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On Local and Global Existence and Uniqueness of Solutions
of the 3D - Navier - Stokes System on

Ya. G. Sinai*

To L. Carleson
with great respect.

1 Introduction.

Three - dimensional Navier-Stokes system (NSS) on R3 without external forcing is written for
the velocity vector u(x,t) = (ui(x,t),u2(x,t),U3(x,t)) satisfying the incompressibility condition.
div u = 0 and for the pressure p(x, t) and has the form

Du 3

3

Here ( ^ ) . = ̂  + J2 lhtuki ^ > 0 is the viscosity. In this paper we take v = 1.
1 fc=i Xk

After Fourier transform
v(k,t)= f e~i<k'x>u{x,t)dx,

u[

v(k, t) _L k for any k € M3 in view of incompressibility and NSS takes the form

dv{k, t)

dt
= -\k\2v{k,t)+i I <k,v(k-k',t)>Pkv{k',t)dk' (2)

where Pk is the orthogonal projection to the subspace orthogonal to k. Clearly,

<k,v(k-k',t) >=<k',v(k-k',t) > .
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We can reduce the system (2) to the system of non-linear integral equations

v{k,t) - e-W\o{k) I i I cT|fc|2(i-rWx
Jo

x I <k,v(k- k', r) > Pkv{k', r)dk' (3)
K3

where Vo(k) is the initial condition.
Many problems of hydrodynamics assume the power - like behavior of functions v near k — 0 and

infinity. In this connection it is natural to introduce the spaces $(a, UJ) where v{k) € §(a,u) if

l)v(k) = ^ S for \k\ < 1, c(k) J_ k

and c(k) is bounded and continuous outside k = 0; put c = sup
| |

for |fc| ^ 12)v(k) =

and d(k) is bounded and continuous, d = sup

Certainly 1 plays no essential role in this definition and can be replaced by any other fixed number.
We shall use the metric \\v\\ = c + d.

In some cases v can have infinite energy or enstrophy. Therefore classical existence or uniqueness
results like the theorem by T.Kato (see [K]) cannot be applied to the spaces $(a, UJ).

In this paper we consider 0 ^ a < 3, UJ ^ 2 and in §2 we prove the following theorems.
Theorem 1. Let UJ > 2. Then for any v G $(a,w) there exists to = to(a,u>) such that the system

(3) has a unique solution on the interval 0 ^ t < to with the initial condition v.
Theorem 2. Let UJ > 2 and to > 0 be given. There exists h > 0 such that for any ||u|| < h there

exists a unique solution of (2) on the interval 0 ^ t ^ to which has v as the initial condition.
Our methods do not allow to prove the global existence results in the spaces $(a,a;) if ||u|| is

sufficiently small. There are some reasons to believe that the corresponding statement is even wrong
(see §4). Some results in this direction were obtained recently by E. I. Dinaburg

In §3 we consider the case a = u = 2. A stronger statement is valid.
Theorem 3. If ||t;|| is sufficiently small then there exists the unique solution of (3) with this

initial condition for all t ^ 0.
Theorem 3 was proven earlier by Le Jan and Sznitman [LS] and Cannone and Planchon [[CP]]

(see also the review by M. Canone [C]). Our methods do not allow to prove for a — UJ = 1 the
existence of local solutions if ||x;|| is large. Probably, this statement is also wrong.

In §4 we consider v(k) = ^ 4 for 2 < a < 3, u = a and discuss some possibilities for blow ups in
these cases.

During the proofs there appear various constants whose exact values play no role in the arguments.
We denote them by capital A with various subindexes.



