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0. Introduction

Let a be an irrational number, (qn)nen be the sequence of the denomi-
nators of its continued fraction expansion and (an)neN be the sequence of its
partial quotients. Roth type irrationals have several equivalent arithmetical
characterizations:

• in terms of the rate of approximation by rational numbers: for all e > 0
there exists a positive constant C£ such that \qa — p\ > C£q

1+£ for all
rationals p/q;

• in terms of the growth rate of the denominators of the continued fraction:
qn+1 = O (gi+£) for all e > 0;

• in terms of the growth rate of the partial quotients: an+i = O (q^) for all
e>0.
In addition to these purely arithmetical characterizations an equivalent

definition arises naturally in the study of the cohomological equation associated
to the rotation Ra : x \—>• x + a on the circle T = R/Z: a is of Roth type if
and only if for all r, s E R with r > s + 1 > 1 and for all functions $ of class
Cr on T with zero mean JT <frdx = 0 there exists a unique function ^ of class
Cs on T and with zero mean such that ^ — ^ o Ra = $.

The class of Roth type irrationals enjoys several nice properties: by the
celebrated theorem of Roth all algebraic irrationals are of Roth type. Moreover
the set of Roth type numbers has full measure and is invariant under the natural
action of the modular group SL (2, Z).

The goal of this paper is to characterize a class of interval exchange maps
(i.e.m.'s) with similar properties (especially for the solutions of the associated
cohomological equation and the fact of being a full measure class).

0.1 Interval exchange maps

Let A denote an alphabet with d > 2 elements. Let / be an interval and
(Ia)aeA a partition of / into d subintervals. An interval exchange map T is an
invertible map of / which is a translation on each Ia. Thus T is orientation-
preserving and preserves Lebesgue measure.

When d = 2 then T is just a rotation (modulo identification of the
endpoints of I). It can be thought as the first return map of a linear flow
on a two-dimensional torus on a transversal circle. Analogously when d > 3
by singular suspension any i.e.m. is related to the linear flow on a suitable
translation surface (see, e.g. [VI] for details, or section 3 below) typically having
genus higher than 2. A well-known dictionary between translation surfaces
and Riemann surfaces relates i.e.m.'s to the theory of measured foliations on
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surfaces (see, e.g. [FLP] for a introduction to measured foliations). Finally
i.e.m.'s are related to the study of rational polygonal billiards (see [Ar], [Ta]
and [KH], Chapter 14, for a general introduction to i.e.m.'s, flows on surfaces
and polygonal billiards).

Typical i.e.m.'s are minimal (this is guaranteed by a condition due to
Keane [Kel] which is automatically dealt with if the intervals lengths are
rationally independent) but note that ergodic properties of minimal i.e.m.'s
can differ substantially from those of circle rotations: first they need not be
uniquely ergodic [Ke2, KN, Co], and second, being ergodic they can be weakly
mixing [KS, V3,V4]. On the other hand uniquely ergodic i.e.m.'s are generic
[KR] and Keane's conjecture that almost every i.e.m. is uniquely ergodic was
proven independently by Masur and Veech [Ma, V2], see also [Ker, Re].

One of the most important consequences for us of Keane's condition is that
it allows to introduce and to iterate indefinitely continued fraction algorithms
that generalize the classical algorithm (corresponding to the choice d = 2)
[Ra, V2, Zl]. Both the Rauzy-Veech continued fraction algorithm and its
accelerated version due to Zorich are ergodic w.r.t. an absolutely continous
invariant measure in the space of i.e.m.'s. However in the case of the Rauzy-
Veech continued fraction the measure has infinite mass whereas the invariant
measure for the Zorich algorithm has finite mass. The ergodic properties of the
continued fraction map and of the related Teichmiiller flow (see Section 4.2 for
its definition) have been studied in detail [V5, V6, V7, Z2, Z4, Fo2].

0.2 The cohomological equation

Our study of the cohomological equation for i.e.m.'s has been prompted by
Form's [Fol] celebrated paper on the cohomological equation associated to
linear flows on surfaces of higher genus. Let us first state our main theorem.

We will denote BV (LJ/a) (resp. BV* (LJ/a)) the space of functions ip whose
restriction to each of the intervals Ia is a function of bounded variation (resp.
the hyperplane of BV(U/a) made of functions whose integral on the disjoint
union U/a vanishes). We will also denote BVl (U/a)) the space of functions <p
which are absolutely continuous on each Ia and whose first derivative belongs
toBV*(U/a).

Our first main result can be stated as follows:

Theorem A.Let T be an interval exchange map with the Keane property and
of Roth type. Let $ G BV\ (U/a). There exists a function x constant on each
interval Ia and a bounded function \& such that
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To make the above statement precise we need to define Roth type i.e.m.'s.
This is the subject of section 1.3 below. For the time being we will content
ourselves with briefly describing the three conditions which a Roth type i.e.m.
must satisfy:
(a) The first condition is a growth rate condition for the matrices appearing

in an accelerated version of the Zorich continued fraction algorithm (see
Section 1.2.4 for details). This condition is the precise analogue of the third
of the equivalent arithmetical characterizations of Roth type irrational
numbers given above.

(b) The second condition is a spectral condition which guarantees unique
ergodicity of Roth type i.e.m.'s. This condition does not follow from
condition (a) (see Appendix B for a counterexample, and also [Ch]) but
is automatically satisfied if the i.e.m. is of constant type (i.e. the matrices
considered in (a) have bounded norm).

(c) The third and last condition is a coherence condition.
The second main result of this paper is

Theorem ~B.Roth type interval exchange maps form a full measure set in the
space of all interval exchange maps.

Obviously, Theorem A is closely connected to Forni's fundamental theorem
[Fol] on the cohomological equation for area-preserving vector fields on sur-
faces. By singular suspension ("zippered rectangles", see Section 3), one ob-
tains from an interval exchange map an area-preserving flow on a singular flat
surface. Forni develops some Fourier analysis tools in this context, which allows
him to solve the cohomological equation for almost every direction; our meth-
ods are completely different. He works in the Sobolev scale and his methods
allow to lose no more than 3 + e derivatives (for every e > 0) [Fo3]. Our loss
is smaller and we get an explicit Diophantine condition. On the other hand,
given a singular flat surface, we do not know if almost every direction leads to
a Roth type interval exchange map.

The connection with singular flat surfaces explains the type of regularity
we introduce when we consider the cohomological equation for more regular
data: we still allow discontinuities for $ at the endpoints for the / a ; on the
other hand, we require the solution \1/ to be continuous on all of / . New linear
conditions on $ appear by integration of the cohomological equation. See
Section 3 below for the precise statements.

When the singular suspension of an i.e.m. T is an invariant foliation for
a pseudo-Anosov diffeomorphism, the continued fraction expansion of T is
eventually periodic. This implies a strong version of condition (a).

Conditions (b) and (c) are also satisfied. Hence T is of Roth type (even of
"bounded type") and Theorem A applies. This answers positively a question
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raised by Forni ([Fol], p. 342).

0.3 Summary of the contents

In the first section we introduce interval exchange maps and we develop the
continued fraction algorithms to an extent which allows us to introduce Roth
type i.e.m.'s. The Keane property (see 1.1.6) does not only guarantee that an
i.e.m. is minimal but it also implies that the Rauzy-Veech continued fraction
algorithm (described in 1.2.1-1.2.3) can be iterated indefinitely. Accelerating
the Rauzy-Veech map by grouping together arrows with the same name in
the Rauzy diagram leads to the Zorich continued fraction algorithm (described
in 1.2.4) which has the advantage of having a finite mass a.c.i.m.. On the
other hand, since every name is taken infinitely many times in the sequence of
arrows in the Rauzy diagram corresponding to a given i.e.m. one can produce
a further acceleration of the scheme by grouping together all arrows which
take all possible names but one: this leads to the algorithm we will use in
the definition of Roth type i.e.m.'s given in section 1.3 and already briefly
described above. The notations and the presentation of the Rauzy-Veech-
Zorich algorithms follow closely the expository paper [Y].

Section 2 is devoted to the study of the cohomological equation and to
the proof of our main theorem A. When T is a minimal homeomorphism of a
compact space X, we know from a theorem of Gottschalk and Hedlund [GH]
that a continuous function on X is a T-coboundary of some continuous function
as soon as its Birkhoff sums at some point of X are bounded (see Section
2.1.1). An i.e.m. with the Keane property is minimal but not continuous.
Nevertheless, a Denjoy-like construction (see Section 2.1.2) allows to apply
Gottschalk-Hedlund's theorem and conclude that a continuous function whose
Birkhoff sums at some point are bounded is the T -coboundary of a bounded
function. The next step in the proof is the reduction of the control of a general
Birkhoff sum to the control of those special Birkhoff sums which are obtained
by considering the return times of the point under iteration of the map (Section
2.2). These can be conveniently analyzed using the continued fraction. The
estimates of these special Birkhoff sums for functions of bounded variation are
given in Section 2.3 and the proof of the theorem is completed in Section 2.4.

In Section 3 we first recall how to construct a linear flow on a translation
surface starting from an i.e.m. and certain suspension data (Sections 3.1-3.3).
Then we relate the discrete cohomological equation for i.e.m.'s to the continuous
one for the vertical (area-preserving) vector field constructed by suspension:
this allows us to consider more regular data (i.e. belonging to the space BV*
of functions whose r-th derivative has bounded variation on each Ia and all
intermediate derivatives have zero mean on Ula ). We prove that for those the
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loss of differentiability in solving the cohomological equation is the same as for
functions in BV* (Section 3.4).

Section 4 is devoted to the proof of theorem B, i.e. that Roth type i.e.m.'s
have full measure. To this purpose we need to describe how the Rauzy-Veech
map acts at the level of the suspension data (Section 4.1). Then we combine
the continued fraction algorithm (in Zorich form) with the Teichmuller flow
in order to get a version which is normalized w.r.t. scales (Section 4.2). A
careful comparison between the a.c.i.m. for the continued fraction map and the
Lebesgue measure is carried out in Section 4.3 whereas in Section 4.4, following
Zorich [Zl] we prove the integrability condition on the matrices needed to apply
Oseledets multiplicative ergodic theorem. Then conditions (b) and (c) in the
definition of Roth type i.e.m.'s have full measure (Section 4.5) by Oseledets
theorem and the almost sure existence of a spectral gap proved by Veech in
[V3]. Showing that condition (a) also has full measure requires more work
and more precise informations on the combinatorics of the continued fraction
map. This is summarized in a Proposition stated in Section 4.6 and proved
in Section 4.8 whereas in Section 4.3 we show how to conclude the proof of
theorem B by putting together the results of Sections 4.3 and 4.7 and applying
a Borel-Cantelli argument.

The two appendices are devoted to the construction of concrete examples
of Roth type i.e.m.'s and to the construction of non-uniquely ergodic i.e.m.'s
satisfying condition (a) in Roth type (but of course not condition (b)).
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CNRS, MURST, INDAM, the French-Italian University, the College de France
and the Scuola Normale Superiore. We are also grateful to the two former
institutions and to the Centro di Ricerca Matematica "Ennio De Giorgi" in
Pisa for hospitality.
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1. The continued fraction algorithm for interval exchange maps

1.1 Interval exchange maps

1.1.1

An interval exchange map (i.e.m. ) is determined by combinatorial data on one
side, length data on the other side.

