

the **abdus salam** international centre for theoretical physics

ICTP 40th Anniversary

SMR.1573 - 8

SUMMER SCHOOL AND CONFERENCE ON DYNAMICAL SYSTEMS

Evolutionary Dynamics

(Lecture 5)

Karl Sigmund Institute of Mathematics University of Vienna Vienna Austria

These are preliminary lecture notes, intended only for distribution to participants

Evolutionary Games and Public Goods

Theoretical Models and Experimental Economics

Examples

- Sheltering
- Group defense
- Foraging
- Brood care

Examples

- Public transportation
- conservation
- health insurance
- fighting crime

TEMPTATION TO FREE-RIDE

EXPLOITATION OF CO-PLAYERS

Public goods:

• Groups of cooperators do better than groups of defectors

• Defectors outperform cooperators in each group

Experiment

Six players

- One euro each
- Contribute to Common Pool?
- Experimenter triples amount in pool divides it equally among the six players

Return for each player only 50 cents

selfish individual tempted to defect

and exploit co-players

Social dilemma

- Tragedy of the Commons
- Free Rider Problem
- Many-Person Prisoner's Dilemma

Experimental results:

- Many players contribute
- If game repeated for a few rounds, contribution drops to zero

cost of co-operation =1 (contribution) r multiplication factor of common good n_c number of co-operators in group assume r < N

 $P_d = r \frac{n_c}{N}$ payoff defectors $P_c = P_d - 1$ payoff co - operators

 \Rightarrow frequency of co-operators decreases to 0

Part 1: punishment of defectors

Part 2: option to drop out

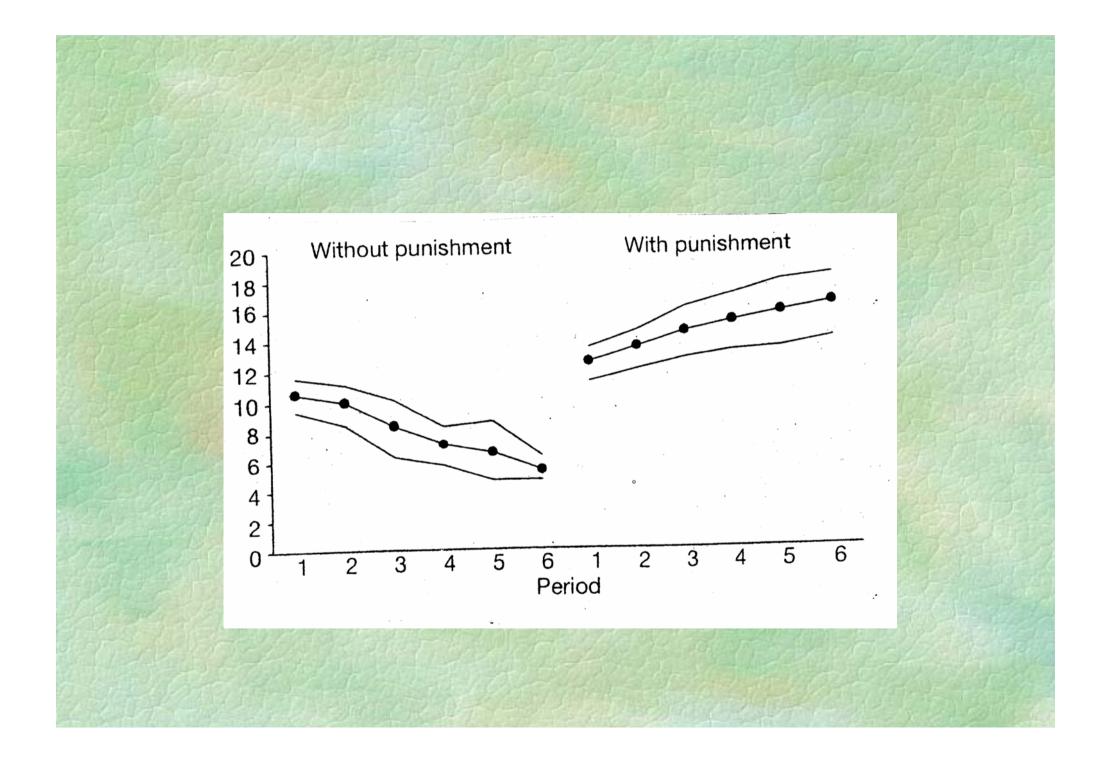
(replicator dynamics with non-linear payoff)

