

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1572 - 11

Workshop on Novel States and Phase Transitions in Highly Correlated Matter

12 - 23 July 2004

Towards a theory of the non-Fermi liquid phase in MnSi

Achim ROSCH
University of Cologne
Institute of Theoretical Physics
Zulpicher Strasse 77
D-50937 Cologne
GERMANY

These are preliminary lecture notes, intended only for distribution to participants

Towards a theory of the non-Fermi liquid phase in MnSi

Achim Rosch, Markus Garst, Inga Fischer Institut für Theoretische Physik, University of Cologne Experiments: Christian Pfleiderer, University of Karlsruhe

- A non-Fermi liquid phase in MnSi?
 Review of experiments
- Topological defects?
- Anomalous overdamped (pseudo-) Goldstone modes?
- Band structure in a spiral

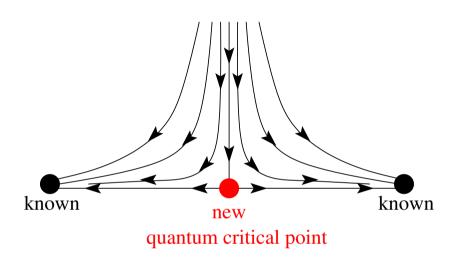
Disclaimer:

Work in progress: many questions — few answers

Towards "novel phases" in metals

from Fermi liquids to non-Fermi liquid behavior:

instability between two phases by fine-tuning



new stable phases

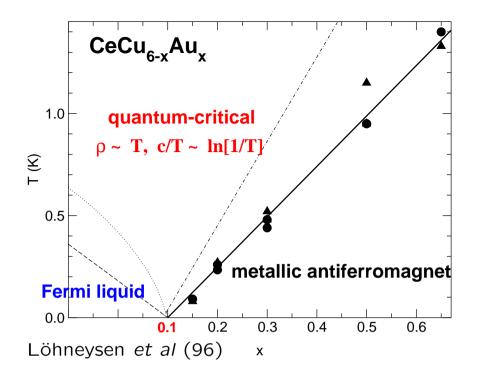
known

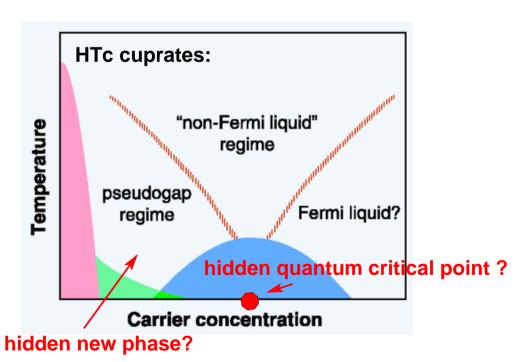
new fixpoint

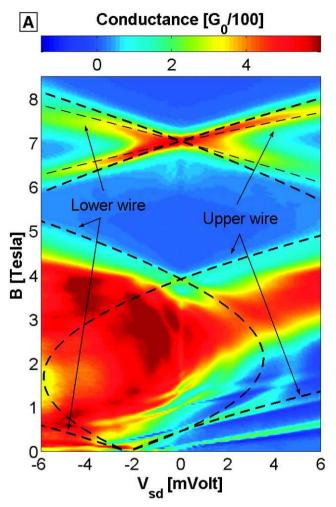
new line
of fixpoints

critical fluctuations, power-laws, scaling,... dozends of systems, e.g. $CeCu_{6-x}Au_x$, $YbRh_2Si_2$, $CePd_2Si_2$, $NiS_{2-x}Se_x$... diverging Grüneisen parameter

new quasiparticles, quantum number fractionalization Luttinger liquids, fractional QHE, nematic metal, Griffiths singularities... low dimensions!

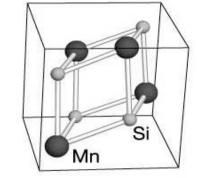






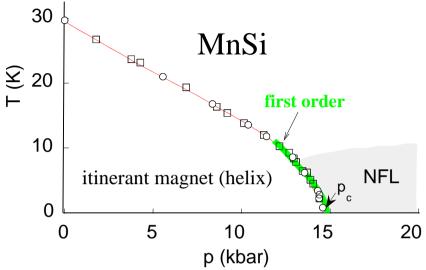
spectroscopy of Luttinger liquids by parallel tunneling Auslaender, Yacoby *et al.*

MnSi – a standard itinerant magnet



- text-book band-magnet below 30K
 (see Landau-Lifschitz, Vol.8, 3rd edition)
- Ginzburg-Landau theory for helical spin-density wave: Bak, Jensen (1980), Nakanishi *et al.* (1980)
- extremely clean (mean free path 3000-10000 Å)
- cubic but no inversion symmetry $(P2_13)$
- standard example for spin-fluctuation theory (Lonzarich, Moriya)

New physics under pressure!