The combinatorial data consists of a finite set A of names for the intervals
and of two bijections (TTO, TTI) from A onto { 1 , . . . , d} (where d is the cardinality
of ^4): these indicate in which order the intervals are met before and after the
map.

The length data (A a ) a G ^ give the length Aa > 0 of the corresponding
interval. More precisely, we set

Ia •= [0, Aa) x {a} ,

A := y ^ Aa ,
a£A

/ := [0 , A*) .

We then define, for e = 0,1, a bijection j e from Uae^.Ia onto / :

j£(x,a)=
TTs{/3)<TTs(a)

The i.e.m. T associated to these data is the bijection T = j \ o j ^ of / .

1.1.2 If A, TTO, TTI, Aa are as above and x '• A1 —>• A is a bijection, we can define
a new set of data by

K = ^e O X , £ = 0, 1 ,

Obviously, the new i.e.m. T" determined by these data is the same, except
for names, than the old one. In particular, we could restrict to consider
normalized combinatorial data characterized by

A= { l , . . . , r f} , 7T0 = id.4 .

However, this leads to later to more complicated formulas in the continued
fraction algorithm because the basic operations on i.e.m. 's do not preserve
normalization.
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1.1.3 Given combinatorial data (A, TTO, TTI), we set, for a,/3 G A

The matrix Q = (Clajp),a a\ej^ is antisymmetric.
Let {\a)aeA be the length data and let T be the associated i.e.m. . For

a e A, y e jo(Ia),
 w e have

where the translation vector 5 = (5a)ae_4 is related to the length vector
A = (Aa)aGv4 by:

1.1.4 There is a canonical involution I acting on the set of combinatorial data
which exchange TTO and TTI. For any set (Aa)ae_4 of length data, the intervals
I a, I are unchanged, but jo and j \ are exchanged and T is replaced by T" 1 .
The matrix £1 is replaced by — H and the translation vector 5 by —5. Observe
that X does not respect the combinatorial normalization.

1.1.5 In the following, we will always consider only combinatorial data
(A, TTO, TTI) which are admissible, meaning that for all k = 1, 2 , . . . , d — 1, we
have

^ { l , - - - , * } ) ^ ! - 1 ^ ! , • • • ,*})•

Indeed, if we had 7r^"1({l,..., k}) = 7r^1({l , . . . , fe}) for some k < d, for
any length data (\a)aeA, the interval / would decompose into two disjoint
invariant subintervals and the study of the dynamics would be reduced to
simpler combinatorial data.

1.1.6 The Keane property Let T be an i.e.m. denned by combinatorial data
(A, 7To,7Ti) and length data (Xa)aeA-

Definition A connexion for T is a triple (a, /3, m) where a, {3 G A, TTO(/3) > 1,
m is a positive integer, and

We say that T has the Keane property if there is no connexion for T.

It turns out that this property is the appropriate notion of irrationality for
i.e.m. . The following results are due to Keane ([Kel]):
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• An i.e.m. with Keane's property is minimal (i.e. all orbits are dense).
• If the length data are rationally independent (and the combinatorial data

are admissible) then T has Keane's property.

1.2 The continued fraction algorithm

1.2.1 The basic operation. (Rauzy [Ra], Veech [V2]) Let T be an i.e.m.
defined by combinatorial data (A, TTO, TTI) and length data (Xa)ae^,. We assume
as always that the combinatorial data are admissible.

We denote by ao,ai the (distinct) elements of A such that

= d .

Observe that if Aao = Aai, the triple (ao,ai, 1) is a connexion and T has not
the Keane property.

We now assume that Aao ^ Xai and define e G {0,1} by

Xae = Max(Aao, Aai) .

We set
\* \* \
A — A — A a i s ,

I = [ 0 , A * ) c I ,

and define T : I —>• / to be the first return map of T in / .
When e = 0 we have

When e = 1 we have similarly

f-i(v)=iT-1(y) if

In both cases, it appears that T is again an interval exchange map which
can be defined using the same alphabet A. The length data for T are given by

Xa = Xa if a y^ a£ ,

\ a = Xa — Xai

The combinatorial data (TTQ? TTI) f°r T a r e given by
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and

{ 7ri_£(a) if 7ri_£(a) < 7ri_£(a£) ,

7Ti_£(a) + l if 7Ti_£(ae) < 7Ti_£(a) < d,
7Ti_£(ae) + l if 7Ti_£(a) = d.

We rewrite the relation between old and new length data as
where

V = I + Eaeai_e

has now non negative integer coefficients and belongs to the group SL (Z ).
We also write

(7rO,7Ti) = i?£(7T0,7ri)

and observe that these new combinatorial data are admissible.

1.2.2 Rauzy diagrams Let A be an alphabet. We define an oriented graph
as follows. The vertices are the admissible pairs (7ro,7ri). Each vertex (7ro,7ri)
is the starting point of exactly two arrows with endpoints at i?o (vro, ^1) and
-RI(TTO, TTI). The arrow connecting (TTCTTI) to i?£(7To,7Ti) is said to be of type s.

The operations Ro,Ri are obviously invertible. Therefore each vertex is
also the endpoint of exactly two arrows, one of each type.

To each arrow in the graph, we associate a name in A: it is the element
a£ such that TT£(Q;£) = d (where (TTCTTI) is the starting point of the arrow and
e is its type). The element a\-£ will then be called the secondary name of this
arrow.

A Rauzy diagram is a connected component of this oriented graph.
Obviously, the Rauzy operations Ro,Ri commute with change of names

(see 1.2). Up to change of names, there is only one Rauzy diagram with
d = card A= 2, and one with d = card ^ 4 = 3 .

C A B
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In the diagrams above the pair (TTCTTI) is denoted by the symbol

°-i)^( "'" °-i) 1. For d = card^4 = 4 there are 2 distinct Rauzy dia-
TTl ( 1 ) ••• TTl ( d )
grams:

5

^ D C B A -. A .

\

In each of these diagrams, the symmetry with respect to the vertical axis
corresponds to the action of the canonical involution.

In the last diagram, there is a further symmetry with respect to the center
of the diagram, which corresponds to the exchange of the names Bo, Bi. This is
a monodromy phenomenon: to each admissible pair (TTCTTI), one can associate
the permutation vr := TTI O TT^1 of { 1 , . . . , d}, which is invariant under change
of names. When we identify vertices with the same permutation, we obtain a
reduced Rauzy diagram and we have a covering map from the Rauzy diagram
onto the reduced Rauzy diagram.

In the first three examples above, the covering map is an isomorphism. In
the last example, the degree of the covering map is 2 and the reduced Rauzy
diagram is
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Fiq. 1 neoiuteei RAUAW cUaqraivi .

where TT is denoted by (vr (1),. . . , TT (d)).

1.2.3 The Rauzy—Veech algorithm Let T be an i.e.m. with admissible
combinatorial data. If T has Keane's property, the basic operation is defined for
T and it is immediate to check that the new i.e.m. T again has Keane's property.
Therefore we can iterate the basic operation and generate a sequence (T^)n>0

of i.e.m. 's (with T^0' = T). We will denote (TTQ , TTJ"' ) the combinatorial data
of T^n\ by (A« )aeA its length data, by 7 ^ the arrow in the Rauzy diagram
connecting (n^'^,ir[n~1)) to (n^n),7r{n)), by V^ the matrix relating A^"1)
to A<n) through

Conversely, it is not difficult to check that when T has a connexion, the
algorithm has to stop because one runs at some point in the equality case
Aao = Aai in the basic operation.

Propositioni?ac/j name in A is taken infinitely many times by the sequence
of arrows (7(n))n>o-

Proof. Let A1 be the set of names which are taken infinitely many times and let
An = A\A'. Replacing T by some T^N\ we can assume that names in An are
not taken at all. Then the lengths A« , a G A", do not depend on n. But then
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elements a G A" can only appear as secondary names at most finitely many
times. Replacing again T by some T^N\ we can assume that secondary names
are never in Av. Then the sequences (TT̂  («))n>o, for e G {0,1}, a £ An, are
non decreasing and we can assume (replacing once again T by some T^) that
they are constant.

We now claim that we must have TT4 («") < Tie (a>') for all a" G Av,
a' G A' and e G {0,1}. Because the pair (TTQ , TT[ ') is admissible, this implies
A' = A. To prove the claim, assume that there exist a' G A', a" G 4 " ,
£ G {0,1} with 7Te (a1) < 7Te («")• As 7Te (a") = TT̂  («") for all n > 0, we
can never have TT̂  («') = d for some n > 0. By definition of 4 ' , there must

exist n > 0 such that 7rj__e(a') = d; but then TT̂  (<*") 7̂  Tie ( a"); which
gives a contradiction. •

1.2.4 The Zorich algorithm and its accelerations
When d = 2, setting x = XB/^A, the basic operation reduces to the well-

known map
^ for 0 < x < 1/2,
^ for 1/2 < x < 1,

with a parabolic fixed point at 0. There is a unique absolutely continuous
invariant measure, namely dx/x, but this measure is infinite. On the other
hand, the Gauss map generating the continued fraction algorithm has dx/(l+x)
as a finite a.c.i.m. .

For i.e.m.'s with more intervals, identifying i.e.m.'s with proportional
length data (and the same combinatorial data), Veech has shown [V2] that there
exists again for the basic operation a unique absolutely continuous invariant
measure. Again this measure is infinite. Zorich has discovered ([Zl]) how to
concatenate several steps of the basic operations in order to get a finite a.c.i.m.

Let T be an i.e.m. with Keane's property, T^n\ ^n\ V^ the data
generated by the iteration of the basic operation. Let also 1 < D < d. We define
inductively an increasing sequence nz)(k) = nr>(k, T) by setting n£>(0) = 0 and:
n£>(k + 1) is the largest integer such that no more than D names are taken by
the 7^n), for nj){k) < n < nz>{k + 1).

The sequence is well defined because of the Proposition above.
Obviously, for 1 < D < d, (nr>(k))k>o is a subsequence of (nr>-i(l))i>o-
We will define, for k > 0

V s(h) = \/~(nD{k —1) + 1) . . .\/~{nD{k))
(D) \ )

The case D = 1 is the one considered by Zorich ([Zl]). We will on the
other hand be interested in the case D = d — 1.
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When the context is clear, we will simply write Z(k) for Z^-i)(k) and
for r ^ - 1 ^ ) ) , A(fc) for its length data. With these notations, we have

We will also set, for k < I

in order to have

We will also write Q(l) for Q(0, I). The coefficients Qap{k, I) have the following
interpretation. Let 1^ = Uae^j0(Ia) be the domain of T^k\ For I > k, we
have /(') C /(fc) and T® is the first return map of T^ in /('). Then, the non
negative integer Qap(k,l) is the time spent in jo(^a ) by any point of jo(li )
until it returns in / O .

We will also introduce

which is the return time in i"' for points in ii .
The following Lemma is the main reason to choose D = d — 1 rather than

D = l.