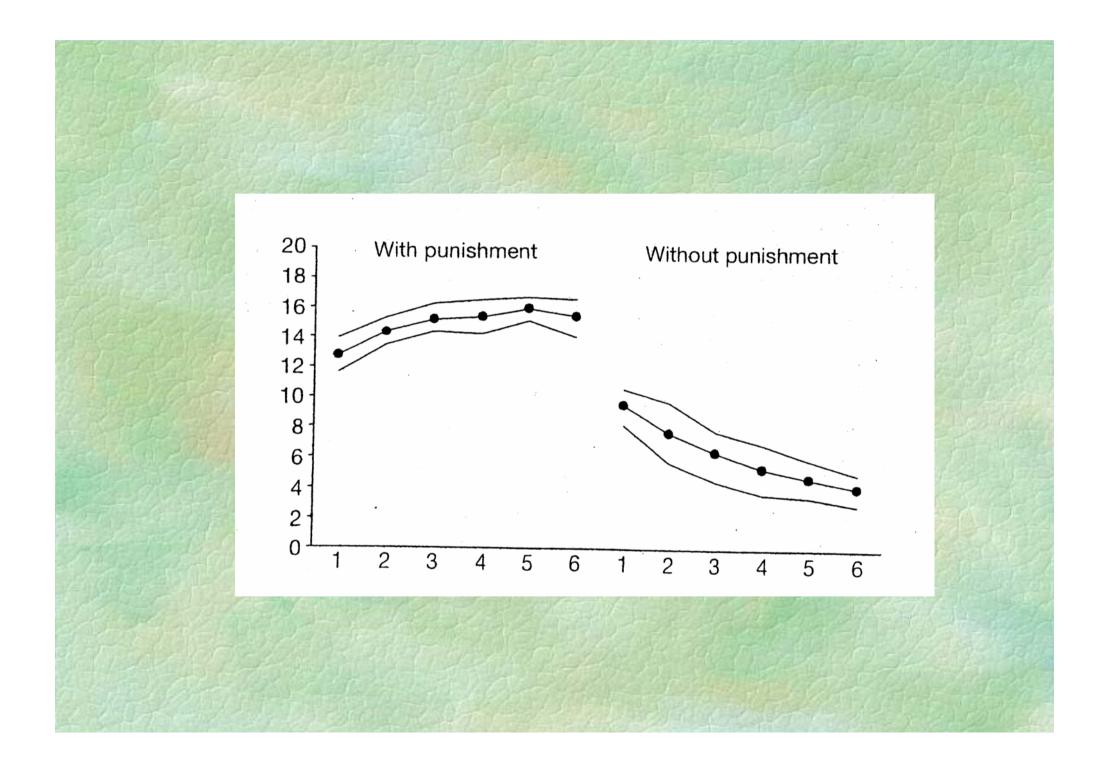
Punishment

after public goods game, players can fine co-players

punishment is costly

punishment is efficient (Fehr et al, Nature, 2002)





Strategies for Public Goods with Punishment

- G_1 social:contribute, punish G_2 paradoxical:don't contribute, punish G_3 asocial:don't contribute, don't punish G_4 mild:contribute, don't punish
- $-\beta \quad \text{fine (for punished player)} \\ -\gamma \quad \text{cost (for punisher)}$

Payoff for Public Goods with Punishment

from contributions of (N-1) co - players $B = (N-1)(x_1 + x_4) \frac{r}{N}$ and additionally