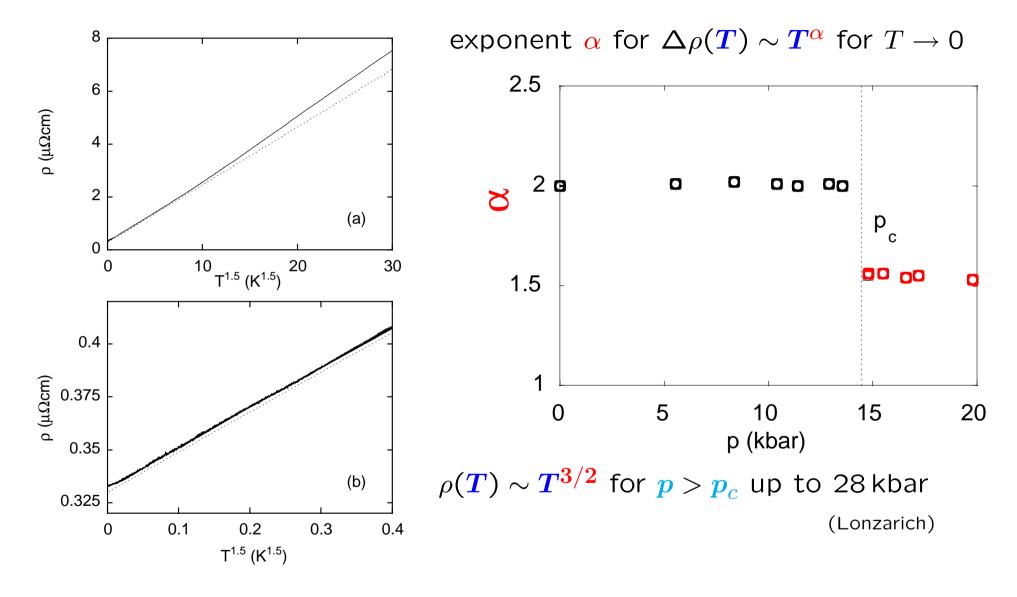
C. Pfleiderer, Julian, Lonzarich, Nature (2001): in MnSi for wide pressure range, $p>p_c$

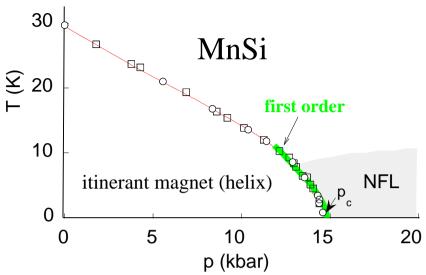
$$\rho(T) - \rho_0 \sim T^{3/2}$$

almost 3 decades in T, very clean system

A genuine non-Fermi liquid phase?

resistivity $\rho(T) \sim T^{3/2}$ for almost 3 decades (10mK to 5K):





C. Pfleiderer, Julian, Lonzarich, Nature (2001):

in MnSi for wide pressure range, $p>p_c$

$$\rho(T) - \rho_0 \sim T^{3/2}$$

almost 3 decades in T, very clean system

A genuine non-Fermi liquid phase?

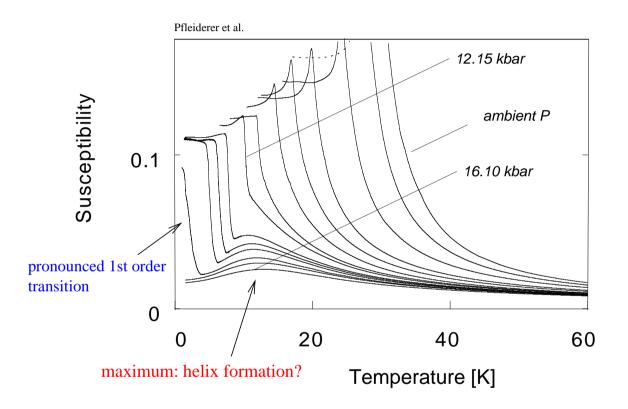
Alternative: Quantum critical behavior?

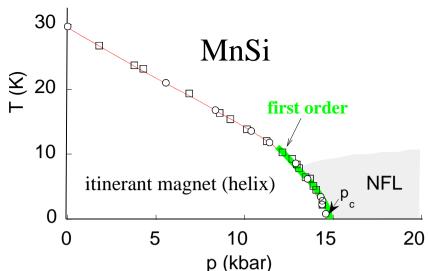
contra: NFL observed even for $p \gg p_c$ and low T

first order transition close to p_c

jump of χ and of local moment in NMR, μ SR (Thessieu *et al.* 98)

Susceptibility, helix formation and first order transition





C. Pfleiderer, Julian, Lonzarich, Nature (2001):

in MnSi for wide pressure range, $p>p_c$

$$\rho(T) - \rho_0 \sim T^{3/2}$$

almost 3 decades in T, very clean system

A genuine non-Fermi liquid phase?