Lemma.ief T satisfy Keane's condition. Assume that

, k + 2d-3 ifd>3
k + 2 ifd = 2.

Then, for all a, (3 G A, we have Qap{k, I) > 0.

Proof. Replacing T by T^k\ it is sufficient to consider the case k = 0. For
r > 0, set

as the diagonal terms of the V matrices are equal to 1 (and all the terms are
non negative) we have

Fix a, f3 G A. We will construct a sequence of distinct indices oi\ =
a, «2, • • •, as = (3 and integers r\ = 0 < r^ < •. • < rs such that

) > 0 forr>7j- .
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If a = (3, s = 1, r\ = 0 and the property is satisfied. Otherwise, let r^ be the
smallest positive integer such that the name of ^ ^ is a\, and let a<i be the
secondary name of ̂ ^^ we have «2 7̂  OL\ and Va^d? = 1 hence Qaia2(

r) > 0
for r > T2-

Assume that a\,..., oij, r i , . . . , rj have been constructed, with f3 / on for
1 < I < 3- Let T'A be the smallest integer > rj such that the name of 7 ^ ) does
not belong to { « i , . . . , aj} and let rj+i be the smallest integer > r'- such that
the name of 7(rJ+1) belongs to { a i , . . . , a j } ; let CKJ+I be the secondary name
of 7(^+1). Then CKJ+I is the name of 7(rJ+1~1) and therefore is distinct from
oil , . . . , OLJ. By construction, we have, for some 1 < I < j

and also
Qaiai(rj+1 - 1) > 0

because rj+i > r\. We conclude that

QaiaJ+1 (r) > 0 for r >

At some point we will obtain as = (3. It remains to see how many steps of
the accelerated Zorich algorithm (with D = d — 1) are needed to attain rs.
Obviously, we have r<i < rid_i(l) + 1. Then, for 2 < j < d — 1, we have

r-J <nd_i(2.7-2) ,

< nd-i(2j - 1) .

Finally, when s = d > 2, we have

'd-! <nd_i(2d-4) +

rd<nd_i(2d-3) .

D

1.3 Roth—type interval exchange maps

Roth-type i.e.m. should satisfy Keane's condition so that the continued fraction
algorithm is defined, and three further conditions which are now explained.

1.3.1 Size of the Z matrices
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Take D = d — 1 in 1.2.4. We will first ask for the Z matrices to be not too big
in the following sense:
(a) for every e > 0 there exists C£ > 0 such that for all k > 0 we have

\\Z(k + l)\\<C£\\Q(kW.

When d = 2, this amounts exactly to the classical Roth type approximation
property for an irrational number 9: for all e > 0, there exists /y£ > 0 such that
for all rational p/q one has

In terms of the convergents (pk/qk)k>o of 0 with partial quotients (afc)fc>i5 this
is equivalent to have, for all e > 0

ak+1 = O (q%) ,

which explains our terminology.
We can reformulate (a) in terms of the lengths A« . It is convenient here

to take as norm of a matrix the sum of all coefficients (in absolute value; the
matrices that we consider here have nonnegative entries).

Proposition We have always, for k > 0

Condition (a) is equivalent to the following converse estimate: for all e > 0,
there exists C£ > 0 such that

^ < C£MmaeA\W\\Q(k)\\£ .

Proof. The first estimate follows from

Assume (a) is satisfied. Let / be equal to k + 2d — 3 (if d > 3) or k + 2 (if d = 2)
as in the Lemma in 1.2.4. We have

\\Q(k,l)\\<C'e\\Q(k)\\e

for all e > 0 (with an appropriate constant C'e).
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This gives

17

On the other hand, the Lemma 1.2.4 gives

giving the required estimate. Assume now that the estimate of the Proposition
holds. We have always

> d-x\\Z{k

On the other hand, by definition of the Z matrices, there exists cto G A such
that

But we have

< C£d\\Z(k

< C2
£d\\Z(k

< C2
£d\\Z(k

which implies

and allows to conclude that (a) holds . •

Remark 1.Assume condition (a) is satisfied. Set ko = 2d — 3 ifd>3, ko = 2
if d = 2. Following the same lines that in the last Proposition, we see that for
any e > 0, there exists Ce > 0 such that for k > ko we have

On the other hand it is easy to see that, even in the case of 3 intervals this
estimate does not imply condition (a).

Remark 2. Boshernitzan has defined ([Bo]) another condition which gener-
alizes Roth condition for irrational numbers. Namely, he asks that T satisfies
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Keane's condition and that the minimum distance mn between discontinuity
points of the n-th iterate Tn of T should verify

7 " 1

nl+e •

He proves that this condition has full measure.
The relation between Boshernitzan's condition and condition (a) above is

however not clear.

1.3.2 Spectral gap

As soon as k > 2rf — 3 (k > 2 if d = 2), all entries in the matrix Q(k) are strictly
positive. It is therefore not unreasonable to expect that the positive cone is
more expanded by Q(k) than the other directions, in the spirit of Perron-
Frobenius theorem.

However this is not automatic, as attested by the existence of minimal non
uniquely ergodic i.e.m. 's (an i.e.m. satisfying Keane's condition is uniquely
ergodic if and only if the image under Q(k) of the positive cone converges to a
ray as k —>• oo).

Our second condition ensures that this weird behaviour does not occur.
For each k > 0, let Y^k' be a copy of R-4. One should think of Y^k' as the

space of functions on U a G^/a ' which are constant on each Ia '. For 0 < k < I,
let S(k, I) be the linear map from T^ to T^ whose matrix in the canonical
basis is *Q(k, I). This can be interpreted as a special Birkhoff sum (see Section
2 below).

For ip = {ifa)aeA e F(fc), define

we have then

Denote by Fl ' the kernel of the linear form /&. We will ask the following:
(b) There exists 6 > 0, C > 0 such that, for all k > 0, we have

Observe that an i.e.m. satisfying Keane's condition and (b) must be
uniquely ergodic.

In appedix B we construct i.e.m. 's which satisfy condition (a) but are not
uniquely ergodic (see also [Ch]); therefore condition (b) is not a consequence
of condition (a).
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However, if instead of condition (a) we consider the stronger condition
(reminding of bounded type irrational numbers):
(a) the sequence Z(k) is bounded

then condition (b) follows. Indeed, each Q(k1 k + 2d — 3) (Q(k, k + 2) when
d = 2) will contract by a definite factor < 1 the Hilbert metric of the projective
positive cone.

1.3.3 Coherence

To define our third condition, we consider again the operators S(k, I) : T^k' —>

F^). Let Ts be the linear subspace of T^ whose elements v satisfy the
following: there exists a = a(v) > 0, C = C(v) > 0 such that, for all / > fc,
one has

\\S(kJ)v\\ <C\\S(kJ)\\-a\\v\\ .

We call rifc) the stable subspace of r(fc). Obviously, one has T{
s
k) C ri fc ).

On the other hand, Ts is never reduced to 0 because it always contains the
translation vector (8a )aeA-

The operator S(k,l) maps Tg ' onto Tg . Therefore we can define a
quotient operator

sh(k,i) : r^/ifo^rW/ri0 .
As we have quotiented out the stable directions, it is not unreasonable to expect
that the norm of the inverse of S\,(k, I) is not too large. This is what our third
condition is about:
(c) for any e > 0, there exists C£ > 0 such that, for all I > k, we have

<C£

Remark. The second estimate in (c) was wrongly omitted in [MMYJ.

1.3.4 Roth—type interval exchange maps

We say that an i.e.m. T is of Roth type if it satisfies Keane's condition and
conditions (a), (b), (c).

In the next Section, we will solve the cohomological equation for i.e.m. 's
of Roth type. In Section 4 we will prove the following

Theorem.Roth type interval exchange maps form a subset of full measure.

We also observe that if an i.e.m. T satisfies Keane's condition, and its Rauzy-
Veech continued fraction is eventually periodic (meaning that the path 7 in
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the Rauzy diagram is eventually periodic), then condition (a), (b) and (c) are
automatically satisfied and therefore T is of Roth type.
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2.The cohomological equation

2.1 The Theorem of Gottschalk and Hedlund

2.1.1 The statement

We recall the following theorem of Gottschalk and Hedlund. Let X be a
compact topological space, / a minimal homeomorphism of X and i\) a real
valued continuous function on X. Given XQ G X and n > 1 we denote
Snip(xo) the Birkhoff sum X)?=o ^ ° T-* {XQ). Suppose that there exists a point
XQ e X and a positive constant C such that for all positive integer n one has
\Snip(xo)\ < C. Then the cohomological equation

cpo f - ip = i/;

has a continuous solution ip.

2.1.2 Application to interval exchange maps

Let T be an i.e.m. satisfying Keane's condition. Then T is minimal but not
continuous. However, the following well-known construction, reminiscent of
Denjoy counterexamples, allows to bypass this problem.

For n > 0, define

D0(n) = {T-n(jo(0,a)) ,aeA, 7r o(a) > 1} ,

£>i(ra) = {T+n(j1(0, a)),aeA, ^(a) > 1} .

It follows from the Keane property that these sets are disjoint from each
other and do not contain 0.

Define an atomic measure /i by

= E EE
n>0 yeD0(n)UD1(n)

a n d t h e increas ing m a p s i+ ,i~ : / —)• R b y

We therefore have

y'

i+(y)=i (y) fory (£ Un>0(D0(n) U D^n))

i+ (y) = i~ (y) + 2~n for y e Do(n) U D1 (n)
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We also define
i~ (X*) = A* + 4(d — 1) = lim i^iy) ,

and

if = r (/) u z+(/) u { r (A*)} = z-(/) = i+(/).

As T is minimal, if is a Cantor set whose gaps are the intervals (i~ (y)1 i+(y))1

y e Un>0 Uee{o,i} De(n).

Proposition. There is a unique continuous map T : K —>• K such that
T o i+ = i+ o T on I. Moreover, T is a minimal homeomorphism.

The elementary proof is left to the reader.
Let ip : I —> E be a function which is continuous on each jo(Ia), with

finite limits at the right endpoints of each jo(Ia). There is a unique continuous
function ip , K —> M. such that ip(y) = i> o i+(y) for all y E I. Assume that, for
some XQ e / the Birkhoff sums of ip for T are bounded. Then the same is true
for the Birkhoff sums of ip for T at the point XQ = i+(xo). By the theorem of
Gottschalk and Hedlund, there is a continuous function cp, K —y E. satisfying
ip = ip o T — (p. Define, for y e /

^(|/) = <poi+(y) .

In general, y? is not continuous. However it is bounded and satisfies cpoT — ip =
ip. In the following, we will show that under appropriate circumstances certain
Birkhoff sums are bounded.

2.2 Special Birkhoff sums

2.2.1

Let T be an i.e.m. satisfying Keane's condition. Denote by T^ the i.e.m.
obtained by the accelerated Zorich algorithm (with D = d — 1 in 1.2.4).