Payoff for Public Goods with Punishment

social:

$$P_{1} = -(1 - \frac{r}{N}) - (N - 1)(x_{2} + x_{3})\gamma$$
paradoxical:

$$P_{2} = -(N - 1)(x_{1} + x_{2})\beta - (N - 1)(x_{2} + x_{3}),$$
asocial:

$$P_{2} = -(N - 1)(x_{1} + x_{2})\beta - (N - 1)(x_{2} + x_{3}),$$

 $P_3 = -(N-1)(x_1 + x_2)\beta$ mild:

$$P_4 = -(1 - \frac{r}{N})$$

 $P_1 + P_3 = P_2 + P_4$

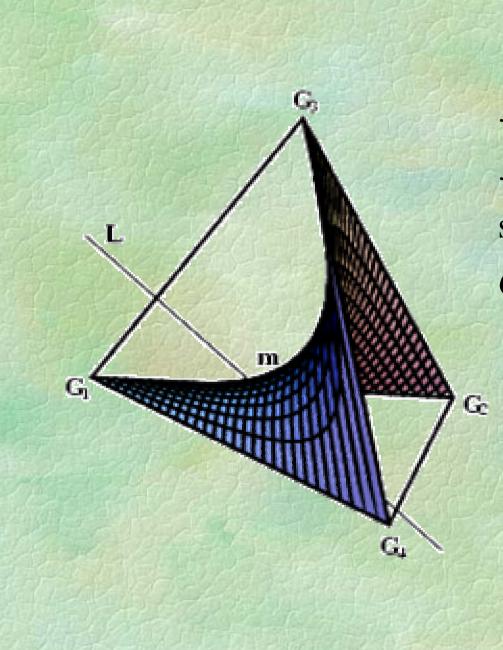
for replicator dynamics

$$\left(\frac{x_1x_3}{x_2x_4}\right)^{\bullet} = \left(\frac{x_1x_3}{x_2x_4}\right)(P_1 + P_3 - P_2 - P_4) = 0$$

hence

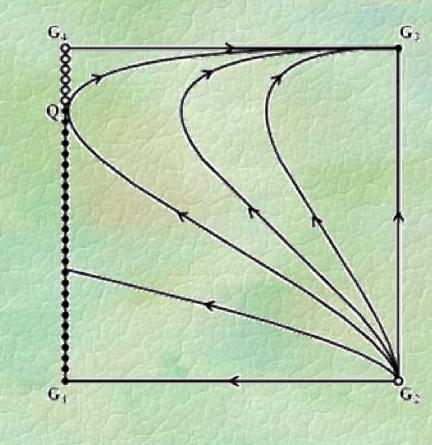
 $W_{K} = \{ x \in S_{n} : x_{1}x_{3} = Kx_{2}x_{4} \}$

invariant.



 $x_1 x_3 = K x_2 x_4$ $x_1 + x_2 + x_3 + x_4 = 1$ saddle spanned by $G_1 - G_2 - G_3 - G_4 - G_1$

Public Goods with Punishment



Nash equilibria : G_3 and segment G_1Q

saturated fixed points

random shocks lead to G_3 (asocial state)

$$(\text{if } \beta > \frac{N-r}{N(N-1)})$$

Reputation and Temptation

with small probability μ 'co-operators' G_1 or G_4 do NOT contribute IF all other players non - punishers G_3 or G_4

additional payoff terms

social:

$$P_1(\mu) = P_1 + \mu(1 - \frac{r}{N})(x_3 + x_4)^{N-1}$$

paradoxical:

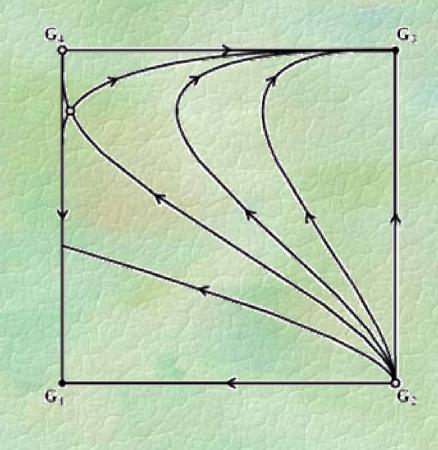
 $P_2(\mu) = P_2$ asocial:

$$P_3(\mu) = P_3 - (N-1)\frac{r}{N}\mu(x_1 + x_4)(x_3 + x_4)^{N-2}$$

mild:

$$P_4(\mu) = P_4 - (N-1)\frac{r}{N}\mu(x_1 + x_4)(x_3 + x_4)^{N-2} + \mu(1 - \frac{r}{N})(x_3 + x_4)^{N-1}$$

Reputation effect



bi-stability

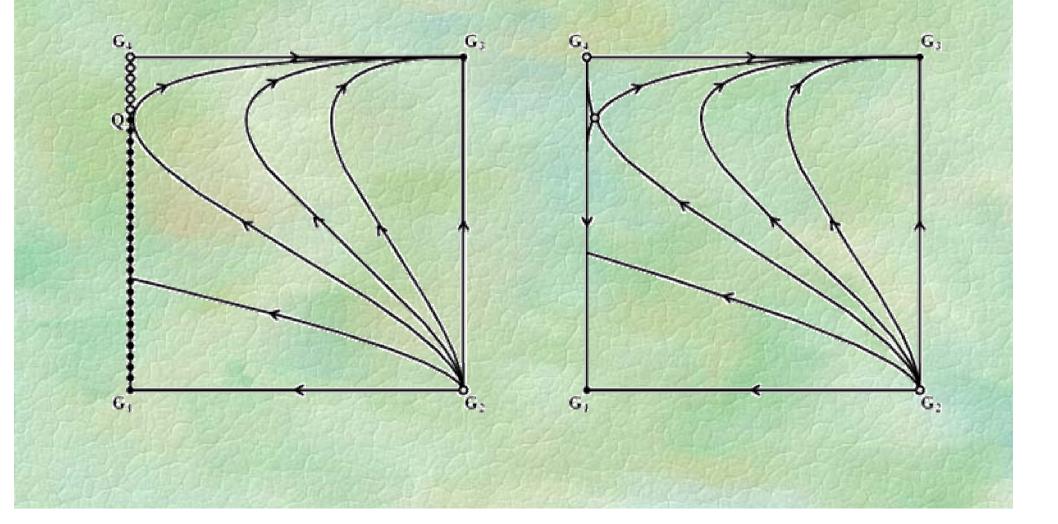
 G_1 (social) and G_3 (asocial)both attractors

EXACTLY one rest point in interior of square

with
$$y := x_3 + x_4$$

 $P_1(\mu) = P_2(\mu)$ yields
 $f(y) = P_1(\mu) - P_2(\mu) =$
 $= \mu \frac{N-r}{N} y^{N-1} - \beta(N-1)y + [\beta(N-1) - \frac{N-r}{N}] = 0$
unique solution $y = \hat{y}$ because f convex.
with $z = x_2 + x_3$
 $P_3(\mu) = P_2(\mu)$ yields
 $\gamma z = r\mu(1 - \frac{r}{N})(1-z)\hat{y}^{N-2}$

Bifurcation



Optional Games

Large population

- N players are offered to participate (sample)
- S accept (group)
- N S decline (loners)
- loners have fallback solution

Optional Games

three strategies:

- loners
- cooperators
- defectors
 - (if only one participates: loner)