Alternative: Quantum critical behavior?

contra: NFL observed even for $p \gg p_c$ and low T

first order transition close to p_c

jump of χ and of local moment in NMR, μ SR (Thessieu *et al.* 98)

pro: maybe 2nd order endpoint at $p = p_c$?

A-coefficient, $\Delta \rho(T) \approx AT^2$, diverges for $p \to p_c$ in ord. phase

Neutrons: T=0 ordered moment vanishes continuously for $p \to p_c$;

 \Rightarrow chimera of first and second order? (cf. $d = \infty$ Mott)

Quantum critical theory

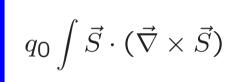
Joerg Schmalian and Misha Turlakov (03):

NEXT TALK

Three distinct scales in MnSi:

- dominant: itinerant ferromagnet with large ordered moment (0.4 μ_B)
 - ⇒ fixes amplitude of local magnetization
- but: instable to formation of chiral helix due to weak spin-orbit coupling in non-centrosymmetric crystal:

Dzyaloshinskii-Moriya interaction



linear in $ec{k}$

Mn

- \Rightarrow fixes pitch $1/q_0 \approx 150 \text{Å}$ of helix
- small correction: spin-orbit coupling breaks rotational symmetry in cubic crystal
 - ⇒ fixes direction of helix

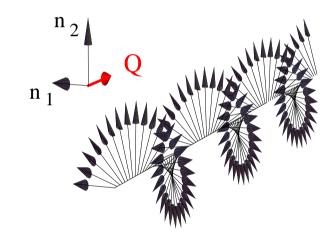
$$F = F(\vec{\Phi}^2) + \vec{k}^2 |\vec{\Phi}_{\vec{k}}|^2 + q_0 \vec{k} \cdot (\vec{\Phi}_{\vec{k}} \times \vec{\Phi}_{\vec{k}}^*) + k_x^4 |\vec{\Phi}_{\vec{k}}|^2 + k_x^2 \Phi_y^2 + \Phi_x^4 + cycl. + \dots$$

$$F = F(\vec{\Phi}^2) + \vec{k}^2 |\vec{\Phi}_{\vec{k}}|^2 + q_0 \vec{k} \cdot (\vec{\Phi}_{\vec{k}} \times \vec{\Phi}_{\vec{k}}^*) + k_x^4 |\vec{\Phi}_{\vec{k}}|^2 + k_x^2 \Phi_y^2 + \Phi_x^4 + cycl. + \dots$$

first 3 terms minimized by chiral helix:

$$\vec{\Phi}(\vec{x}) = \Phi_0 \left[\hat{n}_1 \cos(\vec{Q}\vec{x}) + \hat{n}_2 \sin(\vec{Q}\vec{x}) \right]$$

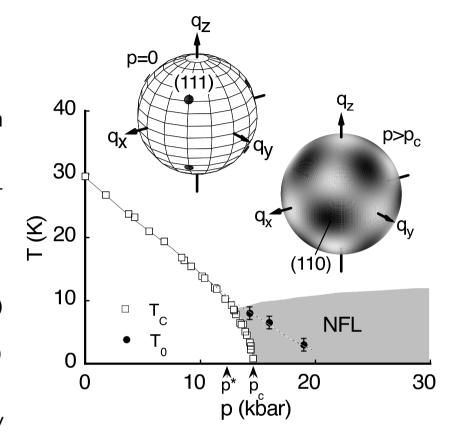
- $\hat{n}_1 \perp \hat{n}_2 \perp \vec{Q}$ form chiral "Dreibein" $\hat{n}_1(\hat{n}_2 \times \hat{\mathbf{Q}}) = \pm 1$ dep. on sign of q_0
- ullet pitch $1/|ec{Q}|=1/\mathbf{q_0}$ large (150Å) as spin-orbit coupling weak
- direction of \vec{Q} determined by cubic terms; $\Rightarrow \vec{Q} \| (1,0,0)$ or $\vec{Q} \| (1,1,1)$ $(\vec{Q} \| (1,1,0)$ only possible if Φ^6, k^6 important)



What is origin of NFL behavior?