Let (p : /(fc) - ^ R b e a function defined on the domain 1^ of T^k\ Letp

also / > k. For /3 G A, x G jo( / i ), the return time of a: into 1^ under iteration

of T^ is Qp(k,l). Define a function

S(k,l)<p

by the formula
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for x G jo(Ig )• Observe that when ip is constant on each jo(li ), the same is

true of S(k,l)(ip) in /(') and the corresponding linear operator has tQ(k,l) as
matrix in the canonical basis, as anticipated in 1.3.2.

We just write S(k) for 5(0, k).

2.2.2 Some elementary properties of the operators S(k,l)

2.2.2.1 For m > I > k one has

S(k, m) = S(l, m) o S(k, I) .

2.2.2.2 The operators S(m, n) preserve all regularity classes which are invariant
by restriction, sum and translation.

2.2.2.3 If ip is an integrable function on

(p(x)dx = / (S(k,l)ip)(x)dx .

2.2.2.4 The operators S(k, I) commute with taking derivatives.

2.2.2.5 If the restriction of (p to each jo(Ia ) is a polynomial of degree < fi, the
restriction of S(k,l)<p to each jo(li ) is also a polynomial of degree < fi.
The case // = 0 has already been considered.

2.2.2.6 Denote by BV (U/i ') the space of functions (p on 1^ whose restriction

to each jo(Ia ) has bounded variation and define

(We do not take into account the discontinuities of <p at the discontinuity
points of T^). Then S(k, I) sends BV (U/ifc)) into BV (U/^) and we have

VaxS(k,l)(p<Vai(p.

2.2.3 Reduction of Birkhoff sums to special Birkhoff sums

For diffeomorphisms of the circle with irrational rotation number, when trying
to estimate the Birkhoff sums of some function, it is a standard trick to consider
first the ones associated to the denominators of the convergents of the rotation
number. We will do the same here.

Let ip : I —>• K be a function, x 6 / , and N > 0. We want to compute the
Birkhoff sums

J V - l

i = 0
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We first replace x by the point in the orbit {x, T(x),..., TN~1(x)} which
is closest to 0 and cut the Birkhoff sum into two parts (one for T and the other
for T" 1 ) . Let us assume to keep notations simple that x is actually closest to
the origin.

Let k > 0 be the largest integer such that at least one of the points
T(x),..., TN~1(x) belongs to 1^; because T^ is the first return map into
I{k\ these points are precisely T^k\x), (T^)2(x),..., (T^)b^(x) for some
integer b(k) > 0. Moreover, as none of these points belongs to /(fc+1) we must
have

b(k)

the right hand term being the largest return time of T^ into j( fc+1).
We set Xk = x, Xk-i = (T^)b^k\x) and define inductively b(l) and xi for

0 < I < k.
The point X[ has the property that it belongs to 1^ and none of the

points T{xi),...,TN{x) belongs to I^l+1\ Those who belong to / O are
i),..., (TW)bW(xi) for some integer b(l) > 0. We have

a£A

= TNWe define x{_x = (T^)b^{xi). The process stops when xt = TN(x) (or I = 0).
From this construction it is obvious that we have

1=0 0<i<6(Z)

which in particular implies, if <p is bounded:

k

1=0

where \\Z(l + 1)|| = MaxPeAJ2aeAZap(l + 1) .
In particular, if we are able to show that for some UJ > 0 we have

and condition (a) in 1.3.1 is satisfied, then the Birkhoff sums of ip will be
bounded.
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2.3 Estimates for functions of bounded variation

2.3.1

Denote by BV* (LJ/4 ) the subspace of BV (U/i ') formed by the functions of
mean 0. The operator S(k,l) sends this subspace into BV* (U/Q ).

Let (p e BV* (U/ifc)). We write

S(k, k + 1 )(<£>) = ipk+1 +

with Xk+i £ T* and (fk+i of mean zero on each jo(Ia )• Then we go on
with:

S(j,j + l)(<Pj) = <Pj+i + Xj+i

with Xj+i ^ r* and ifj+i of mean zero on each jo(Ia )• We obtain, for
k

S(k,l)ip =

2.3.2

As ifj differs from S(k,j)(p by a function in F* and has mean zero on each

jo(lij)) we have (see 2.2.2.6)

j < Vary? .

On the other hand, we have

(with ^>j-i = >̂ when j = k + 1). We obtain therefore

2.3.3

We now take k = 0 and estimate the sum
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assuming that conditions (a), (b) of Section 1.3 are satisfied.
On one side we have, by condition (a), for all e > 0:

To estimate \\S(j + 1, Z)|ra+i) || we distinguish two cases. We assume condition
(b) of 1.3.2, which involves an exponent 1 — 6 with 9 > 0.

i) Assume first that ||Q(j + l) | | < \\Q{l)\\0/d. As Q(J + 1) belongs to SL (d, Z),
we have

Next we write

and it follows from condition (b) that we have

ii) Assume now that \\Q(j + 1)|| > ||Q(0l|e/d- If I < j + 2d - 2 (I < j +
when d = 2), we just use

by condition (a). If / > j + 2d — 2 (I > j + 3), we write

with / = j + 2d - 2 ( / = j + 3 when d = 2). As the entries of Q(j + 1, / )
are positive integers we have

which implies

As we have also

we obtain in this case that

Putting the two cases together and inserting this in the sum, we obtain
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PropositionFor ip G BV*(UaeAIa ) , I > 0, one has

\\s(i)<p\\L- K ^

Remark In case i), the estimate we got for Q(j + I ) " 1 is far from optimal (it
should be of the order of Q(j + I)) but sufficient for our purposes.

2.4 Primitives of functions of bounded variation

2.4.1

For k > 0, we will denote by BV1 (\JaeAIa ) the space of functions <p : 1^ —>

M which are absolutely continuous on each jo (/a )) and whose derivative on
each jo(Ia )) is of bounded variation. The condition that the mean value of
the derivative is zero defines an hyperspace BV* (\Jae_4_Ia )• We recall from
1.3.3 the subspace T{

s
k) ofT^. We will denote by BV^ (UaeAlik)) the quotient

of BV^ (\JaeJ{Ia ') by this finite dimensional subspace.

Given ip G BV* (L\a^^Ia ), we will find a primitive $ of ip (given a priori
by d constants of integration, one for each /« )) for which the special Birkhoff
sums are small. The primitive $ will actually be uniquely determined mod Ti ,
i.e. i n ;

2.4.2

For any ip G BV* (UaG^/i fc )), denote by P^k)ip the class in Bvj {UaeAI{k)) of

the primitive of <p which has mean zero on each jo(Ia )•
This is the most natural choice of primitive, but unfortunately the special

Birkhoff sums S(k, I) do not commute with these primitive operators, i.e. they
do not preserve the condition to be of mean value 0 on each jo(Ia )•

Therefore, we will modify Po , considering

p(k) = p(k)

where
AP(fe) : BV*

is a bounded linear operator. We want this new choice to be equivariant:

=pV)0S(k,l) .
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This leads to the following equation for AP^. Define

A(k, I) = P0
( 0 o S(k, I) - S(k, I) o P0

(fc) .

This is a bounded linear map from BV* (\Jae_4_Ia ) to F ^ / F ^ . Then we should
have

(*)Sb(k, I) o AP(fc) - AP ( / ) o S(k, I) = A(Jfe, I) ,

where S\, was defined in 1.3.3.
Equation (*) has the formal solution

AP(k) =
7 1 - 1 ) , (**)

and we will check next that this defines indeed the required primitive.

2.4.3 E s t i m a t e for A(l - 1,1).

Let ip G BV* ( U a G ^ / a '). As PQ 'if has mean zero on each jo(Ia ), we
have

On the other hand we have

\\s(i-i,i)<p\\L«, <

Finally, we get

which allows to conclude that

2.4.4

Assume now the three conditions (a), (b) and (c) of 1.3. From 1.3.1, we get
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and from condition (c) that

On the other hand, from the Proposition in 2.3, we obtain

BV •

Therefore, for k = 0, the series (**) in 2.4.2 is converging and we obtain

Wo

Indeed, we take e < 6/Qd and observe that it follows from the Lemma in 1.2.4
that ||Q(/)|| grows at least exponentially fast. In the same way, as T^ satisfies
also conditions (a), (b), (c) (with worse constants but the same exponent 6>),
the series (**) will converge for all k > 0. In this case, we prefer to estimate

directly AP^S(0, h)<p for ip e BV* (UaG^/iO)). We have

, k)<p\\ < J2 IKSbfoOril lACZ - 1,011115(0,/ -
l>k

The above estimates now give

l>k

2.4.5 Special Birkhoff sums for

Let <p e BV* (UaG^/i0)), $ e BVl (UaeAli0)) such that the class mod l i 0 ) of

is P ( ° V The class mod r^fc) of S(k)$ is pWS(k)ip by construction.
From the definition of PQ ' and 2.3, we have

- <

with MaxaG^Aa < Ce||(3(A;)||£ l by condition (a). Joining this with the
estimate for AP^ above, we obtain

<c\\Q(k)\\ -e/3d BV
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By definition of a quotient norm, this means that we may write in BV* ( L\aeA

with Xk £ Is and

we have then

Xk+i = S(k, k + l)xk + S(k, k

:= S(k, k + l)xk + Axfc+i ,

with ||Axfc+i|| < C||Q(A; + l)ire/4d||<,o||BV (using once more condition (a)).
Then

In the sum, we separate two cases. Recall that there exists a > 0, C > 0, such
that

andfor all j > 0. If \\Q(j)\\ < \\Q{k)\\a/d, we write S(j,k) = S(k) o

1

<c\\Q(k)\\-''\\QU)\\d-1\\*Xj\
<c\\Q(k)\\-°/dy\\ \Bv

In case ||Q(j)|| > ||Q(fe)||<J/d, we use the second estimate in condition (c) to get

\S(j,k)AX3\\ < C£\\Q(k)\\£\\AX3\\

We have thus proved the

Theorem. Let T be an i.e.m. of Roth type. There exists cu > 0, depending
only on a and 6 in (b), (c), such that the special Birkhoff sums S(k)<fr satisfy:

\\S(k)*\\L~ <C\\Q(k)\\-u\\<p\\BV .

Corollary. Let T be an i.e.m. of Roth type, if G BV* {Uaej\Ia '). For any
primitive $ of ip whose class lie in P^tp, we can solve the cohomological
equation

foT-f=$

with a bounded solution \t.

Proof. This follows from the Theorem, taking into account the remarks at the
end of Section 2.1 and 2.2.3.
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3. Suspensions of interval exchange maps

We first recall, basically to fix notations, how to suspend i.e.m. 's in order to
get a Riemann surface with an holomorphic 1-form. The basic reference is
[VI].

3.1 Suspension data

Let (A, 7i"o, TTI) be admissible combinatorial data, and let T be an i.e.m. of this
combinatorial type, determined by length data (Xa)ae^,. We will construct a
Riemann surface with a flow which can be considered as a suspension of T. In
order to do this, we need data which we call suspension data. We will identify
R2 with C. Consider a family r = (ra)aGv4 e R"4. To this family we associate

Ca = K + ira , a E A

Cp , a e A , e E {0,1} .