2 Local Existence and Uniqueness Theorems.
We shall prove theorems 1 and 2 simultaneously pointing out the differences in the arguments at the
end of this section. We shall construct solutions of (3) by the method of successive approximations,
Put v^(k,t) = e-^Hv0{k) and define for n > 0

(4)
/"* -|fc|2(t-r) f

JO J
R3

Clearly, v^(k,t) ± k. It follows from (3) that

ft r
7,(n+l)(h f\ _ T,(n)(lc i\ — 9 / p~\k\ (*~T)/-/T / 17 £• iAn)(k — h1 i\ — i^n~1Uh — £•' / ^ P, ifr1)(lc1 r\-i-

R3

J.' T-^ p, (y,)(n)(Jc' T\ ni(n~^(k' TWI rile1 {^\

From (3) and (4)

/ e- |fc|2(t-T)dr • |fc| / |y( :',r)|d/c' =

d/c'. (6)
0 K3

We shall prove that if v^n~^(k,r) G $(a,w) and ||t;("~1)(fc,T)|| < /i for all 0 < r ^ t then
v^n\k,T) e $(a,w) and we shall derive the estimate for |Ju^(A;, r)| | .

We shall write ^""^(fc.r) if |A;| < 1 or vl^fcr) if \k\ > 1 instead of ^"-^(fc.r) and assume
that UQ (fc,r) = 0 if \k\ > 1, wj""1^, r) = 0 if |fc| ^ 1. Consider two cases.

Case 1. | A: | ^ 1. We have from (6)

+

t|fe|2

o-X f e-TdT f [ v(n_D (k_h,t_J_)
J TJ [v° V ' |fc|2/
0 R3

+2 f t ,(«-!)/



+ r1 (l - h2 1 1
\k-k'\a \k'\a dk'+ \k-k'\a \k'\'

-dk'+

\k-k' ui \UI\u
dk1

Each of these integrals will be estimated separately.
H)

l

\k-k'\a \k'\

Concerning the last integral we can write

-dk' = \k\ z~2a

dk'

1*1

dfc7

1*1 \k'

dk'
k y \k'\a

dk'

\k'\a

(a) if a>-,

1 -f n
 3

•W\ lf a = r

if

(7)

From these inequalities it follows that for \k\ ̂  1, t ^ to

f dk'

\k-k'\a\k•na

I dk'
_k_

I*I
to (8)



Consider the next integral in (7):

f l l '
J \k-k'\« ' ]kf =

[ r^i
J \k'\" ±

l f c l

It is clear that 1*1 k'\ — 1. Therefore in the domain of integration \k'\ < TTT + 1 and| fc |

dk1

\W\> 1*1 ^

dk1

Returning back to (7) we can write

'i3) The estimate of the last integral in (7) is even simpler

f dk' <

since u > 2. Therefore

Finally for |A;| ^ 1 we get

\vW(k,t)\ • \k\a < \\vo\\ +A7{a,u>) • t0 • h2

Case 2. 1 < |A;| ^ ^ . From (6)

- k'\a 'r'\a
dk'

k- |A; - / fc ' |

(9)

(10)



The first term in (10) can be non - zero for 1 < \k\ < 2 and in this case it is not more than

J a ,
Therefore in view of 1 < |fc| ^ 2

fJ
For the second term in (10) we can write

fj
dk>

\k-k'\"\k'\
A

and this gives

I

Consider the last term in (10):

,|3-2OJ dk1

1*1 " *

(12)

(13)

Again this integral is bounded if u> < 3, diverges as In \k\ if u> = 3 and behaves as \k\u 3 if u > 3.
Therefore for w < 3

/ I,l2\ /" 1 1
1 ( 1 p-iQ\K\ \ I JU S nrmr,+ I7.IW+1 J.

u-2
2

For

•j 4—a; g i -

= c o n s t • \ k y u • to ^ c o n s t - t 0
 2 = c o n s t • tQ '•

= 3 the last expression is not more than

const • to • \k\4 • \k\~3 In \k\ = const • to • \k\ • In |A;| < const • tl
Q
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In this inequality we could take any power less than | instead of | . The value of const depends on
this number. Collecting all estimates we can write

(14)

for some positive 5 > 0. Remark that here we used the fact that 10 > 2.
Case 3. |fc| ^ -4-. Again from (6)

