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Generic Dynamics

C. Bonatti

July 26, 2004

1 Notions of recurrence

Consider a dynamical system, for instance a homeomorphism h of a compact set X. The orbit
O(x,f) of a point x € X by / is the sequence {fn(x),n € Z}; one speak on forward and
backward orbit if one just consider the positive or negative iterates of / .

The aim of dynamical systems is to describe the behavior of the orbits when n goes to ±oo;
not just the orbit of a given point, but if possible, the orbit O(x, / ) of all point x E X, and not
only for a given / , but for every / G Homeo(M).

Certainly, it is too ambitious, so that we will have to replace all x and all f by most of x £ X
and most of f, what ever "most of means!.

Other question is:
What means describe the behavior of the orbits ?

in other words:
When will we consider that we get a satisfactory description ?

For instance (as in the case of gradient flows), if the evolution of every initial data consists
in reaching an equilibrium point (a fixed point) and if this fixed points are in finite number, the
description of / is given by the collection of its fixed points, and by the positions of the stable
and unstable sets of these fixed points. This may be the endpoint of the topological description,
and maybe the begining of other studies, like the velocity of reaching the fixed points, and so
on.

So, all points have not the same interest for describing the dynamics. Some of them allows
to understand a large set of other orbits, and others are not so interesting. So in some sense, a
first step consists in defining:

What is the heart of the dynamics ?

1.1 The limit sets

First of all, fixed or periodic points are clearly interesting for the dynamics. We denote by
Fix(/) and Per(/) the sets of fixed and periodic point points of / , respectively. The set Fix(/)
is clearly compact and / invariant. The set Per(/) is / invariant.

Exercise 1. Build a homeomorphism f of a compact space X where Per(f) is not compact.

Exercise 2. Prove that, if an orbit is compact, then it is a periodic orbit.



For the other points, where is going the orbit? To a point x are associated its w-limite set

+00
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that is the set of accumulation points oint its forward orbit. In the same way is denned the
a-limit set a(x) being the set of accumulation points of the negative orbit. The sets a(x) and
UJ{X) are invariant compact sets.

The point 2; is a or w recurrent if x £ a(x) or x £ w{x), respectively. This means that the
orbit of a; comes back and back close to x (in the past or in the future, respectively). We denote
by Rec(/) = Rec+(/) U Rec_(/) the sets of recurrent points. These set are clearly invariant by
/ •

Exercise 3. Build f such that Rec(f) is not compact.

Exercise 4. Build f such that Rec+(f) ^ Rec-(f)

The limit set Lim(/) = Lim+(/) U Lim_(/) of / is the union of all ui and a limit sets of
points x £ X.

Around 1935, Birkhoff [Bit] introduced the following notion; A point x is called wandering
if it admits a neighborhood Ux disjoint from all iterates fn{Ux), n > 0. By definition all point
in Ux is non-wandering too. The set of non-wandering points, called the non-wandering set of
f and denoted by O(/), is compact and /-invariant.

Finally, in the 70th, Conley and Bowen (see [Bo, Co])considered a weaker notion of recurrence.
A point x is called chain recurrent if for any e > 0 there is a sequence x = xo, x\,... ,xn = x,
n > 0 such that for any i E {0,. . . , n — 1} one has d(f(xi), (ajf+i) < e (such a sequence is called
an e-pseudo-orbit). The set of chain recurrent points, called the chain recurrence set of f and
denoted by TZ(f), is an invariant compact set.

All these sets are invariant by / . Furthermore, Fix(/) , Q(f) and TZ(f) are compact. They
are related by the following inclusions:

Per(/) C Rec(/) C Lim(/) C ft(/) C U(f)

Exercise 5. Build examples showing that the closures of all these sets may be pairwize distinct.

1.2 invariant subspaces

One would like to structurate the limit sets denned above using elementary pieces, that is in
some sense dynamically indecomposable.