We always have £°o = £^x, where as before rKe(a£) = d. We say that r defines
suspension data if the following inequalities hold:

Sm ^° > 0 for all a G A, a ^ a0 ,

3 m ^ < 0 for alia e ^4, a / ax .

We also set

We then have

and define
h = — ^m 9 = —

One has ha > 0 for all a G i , because of the formula

0a = (& ~ Ca) ~ (C ~ Ca) •

One has also

3.2 Construction of a Riemann surface
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Let (A, 7To,7Ti) and (£a = Aa + ira)ae^ as above. For a E A, consider the
rectangles in C = R2:

R°a = (Me£ - \a^e£) x

and the segments

Let also S1^ = S^± be the half-open vertical segment [A*,f£0) =
Define then

•eT>£ I I | |

The translation by 9a sends R°a onto Rx
a. If Co = f«i = °> Sa0 = SL i s

empty, £° is the top right corner of i?° and £^ is the bottom right corner
of i?Q0. If ^°0 = £QX > 0, the translation by 9ai sends the top part <S°X =
{sfte^fj x [ / i ^ S m ^ J of 5"^ onto S^. If ^°o = ^ x < 0, the translation by
#ao sends S^ onto the bottom part 5^ = {3?e^ } x (3m£^ , — ̂ ao] of 5*̂  .

We use these translations to identify in R^ each i?° to each R^, and
S1^ = S1^ (if non empty) to either S^ or S^.

Denote by M? the topological space obtained from R^ by these identifica-
tions.

Observe that M? inherits from C the structure of a Riemann surface, and
also a nowhere vanishing holomorphic 1-form UJ (given by dz) and a vertical
vector field (given by -§-)•

3.3 Compactification of Mf

Let A be the set with 2d — 2 elements of pairs (a, L) and (a, R), except that we
identify (ao,R) = (a±,R) and (a'0,L) = (a'l7L)7 where 7re(ae) = d, K£(a'e) = 1.

Let a be the permutation of A defined by

with TTO(/3O) = 7i"o(«) + I, 7TI(AL) = v"i(a) — 1; in particular, we have

a(ao,R) = (7TQ1(-K0(a1) + 1),L) ,
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The permutation describes which half planes are met when one winds around
an end of M?. Denote by E the set of cycles of a. To each C G S is associated
in a one-to-one correspondance an end qc of M?. From the local structure
around qc, it is clear that the compactification M^ = M? UCGE {QC} will be a
compact Riemann surface, with the set of marked points UCGE{?C} = MQ\M?

in canonical correspondance with E. Moreover, the 1—form uo extends to a
holomorphic 1-form on M^; the length of a cycle C is an even number 2nc;
the corresponding marked point qc is a zero of to of order nc — 1.

Let v = card S, and let g be the genus of M^. We have

d-l= y^ nc ,

hence
d = 2g + v - 1 .

Example Suppose that TTO, TTI satisfy

) + IT i (a) = d+1 , for all a E A .

If d is even, there is only 1 cycle; we have d = 2g and the only zero of UJ has
order 2g — 2. If d is odd, there are two cycles of equal length d — 1; we have
d = 2g + 1, and each of the two zeros of to has order g — 1.

The vertical vector field on M^ does not extend (continuously) to M^ when
g > 1, unless one slows it near the marked points (which we will not do here).
Nevertheless, it can be considered as a suspension of T: starting from a point
(a:, 0) on the bottom side of i?°, one flows up till reaching the top side where
the point (x, ha) is identified with the point (x + Sai 0) = (T(x), 0) in the top
side of R^. The return time is ha. The vector field is not complete, as some
orbits reach marked points in finite time.

3.4 The cohomological equation for higher smoothness

3.4.1

In this section, we will relate the (discrete) cohomological equation for i.e.m. 's
to the (continuous) cohomological equation for the vertical vector field on M^;
this equation is

* = # * •

dy
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where now $, \& are functions on MQ. This allows to compare our results with
the pioneering work of Forni ([Fol]). We will always assume, as he does, that
$ vanishes in the neighborhood of the marked points of MQ.

Considering the cohomological equation on the surface leads naturally to
some regularity assumptions on the interval. Because the datum $ and the
solution \& are not related to the corresponding functions $, \& on the surface
in the same way (\& is a restriction of ^ to a segment, while $ is an integral),
the regularity that we introduce for $ and \? are not of the same kind (even
taking the loss of derivatives into account).

3.4.2

For each integer r > 1, we introduce the space BV*(/) of functions $ : / —>• R
such that

• for each a e A, $ is of class Cr~1 on jo(Ia), Dr~1Q is absolutely continuous
on jo(Ia) and D r $ is of bounded variation on jo(Ia);

• each function Dl^>1 for 0 < I < r, has mean value 0 in / .

Remark. As before, we allow discontinuities at the discontinuities of T. Ob-
serve however that the mean value condition implies that the sum of the jumps
of DlQ (0 <l < r) over the discontinuities of T (including the endpoints of I)
is zero.

We will indicate below why the mean value condition is natural.
On the other hand, we will look for solutions in the space cr~2+L'ip(I) of

functions \? which are Cr~2 on all of I, the derivative of order r — 2 Dr~2^
being Lipschitz on / . For r = 1, this is just the space of bounded functions on
/ . Observe that, as soon as r > 2, we do not allow discontinuities.

3.4.3

For T an i.e.m. of Roth type, denote by F^ = F^ the space of functions x G F
(constant on each jo(Ia)) which can be written as

X = ip — ip o T

with bounded ip. This is a linear subspace of F which is contained in F* and
contains F s . We can rephrase our main theorem by saying that there is a
well-defined obstruction map

which associates to $ the function in F we must subtract from $ in order
to be able to solve the cohomological equation. We recognize (some of )
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Forni distribution conditions, by choosing a basis in the finite-dimensional
space T/TT- The number of conditions is just the codimension of FT, as the
restriction of the obstruction map to F is just the quotient map and thus the
obstruction map is onto.

3.4.4

Let now r > 1, $ G BV*(J), and let us try to solve (under finitely many linear
conditions on $) the cohomological equation

with \& G Cr~2+Ltp(I). We assume that the i.e.m. is of Roth type. Consider
the rd-dimensional space F(r) of functions x o n I whose restrictions to each
jo(Ia) are polynomials of degree < r. For r = 1, this is our previous space F.
Consider also

which has codimension (r — 1) in F(r). We first describe the subspace F ^ r ) of
F* (r) of functions \ which can be written as

x = i>oT-i>,

with V G Cr-2+Lip(I).

Lemma For r > 1, the map x |—̂  Dx from F(r + 1) to F(r) sends F*(r + 1) to
F*(r) and Fy(r + 1) to Fr(r). The kernel, i.e. the intersection F n Tx(r + 1),
is equal to WL5; we have thus

dimFT(r) = dimFT + (r - 1) .

Proof. It is clear that x ^ Dx sends F*(r + 1) to F*(r) and TT(T + 1) to
Fr(r). If ipo(x) = x, then ipo o T(x) — ipo(x) = $a f°r x £ jo(Ia) hence
l « 5 c m FT(r) for all r > 1. Conversely, if x E T n FT(r), write x = ^ o T - ^
with •;/) G Lip(/). Taking derivatives, Dip is T-invariant, hence constant as T
is ergodic. Therefore x £ ^ - D

Theorem Let r > 1. For any $ G 5V£(I), one can find x E F*(r),
V> G Cr-2+Lip(I) such that
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In other terms, the map

is the obstruction map associated with the cohomological equation with the
prescribed regularities.

Proof. By induction on r, the case r = 1 being our main theorem. Assume
$ € BV*+1(/). Then £>$ E BV*(/). By the induction hypothesis, one can
write

with xi € r*(r) and * i E Cr~2+Lip(I). Let * be a primitive of * i , xo be a
primitive of xi- Then ip E Cr~1+Lip(I). As Z>$ has mean value 0, xi n a s a^so

mean value 0 and xo £ F*(r + 1). The difference x'o = ^ ~ Xo — ^ ° T + ^>
belongs to T and we take X = Xo + X'Q- D

3.4.5

We explain now why the regularities for $, \& are "natural".
Let C = ((a)a£A be suspension data, and let M^ be the surface constructed

from these data as in 3.2.
Let $ be a continuous function on MQ. With the notations of 3.1, we

define, for a E A:

-7-0

for a E A, x E jo(Ia)i
 w e

Observe that we have

where TTO(/3O) + 1 = ^ ( a ) , TTI(/3I) + 1 = TTI(Q;), except if 7ro(a) = 1 (respectively
7Ti(a) = 1) when X ô (resp. Xi ) is declared to be 0.
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From these formulas and Z°o + X\x = 0 (with 7r£(ae) = d as usual ), we
obtain

7 y? ( f ifXrG c ) ) —̂ • ^ ( IJ\.& c — \ )

which means that the derivative of $ (when it exists) has mean value 0. This
explains the conditions defining BV^(J). On the other hand, if ^ is a function
on M^ satisfying

dy

and we define

then we will have
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4. Proof of full measure for Roth type

We will first recall the construction of the finite measure, absolutely contin-
uous w.r.t. Lebesgue measure, which is invariant under the Zorich algorithm
(normalized).

4.1 The basic operation of the algorithm for suspensions

Let (A, 7To,7Ti) and ((a = Xa + ira)ae_^ be as above. Construct R^, M^ as in
3.2 and 3.3. With 7r£(a£) = d as above, assume that

Then the formula Aae = Max (Aao, Aai) defines uniquely e G {0,1} and
determines uniquely the basic step of the continued fraction algorithm; this
step produces new combinatorial data (A, TTO, TTI) and length data (Xa)aeA
given by

Aa = Aa , a ^ a£

Aae = Aae — Aai_e .

For suspension data, we just define in the same way

Ca = Ca , OL / a£

This has a nice representation in terms of the corresponding regions R^, Rt.
One cuts from R^ the part where x > A* = A* — Aa£: it is made of R]^te

a right part of R%e. We glue back R]^te ^° the free horizontal side of R]
and the right part of R£

as to R%x_e'. see figure 4 below.
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A f

_,.

Fw. "TKe Raaiu- \ W k o or

It is easy to check that the new suspension data satisfy the inequalities
required in 3.1; if for instance e = 0, one has

with TTQ = ^o o n o n e hand and

fi =

= f 1
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The last formula gives
-f1 = C - f1

S>a0 ' a l ^>CLQ
— t — £° — ft

— _ P 1 _ ft

with TTI(CKI) = d — 1. We therefore have

We also see that (still with e = 0), if 6L\ E A is such that 7ri(di) = d (we have
di = OKI if CKI ^ ao, «i = «i if CKI = «o), one has

Conversely, given (̂ 4, 7TO,7TI) and (^a = Aa + *Ta)ae>4 as above, assume
that

and define e = 0 if 3 m £ ^ < 0, e = 1 if 3 m ^ 0 > 0. Set

and define appropriately new combinatorial data; this operation is the inverse
of the one above. Thus the dynamics of the continued fraction algorithm at
the level of suspension is invertible (on a full measure set) and can be viewed
as the natural extension of the dynamics at the level of i.e.m..

