ

| B I , CA = [if, A

dteiut([A(t),B])
/* ! r> \

IQJ

Matrix of conductivities (Kubo)

<Jpq{;UJ,l 7C i.& -yn -?^- 'V \

• Thermal Conductivity

18



Transport and the Memory Function Formalism II

The conductivity has no good perturbative expansion -
(a ~ 1/F, singular in PT in presence of slow modes.)

Define: M(u,T) - Memory Matrix

• The conductivity

(TiUJ.l ) = )

• The susceptibility matrix
1

•v ~ _ _ _ (7 \ 7 \
Xpq — 'rpy\Jp\Jq)

• The memory matrix (~ matrix of Relaxation Rates)

dt.Jr.• Mpqv^J ~" rp \ Ut*Jp
UJ QCQ

• The projection away from slow modes

""•"""•' JL & i *» / .*•% I

pq

Philosophy: M non-singular in P.T.

-P.T. valid for short-time behavior

- P.T. also valid for long-time behavior of slowest modes
(provided slow modes dynamics projected out - Q .)

19



The Thermal conductivity - I

Compute (to lowest order in irrelevant pertur
bation) for aT < vp,v:

K(T) « t;

where:

V (MS~S 4- Ms~p

\lvlnm i lvlnmnm

22)
<

»s /) __ j(2n2ix • 1) - rpAk„,•„;21'

Process with smallest Afcnm dominates at
low - T (A/cnm determined by commesurabilty).

For h = 0, (half-filling), dominant process
Afc2?i = 0, but ineffectual (conserves pseudo-
momentum).

The second strongest process Afc^ i = G/2
determines rate.

vp < v =» MnnF > Mnms » spin-phonofi
Umklapp processes dominate.

« ~ «o (T*J exp T
rp* ^pG

' 4

20



The Thermal conductivity - I I

The second strongest process determines the
rate

dominant process:
Umklapp spinon-spinon scattering

!}1 = 4kF - G = 0

Vtl = Jdx Mf^

but: conserves pseudo momentum

second strongest process:
mixed phonon-spinon scattering
-••'•:'-; 1,1 = G — 2fejp =

0 = Jdx M/|

21



The Thermal conductivity - III

/Tv2(l-J0
tr '"*—' #-* 1-1 I I F* V X~\
rx, r>~> rvi) I 1 C A L /U V T V T 4

Comparison to experiment (no parameters!)

- isotropic 0 0.6 vpG

- T 0 D (theory)

- T* « O.420D (experiment)

1O0

Sr2Cu O

K~ expfP/T] with
= 2T*{spin)

Why exponential?
pseudo-momentum

conservation, G —

Umklapp cannot relax

heat current completely

Why phonons?
cheapest way to absorb ex-

tra momentum, (vphOnon <

O.OO/ 0.01 O.O2 0.O3 O.O4

' 1/T (K)

Sologubenko et al. (01)

Why Tp*honon = 2T*spln?
small mixed sp inm-
phonon Umklapp,

= G-2kF = G/2

22



Heat conductivity in a magnetic field - I

Magnetization dependence of the spin chain he-
at conductivity K:

phonons and spinons start to mix (linear coup-
ling)

7T
more important: kp = - ( 1 + M) changes

a
modifies interplay of Umklapps

strongest Umklapp is strongest for almost
commensurate M
but cannot relax heat current fully

second strongest weakest for almost com-
mensurate

peaks for commensurate M = — - - 1

with K ~ exp
vG

2n0T

23



Heat conductivity in a magnetic field - II

schematic magnetization dependence of heat
conductivity K

1/51/4 1/3 2/5 1/2 3/5 2/3 3/4 1/51/4 1/3 2/5 1/2 3/5 2/3 3/4

peaks: K »* axp

background: K ~ exp[(T*/T)2/3]

0.8
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Results - spin ladders

Low temperature T

1ph — 2

a = 3/2

Note that:

_Sr14Cu O41

\ 200 300

\ T(K) I

0 50 100 150 200 250 300

Temperature (K)

«ph(T) > «mag(T), (for very /oiv T)
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Results - spin ladders

Putting together low and high temperature results,
with phonons, for magnetic contribution :

existence of a maximum
in Kmag(T) for T ~ mt

max

150

50 100 150 200 250 300
Temperature (K)

26
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Low Temperature Transport -
General Approach

RG flow of Hamiltonian H (typically on a lattice),
= H* +

- The fixed point H*.
- Insufficient to describe transport (K = oo)

- The irrelevant operators around it Oi.
(all operators consistent with symmetries of H.)

Classify irrelevant operaors:
- Of Umklapp operators - break translation invariance
of if*
- OfonU non Umklapp operators - do not directly lead
to current degradation

Identify "slow modes" Jj • - •
- (approximately) conserved operators P,
(conservation violated only by Umklapp operators)
- those protected by them \JP ^ 0

Use hydrodynamic approach (Memory Matrix
formalism) to computed conductivities of slow modes.
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