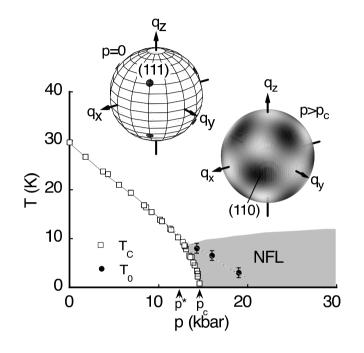
neutron scattering in disordered phase:

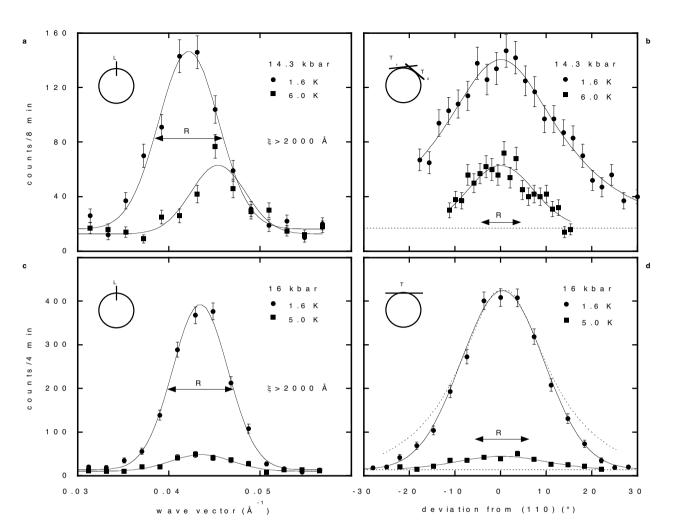
- spiral survives into disordered phase with full moment
- signal on surface of tiny sphere in reciprocal space
- **static** on neutron timescale close to p_c , (but note: **static** signal vanishes deep in NFL phase, fluctuations faster?)
- pitch $1/|\vec{Q}|$ unchanged (resolution limited) \Rightarrow spiral intact
- direction $\vec{Q}/|\vec{Q}|$ fluctuating [predominantly in (1,1,0) directions] no signal left in (1,1,1) direction



C. Pfleiderer, D. Reznik, L. Pintschovius, v. Löhneysen, M. Garst, A. Rosch, Nature 427, 227 (2004)

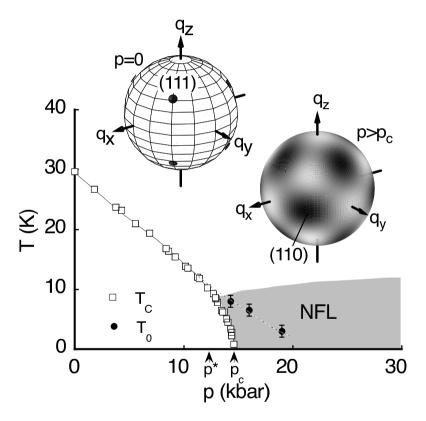
Momentum dependence:



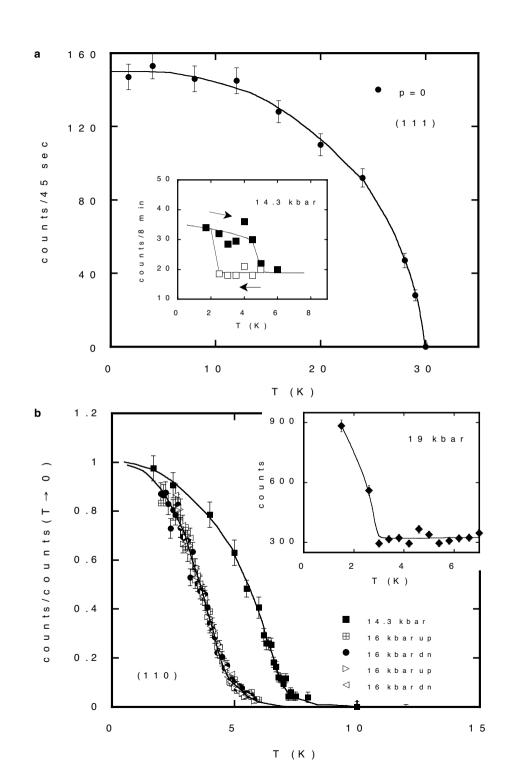


- resolution limited in radial direction
- broad in tangential direction, width increases towards lower T

Temperature dependence:



crossover or phase transition? QCP?