Strategies for optional public goods

x freq. of co - operators y freq. of defectors z freq. of loners x + y + z = 1

Payoff for optional public goods

loner's payoff $P_z = \sigma$ (assume $0 < \sigma < r - 1$)

payoff for defectors and co-operators as before

$$P_d = r \frac{n_c}{N}$$
payoff defectors $P_c = P_d - 1$ payoff co - operators

Defector's payoff

 $r\frac{m}{S}$ if m co-operators in group with S players

$$\sum_{m=0}^{S-1} \frac{rm}{S} \binom{S-1}{m} \left(\frac{x}{x+y}\right)^m \left(\frac{y}{x+y}\right)^{S-1-m} = \frac{r(S-1)}{S} \frac{x}{x+y}$$

$$\sum_{S=1}^{N} \frac{r(S-1)}{S} \frac{x}{x+y} {\binom{N-1}{S-1}} (1-z)^{S-1} z^{N-S}$$

Defector's payoff

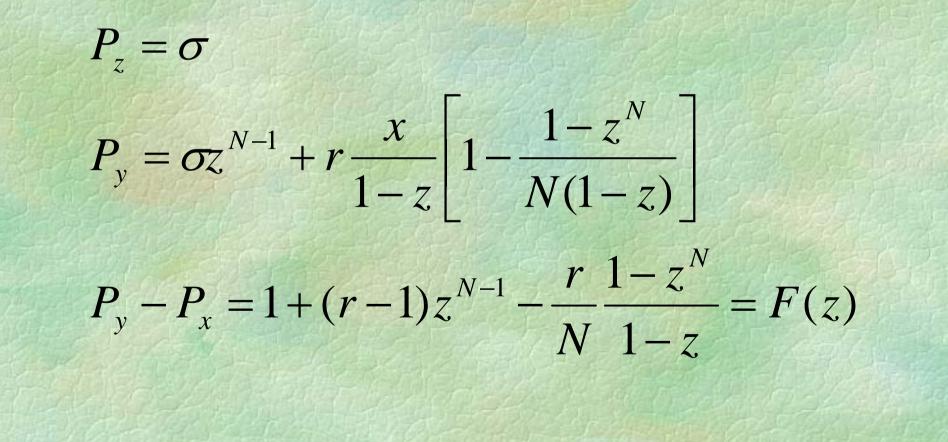
$$P_{y} = \sigma z^{N-1} + r \frac{x}{1-z} \left(1 - \frac{1-z^{N}}{N(1-z)} \right)$$

given S-1 other players in group, witholding contribution yields $1-\frac{r}{S}$

$$P_{y} - P_{x} = \sum_{S=2}^{N} {\binom{N-1}{S-1}} (1-z)^{S-1} z^{N-S} (1-\frac{r}{S})^{S-1} z^{N-S} (1-\frac{r$$

$$= 1 + (r-1)z^{N-1} - \frac{r}{N}\frac{1-z^{N}}{1-z} = F(z)$$

Payoff for optional public goods



Rock-Scissors-Paper Cycle

if 1 < r < Nand $0 < \sigma < r - 1$

Rock-Scissors-Paper cycle

if most cooperate, best to defect
if most defect, best to abstain
if mostly loners, best to cooperate
(for small groups, Simpson's Paradox)

Simpson's paradox

in group A, 9 defectors and 1 cooperator defector earns 1 dollar, cooperator 0

in group B, 9 cooperators and 1 defector defector earns 11 dollars, cooperator 10

average: defector 2, cooperator 9

Replicator Dynamics

$$\dot{x} = x(P_x - \overline{P})$$
$$\dot{y} = y(P_y - \overline{P})$$
$$\dot{z} = z(P_z - \overline{P})$$

with
$$\overline{P} = xP_x + yP_y + zP_z$$

= $\sigma - [(1-z)\sigma - (r-1)x](1-z^{N-1})$

Change in variables $(x, y, z) \leftrightarrow (f, z)$ with $f = \frac{x}{x+y}$ $\dot{f} = \frac{y\dot{x} - x\dot{y}}{(x+y)^2} = \frac{xy}{(x+y)^2} (P_x - P_y)$ hence $\dot{f} = -f(1-f)F(z)$ $\dot{z} = [\sigma - f(r-1)]z(1-z)(1-z^{N-1})$ divide by $f(1-f)z(1-z)(1-z^{N-1})$