The strongest notion of (topologica) indecomposability is the minimality:

Definition 1.1. A compact invariant set K C X is a minimal set if it is minimal for the
inclusion in the set of compact invariant sets.

Remark 1.2. 1. Every invariant compact set (in particular a(x) and u>(x)) contains a min-
imal set (using Zorn lemma: just notice that ({K C X, K compact andf(K) = K},c) is
inductive: the intersection of a decreasing family of (non-empty) invariant compact set is
a non empty invariant compact set )



2. Every orbit of a minimal set is dense in it;

3. There are examples of minimal set on which the dynamics is not uniquely ergodic (first
example by Furstenberg).

Exercise 6. The shift on {0,1}Z admits an uncountable family of minimal sets.

A more flexible notion of undecomposability is the notion of transitivity:

Definition 1.3. A compact invariant set K C X is a transitive set (some authors use topolog-
ically ergodic,) if one of the equivalent properties holds:

1. there is x 6 K such that K = u>(x)

2. there is a countable intersection Q — P|neN ®n °f dense open subset On ofX such that, for
any x G Q,

a(x) = u(x) = X.

In other words, the orbit of generic points in X are positively and negatively dense in X.

3. for any (non-empty) open subsets U,V of X there is n > 0 such that fn(U) D V ^ 0.

Let prove

L e m m a 1.4. The 3 properties in the definition of transitivity are equivalent.

Demonstration : One has clearly b)=4> a).
a ) = ^ c): the point x has positive iterates accumulating on f~l{x) and so also on x so that

x is positively recurrent, and so any fl(x) is positively recurrent. As a consequence, for any
non empty open set V of X, there is a sequence n, —> +oo such that fn'(x) G V. So choose
some n such that y = fn(x) 6 U. There is i such that n; > n so that fni~n(y) G V that

isfni-n{u)nv ^0.
c)=> b) For any open set U C X the set

O+(U) = {xGX\3n> 0fn(x) G U} = (j f~n(U)
n>0

is open by definition and dense because c).
In the same way O-(U) = {x G X \ 3n > 0fn(x) G U} is open and dense. So O(U) =

O+(U) fl O-(U) is a dense open subset of X
As X is a compact metric space, it admits a countable basis of open sent Un. Then the

announced set Q is

g= f]o(un).

Any point in Q admits positive and negative iterates in any open set, so that it positive and
negative orbits are both dense in X. •



2 Filtrations

One very simple idea (typical of dissipative dynamics) for organizing the global topological
dynamics, is to consider strictly invariant regions that is, open sets U such that f(U) C U. The
orbits passing nearby U enter in U and never come back. Then every orbit in Un>o f~n(U) has
its u-limit set contained in A(U) = Dn>o /™(^)> which is an invariant compact set.

This idea is the key of the famous Poincare Bendixson theorem for vector fields on the sphere
S2.

Conley has pushed to its end this simple argument, explaining with what precision one see
the dynamics if one just distinguish points x, y with x £ U and y (£ U, for U strictly invariant
open set.

2.1 Pairs attractors/repellors and Lyapunov functions

Definition 2.1. An invariant compact set K is called a (topological) attractor if it admits an
open neighborhood U with f(U) C U, such that K = A.(U) = ( \ > o / n ( ^ ) - ^ e °Pen set U w^
be called an isolating neighborhood of K. A repellor is an attractor for f~l.

Remark 2.2. If A is an attractor and U is an isolating neighborhood of A then V — X — U
verifies f~l(V) C V and R = C\n>o f~n(V) *s a rePe^or- So to any attractor A corresponds a
pair (A,R) of attractor repellor..

Exercise 7. Build f such that fi(/) j^ X but the unique attractors are X and 0.

Theorem 2.1. Let (A, R) be a pair of attractor repellor of a homeomorphism f of a compac
metric space X. Then there is a continuous fucton ip: X -> [0,1] such that:

1. (p{R) = 1 and <p{A) = 0.