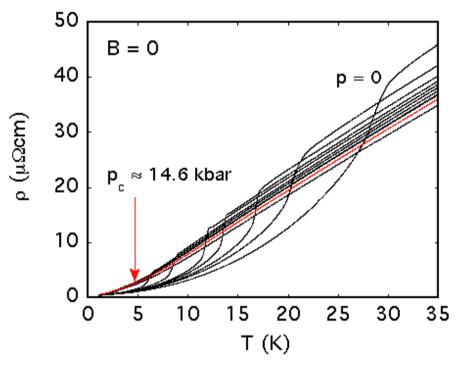


Magnetic order and transport

Major mystery:

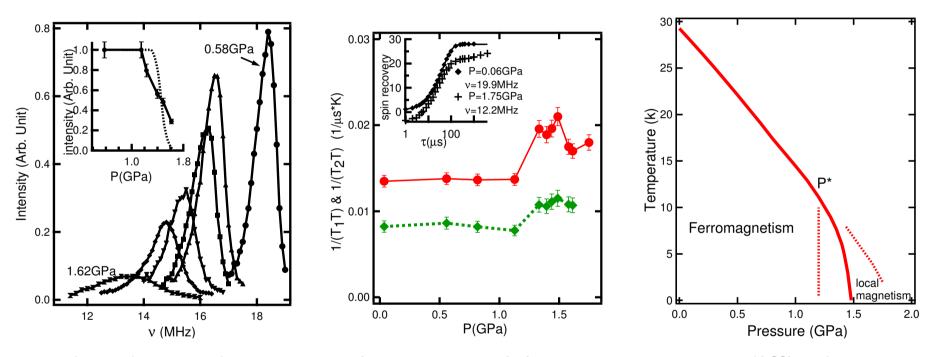
No signature in ρ at onset of **partial** order despite the large moment involved!

- in contrast: huge and sharp drop in ρ at onset of long-range order for $p < p_c$, main scattering mechanism frozen out
- Does fluctuating partial order exist in full NFL phase? maximum in χ at 10K: helix formation?



NMR (^{29}Si)

Thessieu, Kamishima, Goto, Lapertot (1998) Yu, Zamborszky, Thompson, Sarrao, Torelli, Fisk, Brown (2003)



powdered samples ⇒ precise comparision to neutrons difficult suggests partial order static on NMR scales?

Origin of NFL phase? Partial order

- Order parameter survives on intermediate (> 2000Å) length and time (neutron ω -resolution) scales exp. confirmed close to $p_c \Rightarrow$ our assumption: valid also for $p \gg p_c$
- NFL behavior seems to occur only when spiral is formed (indications: behavior in large magn. fields, maximum in $\chi(T)$)

Two scenarios:

1. scattering from soup of fluctuating topological defects

scattering from anomalous (pseudo-) Goldstone modes in "almost" ordered state

First scenario: scattering from topological defects

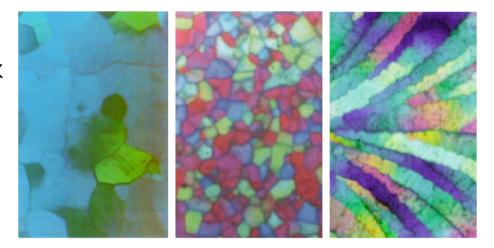
topological structure similar to cholesteric liquid crystals (replace director by vector) (review on topological defects: Mermin RMP 1979; blue phases: Wright, Mermin RMP 1989)

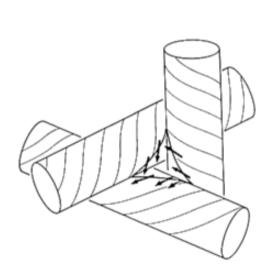
- order paramter exists locally but not globally
 - ⇒ finite density of topological defects
- domain walls, line defects, point defects?

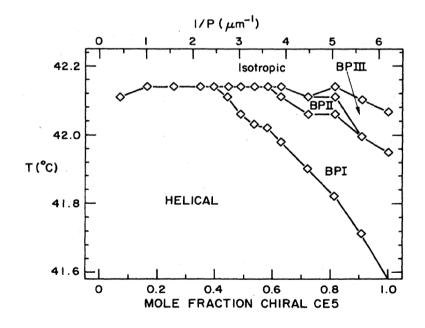
Blue phases: networks of topological defects

cholesteric liquid crystals: complex phase diagram

blue phase III: no long-range order

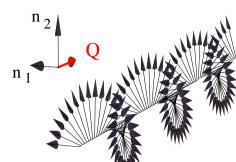






Classification of topological defects: homotopy groups

- ullet neglect pinning of $ec{Q}$ to cubic lattice $(1/|ec{oldsymbol{Q}}|\gg a)$
- order parameter: 3 orthogonal vectors $\hat{\Phi}(\vec{x}) = \hat{n}_1 \cos[\vec{Q}\vec{x}] + \hat{n}_2 \sin[\vec{Q}\vec{x}]$