1

+2 I ik!+I

\k~k'\a\k'\a

dkf

dk'+

Jfe-ife/|w|ife/|a

The first integral can be non - zero only if to > 1. Therefore it is zero if we discuss theorem 1 and
consider sufficiently small to- If to is not small then h will be small (see below). If to > 1 this integral
was estimated before (see i\ in case 1) and it can be non-zero if \k\ ^ 2. In this case it is bounded
and

lu>—1 dk'

For the second integral we use the estimate

—-—-—dk' < AiAa.uj) • 7—7-
\k-k'\"\k

and therefore

2\k\w - l

For the third integral /

if CJ < 3 then

w e c a n

dk'

rC K I /C I
const



uj-2

d i l l C i j / v | I ' M — "M ^ ^ 0 ">

if ui = 3 then

I
if w > 3 then

A' const
/ \k - fc'

In all cases

From all presented estimates it follows that

Wv^W^Wv^W+
where v{m) = max ||u(m)(fc,t)||.

4 (15)

Take any A > 1, for example, A = 2. If ||u(n-1}|| < 2||uJ0)|| then

v{n)|| ^ ||v(0) || + 4A17(a, w) • ||uW ||2 • t0
3 = ||^°) || ( l + 4.417(a, ui) t*

If t0 is so small that AA17(a,uj) • \\v(0)\\ • t | < 1 then ||t;W|| ^ 2||uJ0)||. On the other hand, if t0 is

given and ||u(°)|| is so small that A17(a,u) • \\vi0)\\ • t j < 2 then ||u(n)|| ^ 2||uJ0)||. In other words,
under conditions of theorems 1 and 2 all v^n\k,t) e $(a,w) for all 0 ^ t < to and | | u^ | | < 2||t/°)||.

Now we shall prove the convergence of all iterations v^ to a limit as n —> oo in the sense of our
metric.

Consider \k\ < 1. We have from (5)

\k\a ^ \k\a+1 I e~w2{t-T)dT f \ \v<n\k-k',T)-v(>n

3

x (|u(n>(fc',T)| + lu^-^Cife-ifc'.r)!) ^ ( A / . r ) - ^ "

= |A;|a+1 • f e-|fcl3(*-T)dr /" (|u(n)(fc',r)| + l ^ - ^ ^ . r ) ! ) • |v(n)(fc - fc',r) - ^"-^(Jb - k',r)\dkf.

K3

The estimates of |u(n)(A;', r ) | , \v{n~1](k', r)\ are known because ^""^(fe', r ) , i;(n)(jfc', t) belong to the
space $(a , w). Denote h^ = max ||u^(A;,i) — v(n~V(k,r)||. The same arguments as above show

that /^n+1 ' ^ eh(n~1') for some 0 < e < 1. Other cases are considered in a similar way. We omit the
details. The last inequality gives the convergence of v^ to the limit. Theorems 1 and 2 are proven.



3 The case a = UJ — 2.

This case is special in several respects. It was considered before by Le Jan and Sznitman [LS]
a,nrl hy Cannone and Planchon [CP]. The authors proved that if the norm ||u^|| is sufficiently small
then there exists the unique solution of (2) for all t ^ 0 having this initial condition.

We shall show how this result can be obtained with the help of technique of §2. Thus we assume
that v(°\k) = I© and denote c = sup \c(k)\ We shall show that if c ^ CQ then the solution of (2)

exists for all t ^ 0, v(k,t) G $(2,2) and ||f(fc,t)|| < c0.
We use the same iteration scheme (3). Take any to- Assuming that v^-n~1\k,t) G $(2,2) of all

0 < t ^ to and î 71"1) == max llu^'^fA;,^)!! we can write

li-l2 Ui(n)^i- t\\ < IUi(")|| 4- ii(n~^)2 hfi I o~W2(t~T)rl-r I dh' (\P,\
A, \U ^ / i , I) 5 ^ \\U tli A- I c UT • / — , ,ioi 7 / i o a " ' • \*-Vj

JO J I"' "* I I " I
R3

It is easy to see that J ,fc_^p,fc/|2 ^ 4^. Substitution of the last inequality into (16) gives
R3