2. for any x £ Al) R one has cp(f(x)) < ip(x)

A Lyapunov function for f is a function which is decreasing along the orbit (ip(f(x)) < (p(x),
Va; € X). A function ip verfying the conclusion of Theorem 2.1 is called a Lyapunov function
adapted to the pair (A,R).
Proof : Let UQ be an isolating neighborhood of A, and let U be the interior of UQ. It is an
isolating neighborhood of A, and verifies that mt(U) = U. Notice that the orbit of any point
x £ A U R intersect U \ f(U) in exactly one point.

Consider a continuous fonction ipg: X —> [0,1] such that tpo(f(U)) = 0, I])Q{X \ U) = 1 and
ipo(x) e]0,1[ if x € U \ f(U). Notice that ipo is 1 on R and 0 one A, is decreasing along the
orbits. More precisely, i^o(f(x)) < ^{x) if and only if x G X \ U and f(x) G U or x £ f(U)
and f(x) inf(?7). So for any x £ A U R, the function tf> decreases just once or twice allong the
orbit of x, according if the orbits of x meets the boundary dU or not.

Let denote ij)n{x) = ip(fn(x)). Consider a sequence an > 0 such that X)-TOa" =

denote
+00

Then ip is a continuous function, whose values are 1 oni? and 0 on A, and which is strictly
decreasing along the orbits of the point x ^ A U R: for such a point there is at least one n for
which ij>n(f(x) < 1pn(x)-



•

Exercise 8. Prove that, if X is a smooth compact manifold, f is an homeomorphism of X, and
(A, R) is a pair of attractor repellor of f, then the function ip may be choosed C°°.

Consider a strictly invariant open set U ( that is f(U) C U) and let V C U be any open set
containing f(U). Then V is also strictly invariant and define the same pair of attractor-repellor
as U. As a consequence of this simple remark one get:

Lemma 2.3. Let f be a homeomorphism of a compact metric space (X,d). Then the set of
attractor-repellor pairs of f is at most countable.

Proof : Consider a countable base of open sets O = {On} of the topology of X. Then any
attractor A admit a isolating open neighborhood V (f(V) C V) which is the union of finitely
many open sets belonging to O (for this, consider any isolating open neighborhood U of A, and
cover f(U) by binitely many On contained in U).

Notice that the set of such open sets V is countable (because associated to a finite subset of
O which is countable) and so the set of attractors is countable. •

Let «j > 0 be a sequence such that ^ aj = 1; we also assume that for any i ^ i+ i aj < \ai'-
this condition ensures that, if two sequences m,Vi G {0,1} verify that X îeNW°i = 52ieN"»a*
then y,i = Vi\ in particular the set of all X^GNA**0*' (A1*) ^ {0» 1}N *s a Cantor set.

Let {(Ai,Ri),i G N} be an indexation of the set of all pairs attractors repellors of / (we have
seen that it is countable). For each i 6 N, let <pi be a Lyapunov function adapted to the pair

and consider <p = Y!,iai-

Theorem 2.2. With the notation above one has:

1. for every x € X one has ip(f(x)) < ip(x).

2. <p(f(x)) = (p(x) if and only if x G flieN^J u Ri)-

3. Let denote by ATZ(f) the set f]ie^(Ai URi). We define an equivalence relation on AlZ(f)
by :

(Vi G N, x G Ai & y G Ai).

Then, for any x,y G AlZ(f) one has

ip(x) = ip(y)

4- <p(AH(f) C R has empty interior.

Demonstration : The function ip is decreasing allong the orbits as a sum of functions decreasing
allong the orbits. Futhermore, as the a, are all > 0, ip(f(x)) = ip(x) if and only if ipi(f(x)) =
ipi(x) for all i G N, that is x G At U Ri for all i G NN.

Finally if x E ATZ(f) then (p(x) — SieN A*iai where m — 0 if x G Ai and //j = 1 if a; G Ri.
The third and fourth property now follow from the choice of the numbers aj. •

Lemma 2.4. H(f) C ATl(f).