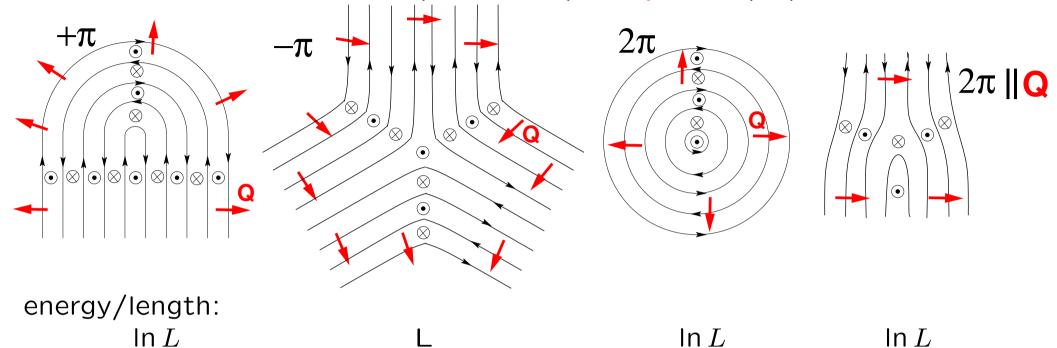
- ullet invariant under rotation by π around \widehat{n}_1 : $\widehat{n}_2 o -\widehat{n}_2$, ${m Q} \stackrel{\pi}{ o} -{m Q}$
- groundstate manifold: SO(3)/Z₂

$$\Pi_1(\mathbf{SO(3)/Z_2}) = \Pi_1(SU(2)/Z_4) = \mathbf{Z_4}$$

- 3 types of line defects (in SU(2) pathes from 1 to $i\sigma_x$, to $-i\sigma_x$, to -1, i.e. rotations by π , $-\pi$ and 2π)
- domainwalls, no point defects
- warning: top. classification here not reliable small change of \vec{Q} may lead to large change of $\vec{\Phi}(\vec{x})$ \Rightarrow large energy cost ?? \Rightarrow some defects not realized, novel defects?

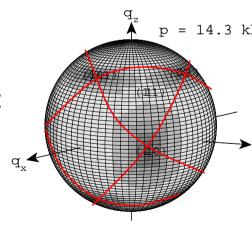
Line defects:

shown: directions of magnetization (black arrows) and \vec{Q} vector (red)



experiments: evidence for rotation of \vec{Q} ? GL: $\vec{Q} \perp$ to (1,1,1):

closer look: probably not



Effective theory in presence of large local order parameter $\hat{\Phi}(\vec{x},t)$:

- electrons follow adiabatically large OP $\widehat{\Phi}(\vec{x},t)$ natural "quasi-particle": spin quantization axis \parallel to $\widehat{\Phi}(\vec{x},t)$
- new "holons": $\tilde{c}_{\sigma}(\vec{x},t) = U(\vec{x},t)c_{\sigma}(\vec{x},t)U^{\dagger}(\vec{x},t)$ with $U(\vec{x},t)\left(\vec{\tilde{S}}(\vec{x},t)\hat{\Phi}(\vec{x},t)\right)U^{\dagger}(\vec{x},t)\equiv S_z(\vec{x})$
- by construction $[\vec{S}, \tilde{c}_{\sigma}] = 0 \Rightarrow$ holons do **not** transform under global spin-rotation \Rightarrow spin-charge separation (spin eaten up by OP)
- ullet eff. field theory: gauge theory of topological defects interacting with \tilde{c} (not worked out, possibly U(1)??) Physics: "holons" aquire Berry phases when encircling OP textures
- deconfining phase of this gauge theory: non Fermi liquid similar to other gauge theories, Z_2 or U(1) (Balents, Nayak, Senthil, Fisher, Sachdev, Muramatsu, Zaanen, Franz, Tešanović,...)

Is scattering from topological defects relevant?

Problem: distance of defects > 2000Å

but: inelastic mean free path can be smaller in $T^{3/2}$ regime

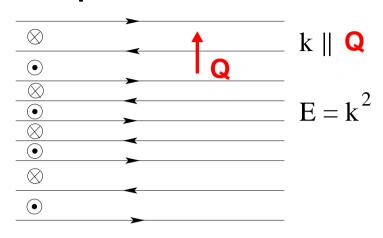
What are electrons scattering from?

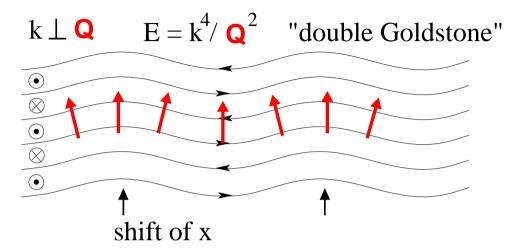
Scenario 2: Scatter from small fluctuations of OP on lengthscales smaller than distance of topological defects

(pseudo-) Goldstone modes?