, A I f n - 1 1 \ 2 i 7 i 2 / -Ifcl2fr:-Ti 7 11 Coin . ,,

If for some A > 1 we have the inequality ||u^n~^|| ^ A||v^|| then

| |u (n )(^*)ll ^ ll«(0)ll + ^ i s • A2 • U ^ l l 2 = | |^°) | | (1 + A l s • A • \\v

\k\2 Je-W^dr = ||t/<°>|| + A

Choose A so that A18 • A • | |v^|| ^ A - 1 or A ^ ^J.^w^ Then \\v^\\ ^ X\\v^\\. In other words,

for any such A all iterations v^(k,t) are denned, v^(k,t) G $(2,2) and \\v^n\k,t)\\ < A||i/°)||.
Now we have to prove the convergence of v^ to a limit as n —> oo. Put

h{n) sup

We use (5):

,t) -v^(k,t)\\k\2 < \ \ \ < n \ \ M \ k \ " [ ' m t ' r ) d S

Thus if ^4i8 • A • ||u(0)|| < 1 then h^ tend to zero exponentially fast and we have the convergence of
v^ to a limit. Remark that we have no restrictions on to, i-e. our arguments give the existence of
solutions on any interval of time. C.Fefferman explained to one of us * how in our case the existence

1C.Fefferman, private communication.



of global solutions follows from the existence of local solutions with the help of scaling arguments.
It is interesting that presumably for large \v^\ the local existence theorem is not valid.

4 Some possibilities for blow ups in finite time in the spaces

We shall consider v^0\k) = c,fcffl, k G R3. It follows from Theorem 1 that for sufficiently small
to there exists the unique solution of (2) on the interval [0, to]. Since it is only a local statement there
are all reasons to believe that for a close to 3 there can be blow ups of solutions in finite time. In
this section we discuss related possibilities. Take a sequence {A^n^} , Â "̂  —> 0 as n —* oo so that
Y^ A ^ < oo. We shall consider (3) and neglect for small values of t by the dependence of v(k, r) on
n

T. In this way we get the sequence of recurrent relations:

= e- | f c l a A ( B V nVn>(ifc)

or

i\k\a'2

f < k, v^{k - k')

J |ife - k'\<* • \k'\a (17)

The sequence (17) is the main approximation for NSS. We make the following scaling assumptions:

c{n\k) = !/(")/(") (kVA(nA where /(n)(xr) converge to a limit as n -> oo and the factor V(n) is

chosen so that sup |/ ( n ) (k\/A(n)) = 1. Then from (17)

Put

k, /W ({k - jf)VAW) > Pfc/
(n)

v /
\k-k>\*-\k>\«

W. From (18)

(jh' (18)

x,

R3
\x- x!\a • \x!\a

10

dx'



Choose A ^ so that V
gives the expression of

(A^) 2 — a where a is an arbitrary constant, for example, a = 1. This
l ' through V"(n). From the definitions

= m a x / \x!\a dx!

If in the limit n —> oo the functions / ^ converge in the uniform metric to a limit then the limiting
function / satisfies the following equation:

/?/(x • h) = + ii ( l - |x| Q ~ 2

R3
|x-x/|Q dx' (19)

where

= max
< x, /^(x - x7) >

|x -x ' | Q • |x'|Q
dx'

The value of /i is found from the relation:

The equation (19) can be considered as the equation for the fixed point of a renormalization group.
We are interested only in solutions for which (3 > 1. Also the space of odd functions is invariant
under the non-linear transformation in the rhs of (19). Therefore the simplest fixed point can be
from this subspace. The integral

dx'

behaves as an homogenous function of degree 4 — 2a. Therefore for x —> 0 the non-linear term in
(19) decays as |fc|4~a. For x —> oo it decays as x2~a and it is natural to consider (19) in the space
of functions with this type of decay. This scenario of blow up assumes strong connection between
the behavior of initial conditions near k = 0 and k = oo. We hope to discuss the main equation, its
solution, the role of parameter a and the relation to blow ups in another paper.

I would like to thank NSF (grant DMS - 9706794) and RFFI (grant 02 - 01 - 00158) for the
financial support.
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