FLAT SURFACES,
INTERVAL EXCHANGE TRANSFORMATIONS
& MODULI SPACES OF ABELIAN DIFFERENTIALS
(Lecture 1)

Anton Zorich
Universite de Rennes 1
I.R.M.A.R.
Rennes
France
Switzerland

These are preliminary lecture notes, intended only for distribution to participants
Flat Surfaces

Flat surface: all curvature is collapsed to several singular points (cone-singularities).

Example: absolutely flat sphere (with 8 cone-singularities with angles $\frac{3\pi}{2}$) and with non-trivial $SO(2)$ holonomy.

Problems: Behaviour of - typical geodesics;
- closed geodesics.

Results: ???
Even in the simplest case of a flat sphere with three generic cone-singularities it is not known whether
- the geodesic flow is ergodic (for a.o. cases)*;
- there exists at least one closed regular geodesic?

* 10.000
Billiards in polygons

Billiard in a polygon \sim Geodesic flow on the corresponding flat sphere

Exercise. Find a periodic billiard trajectory in an acute triangle.

Existence of periodic trajectory is proved for $1/3$ of obtuse triangles; for the remaining $2/3$ it is an open problem.

$\alpha + \beta \leq \frac{\pi}{2}$

Set of the measure ν_3 in the space of parameters (G. Galperin)

Pair of elastic balls on a segment \sim Billiard in a triangle

Configuration space = triangle
After rescaling dynamics = dynamics of the billiard

$x_2 = \sqrt{m_2 x_2}$

$x_1 = \sqrt{m_1 x_1}$
Billiards in rational polygons

Billiard in a rectangle \rightarrow unfolding \rightarrow Directional flow on a torus (glued from 4 copies of the rectangle)

Billiard in a triangle $(\frac{\pi}{4}, \frac{3\pi}{8}, \frac{3\pi}{8})$ \rightarrow unfolding \rightarrow Directional flow on a "flat" surface of genus two

Billiards in rational polygons \rightarrow Geodesics on very flat surfaces (translation)
VERY FLAT SURFACE OF GENUS TWO
Object of study: VERY flat surfaces

def: VERY flat (= translation) surface := flat + trivial holonomy

Example 1. Flat torus

Example 2. Flat pretzel

Properties of a translation structure:
- Having chosen direction to the North at one point we can parallel transport it to any other point.
- Any geodesic goes in a fixed direction; in particular, it never intersects itself.

Problems:
- Behavior of generic geodesics
- Behavior of closed geodesics
- Ergodicity and unique ergodicity of the directional flow
- What is going on when genus \(g \) tends to \(\infty \)?
SURFACES DE TRANSLATION

def: Surface de translation = plate + holonomie triviale

Nous avons collé une ause.
PLANE SECTIONS OF \mathbb{Z}_4^3-PERIODIC SURFACES IN \mathbb{R}^3

Fig. 66. Fermi surface of tin based on the results reported in [41].

Fig. 67. Stereographic projections of the special directions of the magnetic field for constant-energy surfaces of the two-dimensional network type.
A piece of a \mathbb{Z}^3-periodic surface

Sections of a \mathbb{Z}^3-periodic surface $\hat{M} \subset \mathbb{R}^3$
by hyperplanes $\alpha x + \beta y + \delta z = \text{const}$ project
to leaves of a closed 1-form

$\omega = (\alpha dx + \beta dy + \delta dz)|_M$ on a
compact surface $M \subset T^3 = \mathbb{R}^3/\mathbb{Z}^3$
Theorem Consider a foliation on a closed surface of genus g defined by a close 1-form w. One can find a flat metric with isolated singularities (and trivial holonomy) in which the foliation would become a foliation of parallel straight lines if and only if w does not have closed oriented singular leaves homologous to zero.

PERFECT

FORBIDDEN
Espaces de surfaces de translation.

On peut déformer une surface de translation; la déformation ne change pas les angles coniques.

L'action du groupe \(SL(2; \mathbb{R}) \) sur l'espace de surfaces de translation \(\mathcal{H}(d_1, \ldots, d_n) \). Ici \(2\pi(d_1+1) \) sont les angles coniques.
Exemple ludique : espace des tores plats

On choisit le patron du tore défini par ses deux géodésiques fermées les plus courtes. La plus courte des deux est normalisée à 1 et mise horizontalement. Le vecteur correspondant à la deuxième géodésique paramétrise la structure plate.
Translation Surfaces

Def: Translation surface $= \text{flat} + \text{trivial } \text{SO}(2) - \text{holonomy}