- in "disordered" phase, chiral spirals not pinned effectively by cubic lattice, stronger local fluctuations possible?
- calculate Goldstone modes in ordered phase neglecting (for a beginning) pinning to cubic lattice (pitch $150\text{\AA}\gg$ lattice spacing)

Anomalous Goldstone modes in a metallic chiral helix: \vec{k} dependence





$$F = F(\vec{\Phi}^2) + \vec{k}^2 |\vec{\Phi}_{\vec{k}}|^2 + q_0 \vec{k} \cdot (\vec{\Phi}_{\vec{k}} \times \vec{\Phi}_{\vec{k}}^*) + k_x^4 |\vec{\Phi}_{\vec{k}}|^2 + k_x^2 \Phi_y^2 + \Phi_x^4 + cycl. + \dots$$

• energy of Goldstone mode:

$$k_\parallel^2 + k_\perp^4/{
m q_0^2}$$
 (like in smectics)

 \bullet correction from pinning to cubic background (cubic terms): ${\it q}_0^2 k_\perp^2$ relevant only for $k_\perp \ll q_0^2$

Anomalous Goldstone modes: damping

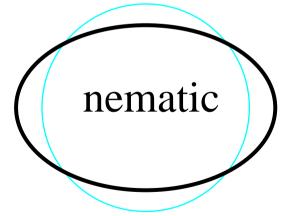
- "phonon-like" Goldstone mode: inconsistent with $\rho \sim T^{3/2}$
- overdamped Goldstone modes?

smectic-A liquid crystal
$$\omega\sim q|\sin2\phi|-i\eta\mathbf{q}^2$$
 3He-A $\omega\sim i\mathbf{q}^3\frac{\ln T}{T^2}$ (Wölfle 75)
$$G^{-1}=q^2-\omega^2-i\omega\sin^22\phi \qquad \text{talk by Hae-Young Kee}$$
 (Oganesyan, Kivelson, Fradkin 01)

physics? ³He-A: point node moves nematic metal: gapless Fermi surface moves

 \Rightarrow many p-h pairs

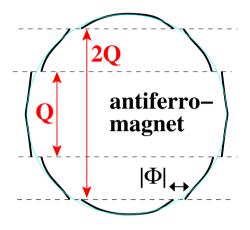
Fermi surface of nematic metal:

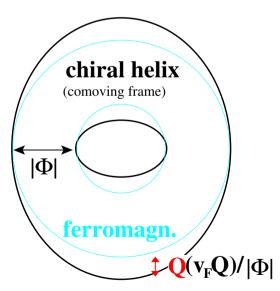


Anomalous Goldstone modes in a metallic chiral helix: damping

Electrons in chiral helix:

- in antiferromagn. metal: multiple gaps open (translational invariance broken)
- chiral helix: translation+simultaneous rotation unbroken U(1) symmetry T_zU_z remains, $U_z=e^{iz\mathbf{Q}S_z}$
- simple description in comoving frame distortion of FM Fermi surface
- similar to nematic metal?
- warning: spin-orbit in band-structure neglected (see later)





Anomalous Goldstone modes in a metallic chiral helix: damping

within RPA: lowest eigenvalue of matrix of susceptibilities in ordered phase exact cancelations due to Goldstone theorem

$$G^{-1} \approx q_{\parallel}^2 + q_{\perp}^4/\mathbf{q_0^2} - \omega^2/\mathbf{q_0^2} - \mathbf{i}\omega|q|\mathbf{q_0^2}$$

corresponding resistivity (including vertex corrections ect.):

$$\Delta \rho \sim T^{2.5}$$

incompatible with experimental $\rho \sim T^{1.5}$

open questions: more realistic band structure

contributions from massive modes (Vekhter, Chubukov 04)

finite size of domains?

Electrons, helical order and spin-orbit coupling

up to now: only DM-interaction, other spin-orbit effects neglected

dominant contribution for
$$P2_13$$
 (T^4): $H_{SOC} = \delta \sum_{i=1}^3 k_i \sigma^i_{\alpha\beta} c^\dagger_{\vec{k}\alpha} c_{\vec{k}\beta}$

(with $\delta \sim \vec{Q}$.)