It is clear that the Riemann surfaces M^, M; are canonically isomorphic,
and the isomorphism respects the holomorphic 1-form and the vertical vector
field.

We can also extend the definition of the Zorich algorithm at the level of
suspension data. These accelerated dynamics can actually be thought of as
a first return map of the previous dynamics. Indeed, in the polyhedral cone
of admissible length and suspension data, consider the polyhedral subcones
denned by

20 = {Xao > A a i , ^

^ i = {Aai > Aa o , ^ }

The accelerated dynamics are the first return map to Z = ZQ YAZ\\ this is clear
from the description of the basic step above.
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4.2 The Teichmuller flow

Fix combinatorial data (A, TTO, TTI). Given length data (Xa)aeA an<i suspension
data (Ta)ae_4, one defines for t G R

This flow is called the Teichniiiller flow. Observe that the conditions on the
length data Aa > 0 and on the suspension data (see 3.1) are preserved under
the flow.

It is also obvious that the flow commutes with the basic operation of the
continued fraction algorithm. In particular, the inequality Xae > A a i e is
preserved.

The surface M^ is canonically equipped with an area form (coming from
C) for which its area is

A := area (MQ) = 2 Xaha .

The area is preserved by the Teichmuller flow, and also by the basic operation
of the continued fraction algorithm.

The Lebesgue measure dXdr on the domain M.A x RA denned by the
restrictions on length and suspension data is preserved by the Teichmuller
flow, and by the basic operation of the continued fraction algorithm.

One now combines the continued fraction algorithm (in Zorich form) with
the Teichmuller flow in order to get a version which is normalized w.r.t. scales.

One could decide to normalize by keeping the total length A* = XlaeA ^«
constant; actually, we prefer in the sequel a slightly different normalization,
which leads to simpler formulas.

As in 1.2.1, for Aae > A a i e , we set

Aa = Aa , a / a£

Xae = Aae — Aai_e .

Define now
A = / j Aa = A — A a i e .

a£A

Let (TTO, TTI, A, r) belong to the domain Z of the Zorich algorithm, and let
(TTO, 7fi, A, r) be the image. Define

= 2(logA**-logA**),
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The map G is called the normalized step for the natural extension of the
accelerated algorithm.

4.3 The absolutely continuous invariant measure

We already observed that the restriction of Lebesgue measure dXdr to the
simplicial cone of admissible length and suspension data is invariant under both
the basic step of the algorithm and the Teichmiiller flow.

When we further restrict Lebesgue measure to 2, we obtain a measure niQ
which is still invariant under Teichmiiller flow and is now invariant under the
accelerated algorithm.

Observe that the function t used in the definition of G is constant along the
orbits of the Teichmiiller flow. It follows that the measure TJIQ is also invariant
under G.

The area function A = ^2a^^Xaha (where h = — fir) is also invariant
under G; we introduce

(1) =Zn{A< 1} ,

and denote by mi the restriction of mo to Z^\ it is invariant under the
restriction of G to Z^\

We now project back to the level of i.e.m. , i.e. of length data alone: we
obtain a map

and a measure m-2 image of mi under the projection which is invariant under G.
As A* is still invariant under G, we can restrict, by homogeneity, the measure
m.2 to {A* = 1} to obtain a measure m invariant under the restriction of G.
This is the measure that we are interested in and that we will now describe.

Let (7To,7Ti,A) be fixed; assume for instance that Aao > Aa i . Consider in
r-space the polyhedral cone

W0 = {3m£° >0,VaeA, 3 m ^ < 0 , Va ^ « i} .

The density x °f m2 at (TTO, TTI, A) is equal to the volume of UoC\{A < 1}. Write
I4o, up to a codimension 1 subset, as a finite union of disjoint simplicial cones
U. For each W, choose a unimodular basis r^\ ... ,r^ of R-4 generating U
and write h^ = —QT^\ One has

u
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If we set

Aa = Aa , a / a0

we have

Define
^ • = { « e i , 7#> ^ 0}.

The key property is now the following ([V2],[Z1] see also [Y])

Lemma For any X C A with 0 ^ X ^ A, we have

card {j , Wj n X = $} + card X < d .

When Aai > Aao, the only difference is that we have to start with

In the formula (*) above for the density, set

1 aeA

Up to a constant factor, the density of m on the simplex

A = { A G K i , Aa > 0 , A* = 1}

is given by £)M xu- One has

d

To control the size of xu, w e decompose A as follows. Set

H = {n = (na)aeA G N"4 , minn a = 0} .
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For n e A/", A(n) is the set of A G A such that

1
K > -7T-. if ̂ a = 0 ,

^ 2 1 - " « > Aa > i - 2 " " " ifna > 0 .
za za

We obtain thus a partition
A = Uv-A(n) ,

with the estimate
c - i <2E n«volA(n) < c . (2)

For A G A(n), estimate (1) above gives

c"1 < xw(A)2-E j m i n ^ n« < c . (3)

With fixed n, let 0 = n° < n1 < . . . be the values taken by the na and
V1 C A the set of indices with n a > ri1. On one side, one has

,?(card(V? \
a£A

On the other side, let V% be the set of j such that Wj C V1; one has
n a = n% if and only if j E V1 \ Vt+1 hence

By the Lemma above, one has

card V% < card V%

as long as 0 < cardV^ < d. This shows that

i=x Wj
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The last estimate, introduced into (2), (3) gives

(vol A(n

45

(4)

The integrability of xu over A now follows from the fact that the number of
n e N with \n\oo = N is of order Nd~2.

If we compare (2) and (4), we obtain

with |n|i = ^2ae^na. When d = 2, X-KO,^I
 1S bounded. Assume now d > 2.

From (2) and (5), one obtains

\n\i — \n\oo>N—c

to have |n|i > |n|oo + N — c, one must have |n|oo > -
leads to

j—§; an easy computation

m ( { X 7 r O j
7ri

(7)

(8)

It follows, as Xno,n! ls bounded from below that we have, for every Borel
set X

^ < m(X) < c ( L e b ( X ) ) ^ .

4.4 Integrability of

Recall the function ^(i), with values in SL (Z-4), defined in 1.2.4: the sequence

T K[ given by the Zorich algorithm satisfies

Following Zorich ([Zl]) we estimate ||^(i)|| w.r.t. the absolutely continuous
invariant measure m. This will be used in two ways:

• applying Oseledets multiplicative ergodic theorem in order to prove that
conditions (b) and (c) in 1.3 have full measure;

• as a first step in an induction to prove that condition (a) in 1.3.1 has full
measure.
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We use as norm the supremum of the coefficients. For k > 0, Aae > A a i e ,
we have

1̂ (1)11 > ̂  ̂ ^ ^ae > k

it follows that

||Z (1) | | > (2d)2N~1 => A G U i i ^

which in turn implies that

m({\\Z(1)\\>2N})<cNd-22-N .

This is the required estimate; it shows that ||.Z71)||
P is m-integrable for all p < 1

and a fortiori that log | |^(i) | | is m-integrable.

4.5 Conditions (b) and (c) have full measure

As log||Z(i)|| is m-integrable, we can apply Oseledets theorem and obtain
the existence almost everywhere of Lyapunov exponents for the corresponding
cocycle.

The space F s is then associated to the negative Lyapunov exponents. The
two estimates in condition (c) are immediate consequences of the properties of
Oseledets decomposition.

For property (b), we recall the result of Veech ([V3]): the largest Lyapunov
exponent is almost everywhere simple. The existence of a spectral gap follows.

In the end of the section, we will prove that property (a) in 1.3.1 has full
measure.

4.6 The main step

Let (A, TTO, TTI) be combinatorial data, V the associated Rauzy diagram. For
an i.e.m. T satisfying Keane's condition with these data, the Rauzy-Veech
algorithm defines an infinite path (/J^(T))n>0 in D, starting at (TTCTTI).

Conversely, if 7 = (/y^)o<n<N is a finite path in V starting at (TTCTTI),

we denote by A(7) the simplex of normalized T in A(7TO,7TI) such that
7(»)(T) = 7<n) for 0 < n < N. We use here the old normalization {A* = 1}.

To such a path 7 is associated a matrix <5(T) G SL

and we write as before
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We have

(where A<°) = Q ( T ) A W ) , and it follows that

Denote by (TTQ , TTX ) the endpoint of 7, by ccQ ,a>\ the indices such that

Tie (ai ) = d. They are the names of the two arrows going out of (?TQ , 7rx ).
The conditional probability, for an i.e.m. T in A(7), that the name of j(N+1\T)

is aiJV) is equal to Q <N) (Q<N) + Q . w ) " 1 .
al-e a0 "l

Let 1 < D < d. A segment (7^(r ) ) fc< n < ; is called a D-segment if the
arrows of the segment take no more than D distinct names. It is called maximal
if (7(n)(T"))fc<n<z is not a D-segment.

The following proposition is the main step in proving that condition (a)
has full measure.

Proposition There exist an integer I = l{d) and a constant r\ = rj{d) > 0
with the following properties. Let 7 = (ry(n')o<n<N be a finite path in T>
such that the set A! of names of arrows of 7 is distinct from A. Assume
that D = card A' > 1. There is a subset A'(7) of A(7) with

such that, for every T e A' (7), there exists M > N with
• the name of ^M\T) does not belong to A!';
• no more than I (D — l)-segments are needed to cover ("i^

We will first explain how the full measure estimate for condition (a) follows
from the proposition, and then prove the proposition.

4.7 Condition (a) has full measure

For T G A(7To,7Ti), satisfying Keane's condition, and 1 < D < d, denote by
Z(D) (T) the matrix in SL i7LA) associated to the initial maximal D-segment
in (7 (n)(T))n>o- Denote by M{D)(T) (resp. M^D){T)) the minimal number
of (D — l)-segments (resp. 1-segments) needed to cover this initial maximal
D-segment.
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Corollary Let N > 0. Except on a set of measure < c2~cN , one has

\\Z{D)(T)\\<2N ,

MfaiT) < N-*- .

Remark The measure referred to can be either Lebesgue or the invariant
measure m: in view of the last formula of 4-3, it changes only the values of the
constants.

Proof. The estimate for Zn\ has been shown in 4.5. Let us show the estimate
for M{D).

Let 7 = (7(-n-))o<n<Ar be any finite path such that (7("n-))o<n<iv is a (D — 1)-
segment but 7 is not. Apply a first time the proposition in each A(7). One
obtains that

Leb ({M(D) > I + 1}) < 1 - n .

We next subdivide the set {M^ > 1 + 1} into simplices A(71), where

7i = (7i )o<n<iVi is a .D-segment and (7J; )o<n<JVx is the concatenation of
(7 +1) maximal (D — l)-segments. Applying once again the proposition in each
A (71) gives

Iterating this process leads to the required estimate for
We next show by induction on D that

For D = 2, one has M^ = M}Dy, the comparison between m and the
Lebesgue measure gives the estimate. Assume D > 2 and write

with To = T, M = M(£,)(r), and Tj is obtained from To by rii iterations of the
Zorich algorithm (we have 0 = no < n± < n,2 < • •.); ZTD_1JTM-I) denotes
some initial part in the product giving Z^D_1^(TM-I)-

Neglecting a set of measure < c2~cN , we can assume that M < Nx/D.
By the induction hypothesis, applied with N' = N^~, we have
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As the measure m is invariant under the Zorich algorithm, the same estimate
holds when we put instead of To any given iterate T^ of To under the
algorithm. Thus we have

> N^) < cN2~cNl/D

On the other side, when

Maxo^ivM^^CT^) < N

we have
Hi <lN D

for
0 < i < M - 1< N1/D

and

This proves the estimate for MiDs.
The estimate on Z^ is again proven by induction on D, the case D = 1

having been done in 4.4. Neglecting a set of measure c2~cN , we may assume
M{D){T) < Nx/D and M^D){T) < N^n1. Write Z{D)(T) as above.