Hamiltonian:

$$\dot{f} = -\frac{F(z)}{z(1-z)(1-z^{N-1})}$$
$$\dot{z} = \frac{\sigma - f(r-1)}{f(1-f)}$$

i.e.
$$\dot{f} = -\frac{\partial H}{\partial z}$$

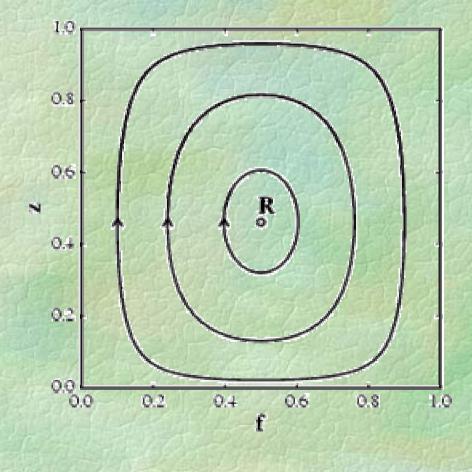
 $z = \frac{\partial H}{\partial f}$

Rest point in interior:

$$\dot{f} = -\frac{F(z)}{z(1-z)(1-z^{N-1})}$$
$$\dot{z} = \frac{\sigma - f(r-1)}{f(1-f)}$$

in]0,1[F(z) has same zeros as G(z) = (1-z)F(z) G(0) > 0 G(1) = 0at z = 1 local max (min) if r > 2 ($r \le 2$) G''(z) has sign of (N-2)(r-1)-z(Nr-N-r)for $1 < r \le 2$ no zero for r > 2 unique zero at \hat{z}