Demonstration : Let ip be a Lyapunov function adapted to a pair (A, R). Let e > 0, and
defined the sets A£ = ^([0,2e[) and R£ = ip~l(]l - e, 1]).

Consider <5o = in£{ip(x) — ip{f{x)) \ ip(x) 6 [e, 1 — e]}. Notice that 5o > 0. Let S = \ inf{<5, e}
Notice that, if XQ E ip~l([2e, 1 - e]) and if xo,...,xn is a <5-pseudo-orbite then i/>(xn) <

ip(x0) - \.
Let x E 7£(/). Then x -\s %\ tQ e argument above shows that x E Ae U R£. So x E A U R =

De(AeUR£).
•

2.2 The chain recurrent classes

For any e > 0 one defines a relation H£ on X as follows: a; He y if there is n > 0 and a
e-pseudo-orbit xo = x,... ,xn = y (one tell that y is e-accessible from x).

One tell that y is accessible from x and we write x H y if it is e-accessible for any e > 0.

Remark 2.5. 1. The relation He is a transitive relation:

x -\£ y and y -\£ z =$> x He z

As a consequence, -\ is a transitive relation.

2.
x^x «=> x E 7l(f).

We define now a relation on TZ(f) by a; I—\y <^=^ x -\y and y H x.

Corollary 2.6. The relation I—I on IZ(f) is an equivalence relation.

The equilavence classes of I—I are called the chain recurrence classes.

Exercise 9. The chain recurrence classes are compact invariant sets.

Exercise 10. Let f be a homeomorphism of a compact connected metric set X, and assume
that fi(/) = X. Show that X is the unique chain recurrence class.

2.3 The fundamental theorem of dynamical systems

Theorem 2.3. Let f be an homeomorphism of a compact metric space X, d. Then there is a
continuous function ip: X —> M verifying the following properties:

• For every x E X one has <p(f(x)) < f(x) (i.e. ip is a Lyapunov function);

<p{f(x) = <p(x) ^ i e n ( f )

• forallx,y E TZ(f) one has
ip{x) = <p{y) <*=>• I H J

The compact set (p(K(f)) C M has empty interior.
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A function verifying the conclusion of Theorem 2.3 will be called a Lyapunov function adapted
to n(f).

Lemma 2.7. If x £ TZ(f) then there is a pair (A, R) of attractor repellor such that x £ A U R.
In other words AU(f) C 7l(/) that is TZ(f) = AH{f).

Demonstration : Consider W™(x) = {y | x -\e y}. By debinition, it is an open subset of X.
Notice that, by definition of He the e/2 neighborhood of f(W^(x) in contained in W^(x). As a
consequence f(W™(x)) C W™(x). In other word, W™(x) is a strictly invariant open set.

Assume now x <£ K(f). Then there is e such that x £ Wue(x), but f(x) E W?(x). Then x
does not belongs to the attractor or the repellor associated to W^(x). •

The following lemma finishes the proof of the theorem:

Lemma 2.8. For x,y E 7£(/) one has:

x\-\y «=> i « y .

Demonstration : If x, y are not equivalent for I—I, that is for example y £ W£x. Then for the
corresponding pair of attractor repellor, x belong to the attractor and y to the repellor, so that
x is not equivalent to y for «. Conversally, if x is an attractor A and y in the repellor R of the
pair (A,R), there is e such that y is not e accessible fron x. •

Exercise 11. Build a homeomorphism and Lyapunov function (that is, a function which is
decreasing along the orbits) which s not constant on one chain recurrence class.

Let me make an ingenuous1 question:

Naive question 1. Consider the following equivalence relation on H(f): x ~ y if for any Lya-
punov function ij) one has ip(x) = ip(y). What is the dynamical interpretation of the equivalence
classes?