If \\Z{D){T)\\ > 2N, one can find i G {0,1 , . . . , M - 1} such that

| | ^ _ 1 ) ( T i ) | | > 2 i V / M > 2 i V ^ .

By the induction hypothesis, we have

m
D-l

< c2"

and the same estimate holds if we replace To by any given T^k\ It is sufficient
D — l

to consider k < N^~. Again, one has

and this concludes the proof of the corollary. •
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The proof that condition (a) has full measure follows now from a usual Borel-
Cantelli argument. Take D = d— 1 and write N = (n\ogk)d~1 with fixed large
K, > 0 and an integer k > 0. One has

m {{\\Z{d_1){T)\\>2N})<ck-

If n is large enough, the right hand term form a converging series. As m
is invariant under the Zorich algorithm, we conclude that almost surely, the
iterates T^k> of T under the Zorich algorithm satisfy

d-X

1

for all large k.
On the other hand, the exponential rate of growth of the Q{k) (in the

Zorich algorithm) is given by the largest Lyapunov exponent of the Teichmiiller
flow, which is positive.

We conclude that there exists K\ such that almost all i.e.m. T satisfy

for all large enough k.

Question.Does one have almost surely

\\Z{d_1){k)\\ = O([\og\\Q{k)\\]c)

for some C > 0?

4.8 Proof of the Proposition

Let 7, A1, D be as in the proposition. Let T be an i.e.m. in A(7) satisfying
Keane's condition. Define, for n > 0

Q'(n,T)=
a£A'

Qext(n,T)= Yl Qa{n,T),
a£A\A'

where Qa(n,T) is the shorthand for Qa((lj(T))o<j<n) (see the beginning of
4.6).

Lemma 1.If the names of the arrows ^m\T) belong to A' form < n, we have

Qext(n}T)<(d-2)Q'(n}T).
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(Recall that, as 1 < D < d, we have d > 3).
Proof. We start with Qa(0,T) = 1 for all a G A. Divide the segment [l,n]
into maximal 1-segments into which the name of the arrows is the same; let
[nj,nj+i) be such a segment, with arrows of name CKJ G A'. The secondary
names of these arrows appear with some periodicity di < d; moreover, if
rii > 1, the secondary name of ̂ ni> is a^_i G *4/; if rii = 1, « = 0, ni > do, the
secondary name of j(m^ is a± for each m = rii — kdo, k > do. For rii < m < rii+i
we have

Qext(m,T) = Qext(m-l,T) ,

Q'(m^) = Q'(ra - 1,T) + Q ^ - 1,T) ,

if the secondary name of j ^ is in A' and

<2 e x i (m, T ) = Qext(m -1,T) + Qa.(ni-1,T),

otherwise. In each segment except perhaps the first one, the number of
secondary names in *4\*4/ does not exceed (d—2) times the number of secondary
names in A'. In the first segment, we write n± = kdo + n'1; 0 < n'x < do; again
the number of secondary names in A \ A' does not exceed (d — 2) times the
number of secondary names in A' in the subsegment [n^, n\). Finally we have
for 0 < m < < that Q'{m,T) > D > 2, Qext{m,T) < Qext(0,T) + m <
d — D -\- do — 1 < 2d — 4 and the estimate of the lemma follows. •

Let 1 < L>i < D, n > 0, C± > 0. We say that T G A(7) is (Du n, d)-balanced
if we have

Qa{n,T)>C^Q'{n,T)

for at least D\ indices a G A'. The property only depends on the path
(ry^m'(T))o<rn<n and we will also say that this path is (Di, n, C\)-balanced.
Clearly, any T is (1, n, Z))-balanced (for all n > 0).

Lemma 2.Assume that 7 is (D,n, Co)-balanced, for some constant Co > 0.
Then we can find A'(7) C A(7) satisfying the conclusions of the proposition,
with I = l{d) and r\ = rj(d, Co).

Proof. Let 7' = (7(-n-))o<n<M be an extension of 7 with minimal length such
that the name a of j(M) is not in A'. Then M — N is bounded by the diameter
of D, i.e. in terms of d only. Therefore there exists C* = C*(rf) such that 7' is
(D, M — 1, C*Co)-balanced; moreover, the path 7" = ("i^)o<n<M satisfies

_! A(7") > r/'Vold-x A(7) ,
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with 77" = //'(Co, d). Then, for all (3 e A', we have

<9a(M-l)<Qea:t(M-l)

and therefore
d_! A(7 ' ) > r/'Vold_i A ( 7

with T/' = (1 + (d - 2)C,C 0)- 1 . We take 77 = T/'T/', A'(7) = A( 7 ' ) . Finally / is
bounded because M — N is bounded. •

When 7 is only (Z), A7", C)-balanced for some D < D7 the strategy will be to
extend 7 without losing volume in order to obtain a more balanced path; at
the end we should be able to apply Lemma 2 (unless we have already found

We therefore assume that 7 is (D, N, (7)-balanced. This is certainly
satisfied with D = 1, C = D. Denote by A the set of a such that

Qa(N) > C^Q'iN) .

The first step is to extend 7 to a path 7' = (7(n)(T))o<n<iV' °f minimal length
such that the name of 7 ^ ) is not in A. When N' = N + 1, there might be
two choices for 7 ^ ^and we choose the one which gives the largest volume to

In any case, an argument completely similar to the one in the proof of
Lemma 2 leads to the estimate

Vol d _ 1 A( 7
/ )> r /Vold- iAfr) ,

with a constant 7/ = r)'(d, C).
If the name of 7 ^ ) does not belong to A', we can take as in Lemma 2

A'(7) = A(7 ' ) and the proof of the proposition is over. We now assume that
the name of 7 ^ ) belongs to A' \ A.

The subset A'(7) of A(7) we are looking for will be contained in A(7').
Observe that there exists C* = C*(d) such that 7 ' is (D, N', C*C')-balanced.

Case A: In the loop of arrows of the same name which starts with 7 ^ ), no
secondary name belongs to A' \ A.

Let a be the name of 7 ^ ), /3Q, ... ,/3 r-i being the successive secondary
names in the loop. Let k > 0, that we write k = rl + m, 0 < m < r. Let 7i(&)
be the path extending 7' such that
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• the name of 7i(&)(n) is a for N' < n < N' + k := Nx(k);
• the name of 7l(fc)(JVl(fc)) is (3m.

Observe that it follows immediately from the definition of RQ,RI in
1.2.1 that the indices /3o, • • •, A—1 are distinct. Therefore, we will have, for
0 < k\ = rl\ + m\ < k:

hQa(N' -1) iim1<j,
(Zi + 1)Qa{N, _ 1} i f m i > h

and also

Qa(N' + k) = Qa(N' - 1) + Qpm(N' + k -

For any k > 0, the extension from 7 to 'ji(k) is covered by the same
number of (D — 1) segments, which is bounded in terms of d only.

For those k such that /3m £ A', we include A(71 (ft)) in A'(7).
The formulas for the volumes give

We keep for further consideration all 71 (fe) with

The formula above shows that together they will fill a definite proportion
of A(7 ;).

We also see that when /3m e A, 7i(fe) will be (D + l, Ni(k), Ci)-balanced,
with C\ depending only on d. For each such 71 (A;), we either apply Lemma 2
(if D + 1 = D) or repeat the discussion, with 71 (fe) in the place of 7, from a
better starting hypothesis.

Case B: The complement of case A.
For an i.e.m. in A(7') satisfying Keane's condition, we consider the three

mutually exclusive possibilities:
• T is of type I if there exists TVi > N' such that all arrows j ( \

N' < n < Ni, have names in A' \ A, and we have

Qa(Nl7T)>Q'(N\T).

aeA'\A

We take a minimal such JVi.
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• T is of type II (respectively of type III) if it is not of type I and the first
name of an arrow 7 ^ (T), n > N', which does not belong to A'\A belongs
to A (resp. to A\A').
We deal separately with the three types.

a) All T of type III will be contained in A'(7); for such a T, M is the first
integer > N' for which the name does not belong to A' \ A. Observe that the
segment (7<-n->(T))jv'<n<M is a (D — l)-segment because card (A' \ A) < D.
As N' — N is bounded in function of d only, the number of (D — l)-segments
needed to cover (7^ (T)) N<n<M is bounded in terms of d only.

b) Assume that T is of type II. Let JVi be the smallest integer n > N' such that
the name of ^n\T) does not belong to A' \ A] this name belongs to A. Let
7i = (7*-n-)(̂ '))o<n<JV1- When T varies among i.e.m. 's of type II, the 71 form
an at most countable collection such that the corresponding simplices A (71)
have disjoint interiors (and are contained in A(7;)). Every T\ belonging to
some A(71) is also of type II. We claim that every 71 is (Di, JVi, Ci)-balanced
with Di > D and C\ = Ci(C,d) (see the proof below). As for type III, the
number of (D — l)-segments needed to cover 7} , N < n < JVi, is bounded in
terms of d only.

c) Assume that T is of type I. With N± minimal as in the definition of type
I, take 71 = (7(-n-)(T))o<n<jv1. When T varies among i.e.m. 's of type I, the
71 form again an at most countable collection for which the corresponding
simplices A(71) have disjoint interiors (and are contained in A(7;)). Every
T\ belonging to some A (71) is also of type I. We claim that every 71 is
(Di, JVi, Ci)-balanced with Di > D and C\ = Ci(C,d) (see the proof below).

The number of (D — l)-segments needed to cover 7} , N < n < Ni, is bounded
in terms of d only.

The discussion above leads in case B to a countable partition (up to a
codimension one subset) of A(7') into subsimplices of type III which will be
included in A'(7) and simplices A (71) (of type I or II) which satisfy the same
hypotheses than A(7) but are better balanced (i.e. Di > D); when Di = D,
we can apply Lemma 2 to 71; when D\ < D, we repeat the discussion with 71
instead of 7. The process stops in less than D steps and gives the conclusion
of the proposition. •

Proof of the claim for type II. As T is not of type I, we have

a£A'\A

Let us consider a maximal 1-segment contained in (7<-n-)(T))Ar'<n<jV1- As
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we are not in case A, there is a definite proportion, depending only of d, of
secondary names which belong to A' \ A. This implies that we must have

with C[ depending only on d. On the other hand, if a e A' \ A and (3 e A are
the names of ry(Nl~1\T), j(Nl\T) respectively, we have

It follows that 71 is (.D + 1, iVi, Ci)-balanced with C± = C[C*C. D

Proof of the claim for type I. By definition of TVi, we have again

a£A'\A

and it follows again that

By definition of N±, we have now

Qa(NuT)>Q'(N',T),
a£A'\A

and it follows that 71 is (D + 1, Ni, Ci)-balanced with C\ depending only on
C and d. D

The proof of the proposition, and therefore also of the full measure
statement, is now complete.
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Appendix A. Roth—type conditions in a concrete family of interval
exchange maps

A.I Let A = {A,B,C,D). The Rauzy diagram of the pair (TTCTTI) =
A R (~* J~)\

is indicated in 1.2.2. The suspension of an i.e.m. with these

1
n
0

n+1

n

n

1
+
0
+

1

2

1
0
2
2

1
0
1
2

D C B A
combinatorial data leads to an holomorphic 1—form with a double zero on a
genus two surface.