Gluing rules: translations of the Euclidean plane

(translation) flat structure + a choice of the vertical direction

Conical point $2\pi(d+1)$

Side $\overrightarrow{v_i}$ of a polygon

Area of the surface

Family of the surfaces sharing the same collection of cone angles

Coordinates in the family: vectors $\overrightarrow{v_i}$ defining the polygon

Complex structure + holomorphic 1-form $\omega: dz$ (Abelian differential)

Zero of holomorphic form ω of degree d (in local coordinates $\omega = w^d dw$

Period $\int_{P_k} \omega = \int_{[z]} \omega$ of ω

$$\frac{1}{2} \int_{P_k} \omega \overline{\omega} = \frac{1}{2} \sum_{i=1}^{g} (A_i \overline{B_i} - \overline{A_i} B_i)$$

Moduli space of Abelian differentials $\mathcal{H}(d_1, \ldots, d_n)$ where d_1, \ldots, d_n are degrees of zeroes, $\Sigma d_i = 2g-2$

Coordinates in $\mathcal{H}(d_1, \ldots, d_n)$: collection of relative periods of $\omega = \text{cohomology class of } \omega$ in $H^1(C, \{P_1, \ldots, P_n\}; \mathbb{C})$
Ergodicity of \(SL(2; \mathbb{R}) \)-action.

Volume element in \(\mathcal{H}(d_1, \ldots, d_n) \):

Volume element in the vector space \(\mathcal{H}^4(\ldots; \mathbb{C}) \) normalized by the lattice \(\mathcal{H}^4(\ldots; \mathbb{Z} \otimes i \mathbb{Z}) \)

\[
\Omega = dv_1 \wedge dv_2 \wedge \ldots \wedge dv_n \quad \text{(for a reasonably chosen polygon)}
\]

Unit hyperboloid \(\mathcal{H}_u^4(d_1, \ldots, d_n) \subset \mathcal{H}(d_1, \ldots, d_n) \):

Area (flat surface) \(= 1 \) or \(\frac{1}{2} \sum_{i=1}^{n} (A_i B_i - \overline{A_i} B_i) = 1 \)

We get the induced volume element \(\frac{\Omega}{d \text{area}} = \Omega(\text{grad area}, u, \bar{u}, \ldots) \)

\(SL(2; \mathbb{R}) \)-action is the action on coefficients \(\mathcal{H}^4(\ldots; \mathbb{C}) \).

Geometrically:

\[\begin{array}{c}
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\end{array} \rightarrow \begin{array}{c}
\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\end{array}
\end{array} \]

This action preserves - the volume element
- the unit hyperboloid (and the function "Area")

Theorem (H. Masur 1980; W. Veech 1980)

- The total volume of \(\mathcal{H}_u^4(d_1, \ldots, d_n) \) is finite;
- The \(SL(2; \mathbb{R}) \)-action is ergodic on every connected component of every stratum \(\mathcal{H}(d_1, \ldots, d_n) \);
- The Teichmüller geodesic flow \((e^t \circ e^{-t}) \) is ergodic.

Remark: \(\mathcal{H}^4(\ldots; \mathbb{R}) \oplus \mathcal{H}^4(\ldots; i\mathbb{R}) \) are "unstable" and "stable" directions, but Teichmüller geodesic flow is not uniformly hyperbolic.

Main Challenge:

- Description of \(SL(2; \mathbb{R}) \)-invariant submanifolds;
- Description of \(SL(2; \mathbb{R}) \)-invariant measures;
- Asymptotics of the dynamical characteristics when \(g \to \infty \)
GENERAL PHILOSOPHY. Motivations.

GENERAL PHILOSOPHY. Nontrivial geometric and dynamical properties of (almost any) individual flat surface are expressed in terms of simple geometric and dynamical properties of the corresponding family.

Hope. The closure of $GL(2;\mathbb{R})$-orbit of any flat surface is a nice complex algebraic orbifold. Its geometric and dynamical properties are responsible for geometry and dynamics of the corresponding flat surface.

Motivations.

- Billiards in rational polygons \rightarrow geodesics on translation surfaces

- Measured foliations on surfaces \rightarrow can be "straightened" to straight line foliations on flat surfaces

- Interval exchange transformations: dynamical systems with "parabolic" dynamics
Examples of how does the "general philosophy work."

Theorem (H. Masur)
Let S be a flat surface. If the directional flow in the vertical direction is not uniquely ergodic then the "Teichmüller geodesic" $g_t S$ is divergent (i.e. it eventually leaves every compact set in the moduli space \mathcal{M}_g of complex structures).

Theorem (W. A. Veech)
Let S be a flat surface. If its $\text{SL}(2; \mathbb{R})$-orbit is closed, then the directional flow in each direction is either periodic or uniquely ergodic.