Hamiltonian dynamics



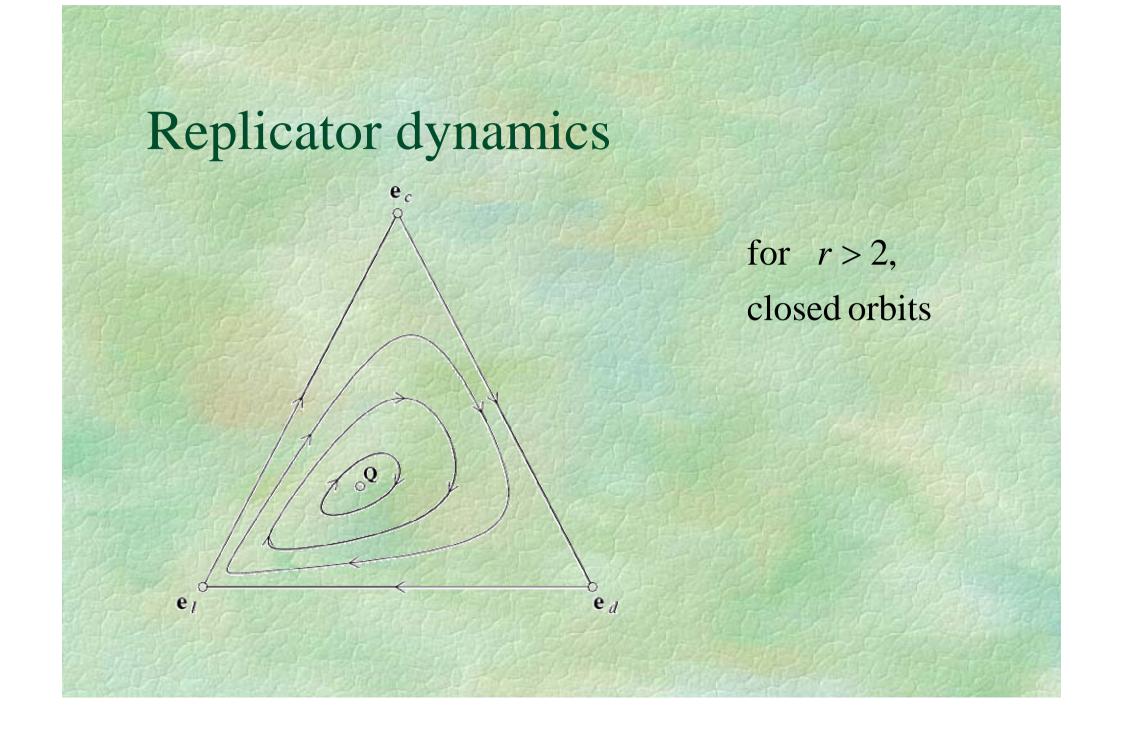
Replicator dynamics

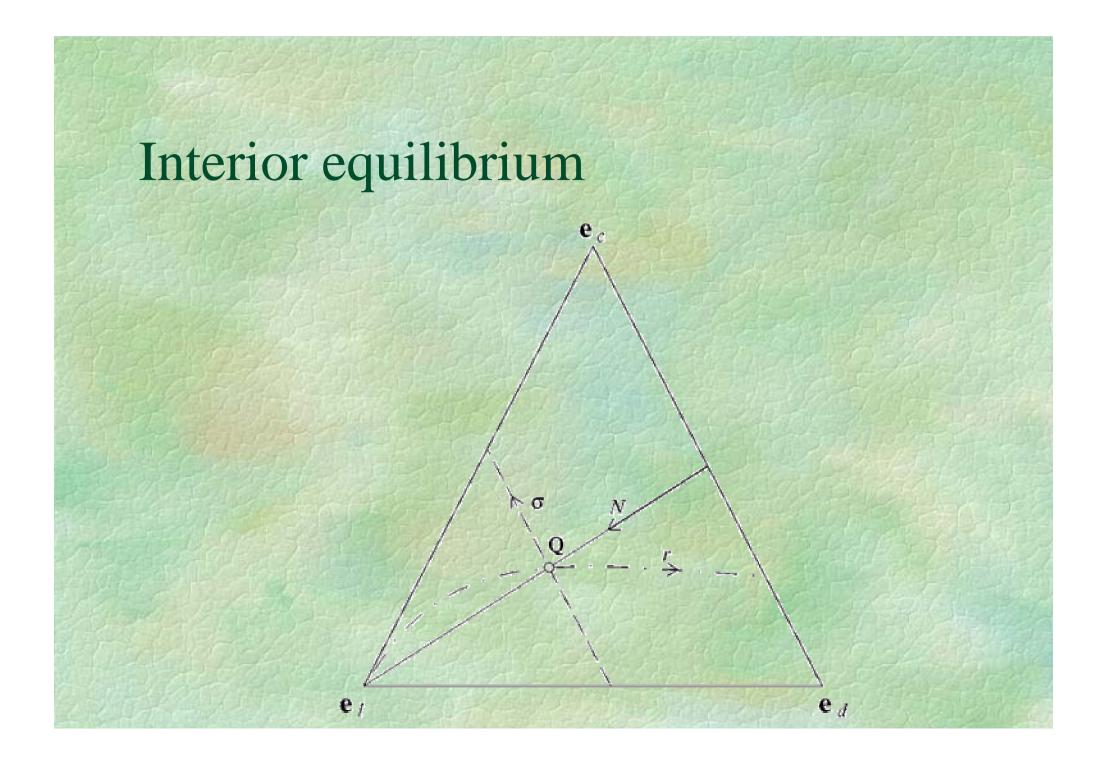
ec

er

ed

for $r \le 2$, homoclinic orbits





Time averages

time average of *u* along orbit of period *T* $\overline{u} = \frac{1}{T} \int_0^T u \, dt$

Then

$$\bar{f} = \frac{\sigma}{r-1}$$

and

 $\overline{P}_x = \overline{P}_y = \overline{P}_z = \sigma$

Red Queen Dynamics

Best reply dynamics

Players occasionally update, choosing whichever strategy is currently optimal (⇒ rational players)

 $\dot{x} = BR(x) - x$

Best reply dynamics

ec

 \mathbf{e}_d

e/

adopt whatever is currently best strategy

Imitate the better

choose co-player randomly adopt strategy whenever payoff higher (discontinuous vector field)