In this diagram, we define for n > 0 a loop 7(71) based at (TTO, TTI) by asking
that the names of the successive arrows should be D2CDA2BnA. The product
of the V matrices around this loop is

M(n) =

with characteristic polynomial

Xn(X) = X4 - (n + 6)X3 + (3ra + 10)X2 - (n + 6)X

Setting C7 = X + X" 1 leads to

Xn(X) = X2(U2 - (n + 6)U + 3n + 8) .

The eigenvalues of M{n) are thus given by

A + A"1 = U* := \{n + 6 ± y V + 4) .

The case n = 0 is degenerate, with U+ = 4, U = 2 . When n > 0, both [/+,
C/~ are > 2; we will denote the eigenvalues by A+ > A~(> 1) > Xj > A+, by
et 1 eu 1 e~s 1 et the corresponding eigenvectors of the transposed matrix tM{n).

The eigenvector associated to the eigenvalue A is proportional to

((A - 1)(A2 - 4A + 2), A3 - 4A2 + 3A - 1, A(A - 1), (A - I)2) .

A.2 As n —> +00, one has

limC/+ - (n + 3) = limA+ - (n + 3) = 0 ,

Unit/- = 3 , limA" = G :=



The cohomological equation for Roth type i.e.m.s

One can also choose eigenvectors to obtain:

57

lime+ = £+:= (1,1,0,0)
lime" = £ - : = ( - l , - l , G - 1 , 1 )

lime+ = E+ := (2,1,0,-1) .

These four limit vectors form a basis of R4 in which we rewrite tM{n)

tM(n)E+ = (n + 3)E+ - E+ + -±=
V5

*M(n)E+ = E+ ,

For the corresponding coordinates, this gives

X+ = (n + 3)x+ + xt + Gx~ + G~lx- ,
x+ - -x+

X- = -^x+ + Gx~ ,

±=x+ x .

A.3 The following two lemmas express that for n > 4 certain cone conditions
are satisfied.

Lemma l.For n > A, x+ > Max(\xf\, \xu |, \xs \) one has

X+ > Max +|, (n - l)\X~\, \X

and
X+ > (n — +

Proof. As G'1 + -^ < 1 and G + G'1 = 3, we have

Max ((n - 1)|X+|, (n - 1)|XS"|, (n - l)|x+|) < X+
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If x
u — 0> o n e n a s

X+>(n + l)

because n + 1 — 2/^5 > G for n > 4.
For x~ < 0, one has X+ > (n +

>2X

— G\x~\. On one hand

on the other

as soon as
D

(n + l)x+-G\xZ\>--yX-

> (j+l)G, which allows to take 7 = 10~3
 5 for n > 4.

Lemma 2.For n > A, Max{\x+\, \x~\) > Max(\xf\, \x~\), one has

Proof. When \x+\ > \xu |, this follows from Lemma 1. If 0 < \x+\ < xu , one
has

because G~x + 4= < 1.
v5

D

One should observe in Lemma 1 that 10 »3 > 1 and in Lemma 2 that

Lemma 3.Equip M.A with the sup norm. Then, for any integers n\,..., n^ > 07

we have

< ||*M(nfc) 4 ) .

Proof. The upper bound follows from \\fM(n)|| < 2n + 4 for n > 0, the lower
bound from the fact that

*M(ra)( l , l ,0 ,0)-(n

is a non negative vector.

, 1,0,0)

•
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A.4 Let E be the set of sequences (n^) j>o of integers > 4. To each sequence in
S we associate the infinite path 7(^1)7(77,2) • • • starting at (TTO, TTI). The cone
property of Lemma 1 guarantees that there is exactly one i.e.m. satisfying
Keane's condition associated with this path. On the space F of functions
constant on each jo(Ia), we have a complete filtration: the space F s has
dimension 2 according to Lemma 2, contains the line WL5 (where 8 is the
displacement vector) and is contained in the hyperplane F* of zero mean.

Therefore conditions (b) and (c) in 1.3.2, 1.3.3 are automatically satisfied.
Condition (a) is equivalent, in view of Lemma 3, to

log Uk = O I 2_. l°g ni
\i<k
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Appendix B. A non—uniquely ergodic interval exchange map satisfy-
ing condition (a)

B.I Let m7n,p be non negative integers. In the Rauzy diagram of the pair
(A B C D\

(7TO,7TI)= I n n D . ) (cf. 1.2.2), consider the loop 7o(m,n,p) based at

(7ro,7ri) such that the names of the successive arrows are

D3m+1BCnBDCpD.

We also consider the dual loop 71 (m,n,p) which is deduced from 70 (m,n,p)
by means of the canonical involution and whose arrows have names

A3m+1CBnCABpA.

Given three sequences (mfc)fc>0, (nk)k>0 and (pk)k>o we also consider the

( A R (~* J~)\
n r R A I w ^ i c ^ 1S obtained composing

7o(mo, no,po)7i(mi5 ^i,Pi) • ••lo(rn2k, n2k,P2k)'fi(.m2k+i, ri2k+i,P2k+i)

The matrix Zo(m,n,p) associated to 70(m,n,p) is

0

p+2
1
0
0
+1 m(n

0
2
n

+ m(n + 2)(p + 1) + m + 1

where the vectors of the canonical basis of R-4 are ordered alphabetically.
Analogously the matrix Zi(m,n,p) associated to 71 (m,n,p) is

2)(P+1)
i + l)(p4

p + 2
0

+ m + 1
" I )

/ _|_ O\ _|_
V ' / '

n
2
0

1 ?7i -\

0
0
1

p + 1
0

We set

Q(k) = Zo(mo,no,po)Z1(m1,n1,p1)

with k — 1 = emod2. We denote e^fc), es(k), ec(k), er>(k) the column vectors
ofQ(fe).
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B.2 Let niQ = 0 and choose no ^> 1. The integer po will be chosen later but it
will be such that po > no. One has

eA(l)= *(1 0 0 1) ,

0 1

(0 0 1

(0 0 1

We determine then mi,po, ni , m2 , . . . , nik,Pk-i, n^, nik+i,Pk, • • • through the
following formulas:

mi — n3

:= (n0 + 2)2II2 = (n0 + l)2(n0 + 2)

.1 = (no + ol — l) , n7.;_|_i := (no + o/J

[-1 = (n0 + 3/)2 , pi := (n0 + 3/

n 3 ; + 2 := Pl^siXx = (no + 31 + I)2 , n z + i := (n0 + 3/

Thus one has, for / > 0

= (n0 + 3̂  + l)2(n0 + 3̂  + 2)2 ,

mj+2 = (n0 + 3£ + 2)2(n0 + 31 + 3)2 ,

and also mi = UQ. For all k > — 1 we set
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so that one has no = c_i and

c2 =

c4 =

c5 =

c7 = m2n2p2n0p0 ,

c8 =

= m3n3p3minipi,

Let us check by induction that, setting

e A ( 2 Z - l ) = c 6 / _ 8 [ t ( l 0

/rj7 -|\ r ^ o o

(C\~l ~\\ \ ^ ( i\ d

fi~)]\ f~t \ " ( d d

/c\i\ r t / "i /~»
(i(j [ZJI J — ^6^ — 4 I -̂  ^

(i~)l\ r* \ ^ ( ~\ d

fr)i\ r> r ^ ^ i o

C - 2

0

1

1

1

1

0

0

0

= 1, one has for / > 0:

1) + O

0) + O

0) + O

0) + O

0) + O

1) + O

1) + O

1) + O

(no1)] ,

K 1 ) ] »
(no1)] ,

(no1)] ,

(no1)} ,

(no1)} ,

(no1)} ,

fa1)] ,
We have already checked the first four relations for / = 1. Assume that the
first four relations are verified for a given value of I. Then

eD(2l) = eD(2l - 1) + (m2l_i + l)eA{2l - 1) ,

with
m2i-ic6i-8 = c6i-6 = c6i-5(n0 + 61 - 5)~2 .

Moreover

ec(2l) = 2ec{2l - 1) + n2l_ieB{2l - 1) + [m2 /-i(n2 /-i + 2) + l]eA{2l -

with

_7 = (n0 + 6/ - 6)

2c6j_5 = 2(n0 + 6/ - 4

l)c6/-8 = O ((n0 + 6/)"
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and

eB(2l) = (P2/-1 + 2)ec(2l - 1)

-i + 1) + m2j_i + l)eA(2/ -

with

(P2/-1 + 2)c6Z_5 = O ((n0 + 6£)~2c6z_2

2p2i-i + l)]c6i-8 = O ((n0

The formula for e^(2^) is completely similar.
Since one has

fc>0

one gets the four last relations. Taking into account the canonical involution
one can analogously obtain the first four relations.

B.3 The decomposition of the infinite path F into loops 7o(m2fc, n2k,P2k)
and 7i(m2fc+i, n2fc+i,p2fc+i) is nothing else than the decomposition for the
accelerated Zorich algorithm. One has

\\Z£(mk,nk,pk)\\ ~ (n0 + 3&)12,

(with £ = femod2), and

3 r(no + 3fc-2)!n2

^ c3 f c_2 = n (

Thus one obtains

\\Ze(mk,nk,pk)\\=o

and the first condition in the definition of Roth type interval exchange map is
(by far) satisfied.
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B.4 From the formula and estimates of Section A.2.2 one gets

«g(20 _ eD(2l-l) , ^ , aJ,_2,

\\eD(2l)\\i
ec{2l)

eB (21)

eA(2l)

\\eA(2l)\\

eD{2l

eA{2l
eA{2l
eA(2l

\\eA(2l

eA(2l

- l ) l l i
- 1 )

- 1 ) i

- 1 )

- l ) l l i
- 1 )

and by applying the canonical involution one obtains similar formulas at the
order 21 + 1. Therefore one can conclude that if there exist two vectors UA and
uj) in M"4 such that

\\UA\\ =

UA =

UD =

eA(l)

lim
eD(l)

= lim
ec(2l)

+oo||ec(20||i

eB(2l
= lim

\\eB(2l

AIt is now easy to see that each point u of the segment [UA,UD] C (K^J^ IS

the lengths datum for an interval exchange map with combinatorial datum
A B C D
D C B A , verifying Keane's condition and which is not uniquely er-

godic: the interval exchange maps of this one parameter family are topologically
conjugate.
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