in comoving coordinate system for $\vec{Q}||z|$:

$$\begin{pmatrix} \vdots \\ d_{+,k}^{\dagger} \\ d_{-,k}^{\dagger} \\ d_{+,k+\tilde{\boldsymbol{Q}}}^{\dagger} \\ d_{-,k+\tilde{\boldsymbol{Q}}}^{\dagger} \\ \vdots \end{pmatrix} \begin{pmatrix} \ddots \\ E_{1}(\mathbf{k}) & -k_{z}\boldsymbol{\delta} & -k_{x}\boldsymbol{\delta} & -k_{x}\boldsymbol{\delta} \\ -k_{z}\boldsymbol{\delta} & E_{2}(\mathbf{k}) & k_{x}\boldsymbol{\delta} & k_{x}\boldsymbol{\delta} \\ -k_{x}\boldsymbol{\delta} & k_{x}\boldsymbol{\delta} & E_{1}(\mathbf{k}+\tilde{\boldsymbol{Q}}) & -(k_{z}+\tilde{\boldsymbol{Q}})\boldsymbol{\delta} \\ -k_{x}\boldsymbol{\delta} & k_{x}\boldsymbol{\delta} & -(k_{z}+\tilde{\boldsymbol{Q}})\boldsymbol{\delta} & E_{2}(\mathbf{k}+\tilde{\boldsymbol{Q}}) \\ \vdots \end{pmatrix} \begin{pmatrix} \vdots \\ d_{+,k} \\ d_{-,k} \\ d_{-,k+\tilde{\boldsymbol{Q}}} \\ d_{-,k+\tilde{\boldsymbol{Q}}} \\ \vdots \end{pmatrix}$$

where $E_{1,2}(\mathbf{k}) = \frac{|\mathbf{k}|^2}{2m} + \frac{k_F^2}{2m} \pm \sqrt{\left(\frac{k_z \vec{Q}}{2m}\right)^2 + |\Phi|^2 - \delta k_z}$ H_{SOC} induces mini-bands (breaks residual U(1) symmetry)

Electrons, helical order and spin-orbit coupling

bandstructure non-perturbative in small SO-interaction map to tight-binding model in band-index space:

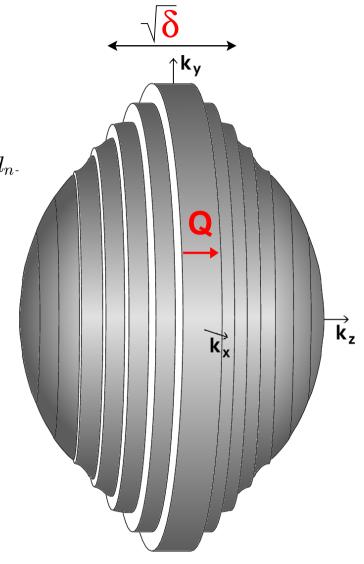
$$H_{TB} = \sum_{n} -\frac{1}{2m} \left(n \vec{Q} + k_z - m \delta \right)^2 d_n^{\dagger} d_n + k_x \delta d_{n-1}^{\dagger} d_n + k_x \delta d_n^{\dagger} d_{n-1}$$

ullet for $ec{k}_F \perp ec{oldsymbol{Q}}$ superflat mini-bands

bandwidth
$$\propto e^{-c\frac{\sqrt{\delta}}{Q}} \sim e^{-\frac{c'}{\sqrt{\delta}}}$$

bandgaps $\sim Q \sqrt{\delta}$

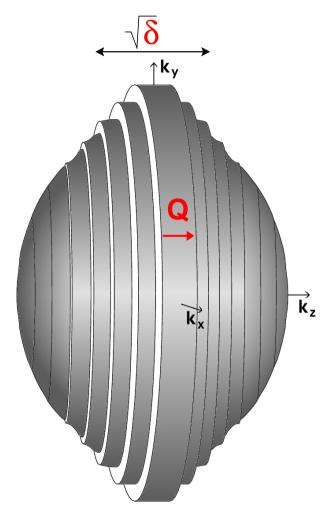
• electron motion $\| \vec{Q} \|$ stopped for large fraction of Fermi-surface: $\frac{k_z}{k_F} \lesssim \sqrt{\delta}$



Electrons, helical order and spin-orbit coupling

experimental consequences:

- de-Haas van-Alphen: unrealistically clean samples required
- resistivity: $\frac{\rho_{\parallel}-\rho_{\perp}}{\rho}\sim \delta^{3/2}$ small effect
- huge change in anomalous skin effect determined by electrons moving parallel to surface with $v_\perp/v_\parallel < \Delta/l$, rotate spirals by B field \parallel/\perp to surface compare skin depth Δ^\parallel , Δ^\perp large for $k_F l_0 \gtrsim \frac{(\lambda k_F/\alpha)^{1/3}}{\sqrt{\delta}}$
- Hall effect?
- damping of Goldstone modes?
- inelastic scattering?



Conclusions? – No conclusions yet

- genuine NFL phase in MnSi?
 unique: clear exp. evidence for NFL phase AND hint towards origin
- scenario 1: local order remains, spin-charge separation, scattering from topological defects, Gauge theory
- scenario 2: scattering from (pseudo-) Goldstone modes anomalous k_{\perp} dependence, **overdamped** but: wrong power-law for $\rho(T)$
- other options: scattering from domain-walls, texture-glass, ...
- large effects of spin-orbit coupling