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Review of possible 1-order magnetic transitions

| quantum phase transitions are frequently weakly 1-order
Examples: MnSi, UGe2,...

* Band structure effects (minimum in the electron density of states)

b d G.Lonzarich, H.Yamada,...

_ a2 D434 A 506
F<M)_2M 4M+6M Why weakly 1-order?

* Additional degrees of freedom or fields (gauge fields, coupling to strain, ...)

Halperin, LubensKy, Ma (1974)
Larkin, Pikin (1969)
* Non-analytic Ginsburg-Landau theory ( integrating electrons out)

S. Misawa (1988,1993)
D.Belitz, T.R. KirKpatrick, I.Vojta (1999)

* Large phase volume of soft modes S. BrazovsKii (1974)



Fluctuational 1-order classical phase transition
S. BrazovsKii (1974)

[crystallization of a liquid]
 Isotropic roton excitations with minima at finite momenta
Local fluctuations diverge ifroton gap /A = ()

T 2 T T
' &= d’q =4mq,) dlg ~
“f\‘iigr‘: ’ f A+(|q|_QO)2 Of A+<|q|_QO)2 \/Z
=
Finite contribution to free energy difference 9
finite phase volume of fluct. modes C{q, > 1-order
small vanishing volume of fluct. modes ¢ qz > 2-order
(FM and AFM)
Physical systems:
Crystallisation of He-3 and He-4 ‘BrazovsKii(1974), Dyugaev (1976)

Rayleigh-Benard convection Hohenberg, Swift (1995)



Motivation to study quantum phase transitions of
Brazovskii type

MnSi

helical itinerant ferromagnet

Two main experimental puzzles appear to be connected

* Weak quantum 1-order ferromagnetic transition
* Non-Fermi liquid paramagnetic phase above critical pressure

Magnetic rotons were predicted
and observed directly by C.Pfleiderer et al, Nature (2004)



Outline

* Review of possible reasons for 1-order transitions
* Classical fluctuational 1-order transition (s.Brazovskii)
* Motivation (itinerant helical ferromagnet -MnSi)

Quantum fluctuational 1-order transitions (9. Schmalian, M.T.)

* Derivation of magnetic rotons due to spin-orbit coupling
* Self-consistent Hartree theory

* Roton-roton interactions

* RG analysis and tricritical points

* Classification of these type of transitions

* Disordered and metastbale states

Fermion-roton scattering and coupling

* Electron self-energy
* Resistivity



Magnetic rotons: (J.Schmalian, M.T.)

dramatic increase in the phase space of magnetic excitations

magnetic rotons:
degenerate low energy
excitations
with finite momentum

s g
paramagnon x
phase space

specific application: quantum phase transition in MnSi



Dynamics of rotons

] W —=w'’
x(q,oo) " E (q) —ilTw with z arbitrary
+ ‘m ive due t ticle-hol itati
= IITUsIive aue to particie-noie excitations
E+(q=QO =A i

A — (at the critical point

challenges

roton-roton interaction w=mp  nature of the

phase transition
roton-electron interaction == non-Fermi liquid beh.



RG analysis

two stable fixed points
A= +oo 2-order

Line of unstable tricritical
fixed points at

ce=3—2z—0
€ocA||=2X

order parameter
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Open problems

Disorder and fluctuational 1-order transitions
Finite temperatures (crossover from 1* to 2-order)?
Metastable states at finite temperatures

Resistivity of glassy state with spin disorder

p~T25



Several hand-written slides
are ommitted

- Hartree solution

- short review of experiments
(see C. fleiderer's talk)



Classification of quantum fluctuational

z—1

l-order transitions (2« «A

z—3
[MocA °
1) Local magnetization diverges z<1
(similar to classical BrazovsKii transition)
--> strong coupling to disorder
2) Local magnetization does not diverge
Polarization operator diverges 1<z<3 ,
w~(5ql)
3) ordinary 2nd-order transition z>3

Compare with a condition for non-mean field critical QPT

for small (vanishing) phase volume of critical soft modes
D+z <4



Differences between roton-field theory and ordinary ¢ *-theory

tWO-lOOp Title:hartree.eps
. . Creator:fig2dev Version 3.2 Patchlevel 3
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A~ (IT(A))
3

Af~A—A(D_”/2,A€>> A,
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small factor A'P7V"2

1-order transition
occursat  1=A I1(A)

A(3—Z)/2:A”
condition of validity
D—1
AT

classical case

T>0K Aﬁ”6<<1



metastable states and disorder

e First solutions appear with N-large number of spirals
with order parameter A |

M=o a) @1

* Large-N solutions are metastable, because a single-spiral state
has the lowest energy, but

1) disorder can lock (stabilize) metastable states with N-spirals
2) large-N spiral state is stable to thermal fluctuations
(unlike 1D and 2D structures)

R.Peierls (1934), L.D.Landau (1937)
also Mermin-Wagner theorem



Magnetic droplets-defects close to
the ferromagnetic transition

Larkin, Melnikov (1972)
Millis, Morr, Schmalian (2001)
Loh, Tripathi, Turlakov (2004)

important differences between Ising

“giant moment” and XY (and Heisenberg) symmetry
multi-channel Kondo effect

(JSn(e,))’ .
g Y (coupling constant)

---> contribution of magnetic droplets-impurities to the magnetic
susceptibility and resistivity



Fermion-roton scattering

large phase volume of ,  strong damping of
soft modes (rotons) > electrons

ImZ(Q)=ffdwf dgq” *ImX(q,w)[1+n,(w)]

ImZ(Q)cA’ag? A+{)
0 | 2
m xq,

z—1

ImX>(Q)ocQ ° forarbitrary z

Electron self-energy

p~ 1 VT forkT>> A High-temperature
T result

tr

Resistivity



Conclusions

observed in MnSi !

magnetic rotons form a new universality class of quantum

phase transitions (fluctuation induced 1%t order trans.,
tricritical points, scaling behavior ...)

- pressure induced state in Mn$Si is a fluctuation induced
amorphous state with helix defects causing unconventional

/ransport



/0

hierarchy of energy scales

»> exchange energy of the ferromagnetism 1, =30K

» Dzyaloshinsky-Moriya interaction £ = 4K

» crystal field potential pins q, ~<111> qx
Eanis. /Einh. =~ 005

key assumption:
anisotropy terms can be neglected above T.



the paramagnons of the theory

right handed

helical mode

.. bl’ﬁ’l’/’/«’
BREeRR
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left handed

longitudinal mode

helical mode
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dynamics of rotons

For T>T, 1 o —>w’’
X(q,(i)) = : : :
E, ( q) —ilI'o  with z arbitrary
\
diffusive due to particl
E(q=q, = A " hole excitations
A — (O at the critical point
challenges

roton-roton interaction @wsmp  nature of the

phase transition

roton-electron interaction == non-Fermi liquid beh.
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roton-roton interaction

small dimensionless coupling constant

ho(goa)” < 1ifD+z>4

angular dependence of the coupling constant

// similar to fermions:

Shankar (1994),
Hohenberg+Swift (1995)

special case

A =Mo", ~q0-—4,") Ay = My-90>=90>—40)
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roton-roton interaction- perturbation theory

leading terms of the perturbation theory
_renorm

A “A—ATI+A TI2.

1+7»H

1
o+ A+ (g1 —g,)

polarization diagram = d"qdw

renorm _ }\' 1-(2\- -A)1I
I 1+AII

I

N changes sign!
<
}\H 24, = 1st order transition

}\‘II > 2\ => 2nd order transition
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