Imitate the better

de:1

ei

 \mathbf{e}_{c}

rank ordering of payoffs six regions

e d

Imitate the better

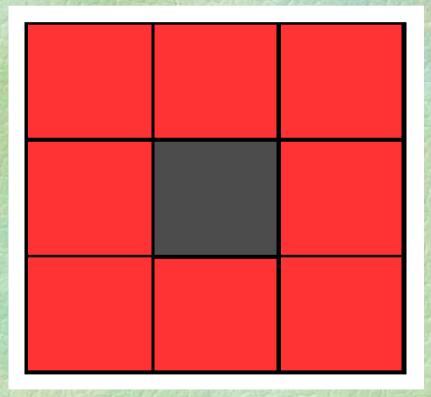
e

e_c

e d

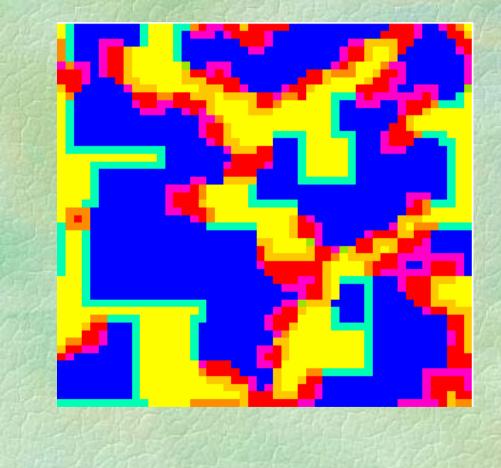
individual based
simulations
(population size
5000)

Neighborhood structure



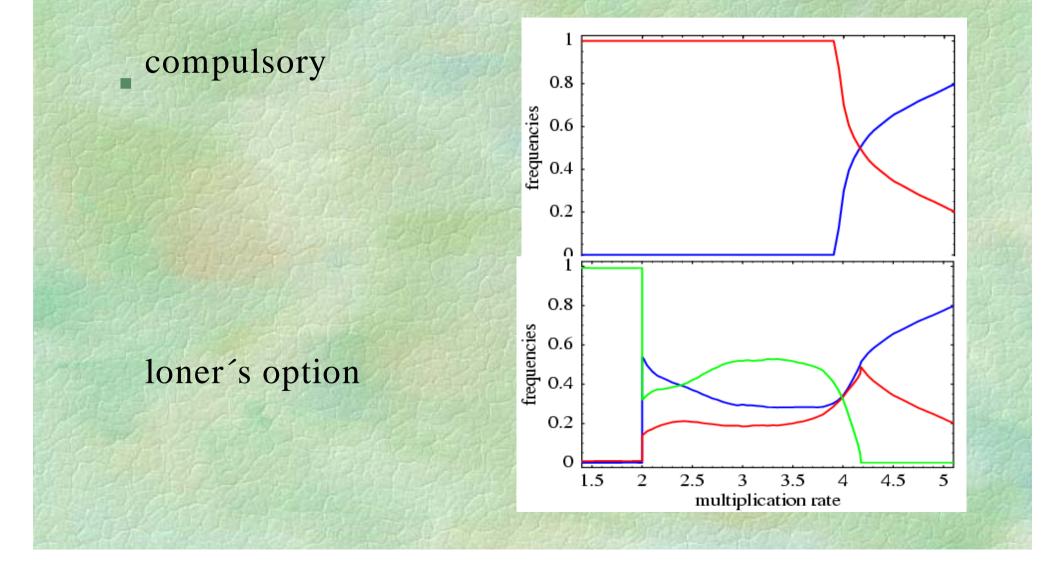
- Interaction with nearest neighbors
- best takes over

best takes over



Red: defectors Blue: cooperators Yellow: loners

frequencies on the grid



Morals?

More freedom yields more cooperation

Individuals that are less social make better societies