2.4 Global dynamics

Theorem 2.3 give a nice description of the global dynamics similar to the descrition of gradient-
like dynamics , the chain recurrence classes taking the place of the critical points: for any x
the orbit of x decrease for a Lyapunov function from a chain recurrent chain to another chain
recurrent chain.

Now, the description of the toplogical global dynamics of a homeomorphism or a dffeomor-
phism consists in:

• give the description of the dynamic in resctriction to each chain recurrence class

• describe the relative positions of the invariant manifolds of the chain recurrence classes.

Exercise 12. Prove that if a homeomorphism f of a compact metric space X has a unique
chain-recurrent class then 1Z(f) = X.

xIn this text, naive question means that I did not think enough on it or that I do not feel myself competent
enough for asking seriously this question: maybe the answer is already well known by specialists or at the contrary
the question is known to be a real difficulty! Anyway, I will be gratefull to anybody giving me the answer or any
information (references) on it!



Exercise 13. Let f be a homeomorphism of a compact metric space X, d and let ip: X -» R be a
Lyapunov function adapted to H(f). Let C be a chain recurrence class oand U be a neighborhood
ofC.

Prove that there is e > 0 such that any chain recurrence class C with \f(C) — <p(C)\ < e is
contained in U.

In other word, the map 1i->- (p~l{t) CiTZ(f) is upper semicontinuous.

2.5 Hyperbolic dynamics

I cannot do here a survey of hyperbolic dynamics : it could be the aim of a whole course. Let
me just make some comments, in the spirit of this course.

Let / be a diffeomorphism of a compact manifold M. An invariant compact set K is called
hyperbolic if the tangent space of M over K splits in the direct sum TM\K = Es © Eu such:

1. the spliting is invariant under the natural action of the differential Df: Es(f(x) =
Dxf(E

s(x)) and Eu(f(x)) = Dxf(E
u(x))

2. the vectors in Es are uniformly contracted and the vectors in Eu are uniformly expanded:
there are C > 0 and 0 < A < 1 such that for any x E K and any u G Es(x) and v G Eu(x))
and any n > 0 one has:

W W I I < CAn||u||
and

n(«)|| < CXn\\v\\

Exercise 14. Prove that the plitting TXM = Es(x) © Eu(x) is unique and continuous on K.

A diffeomorphism / verifies the Axiom A and the no-cycles condition if lZ{f) is hyperbolic.
I will not explain here the hyperbolic theory which need a whole course to be presented,

just recall that, if H(f) is hyperbolic then:

• there are finitely many chain recurrence classes

• each chain recurrence class is transitive, semi-conjugated to a subshift of finite type, and
admits a dense subset of periodic orbits which are all homo clinically related.

• the local stable manifold of a class is a union a continuous family of disks tangent to Es

• for each point x in M there is a point xu (in the chain recurrence class containing ui(x)
such that x G Ws(xw); then d{fn{x),fn{x0J)) -» 0.

• finally the same description holds for all diffeomorphisms g in a Cx-neighborhood of / .
More precisely,

Theorem 2.4. (Smale-Palis) The two following properties are equivalent:

1. IZ(f) is hyperbolic

2. there is a C1 -neighborhood of f such that, for any g in this neighborhood, the restric-
tion of g to 1Z(g) is conjugated to the restriction of f to TZ{f)-



One tells that / verifies the Axiom A and the strong transversality condition if IZ(f) is
hyperbolic and if for any points x, y E 7l{f), the invariant manifolds Ws(x) and Wu(y)
are transverse.

Theorem 2.5. (Robbin, Robinson, Mane) The two following properties are equivalent:

1. f verifies the Axiom A and the strong transversality condition

2. there is a C1 -neighborhood of f such that, any g in this neighborhood is conjugated

to f (one tells that f is Cl -structurally stable.

The hyperbolic dynamics represent the part of Diff(M) for which on has a satisfactory de-
scrition. However, the hyperbolic systems represent an open but not dense subset of Diffr(M),
for any r > 1 if dimM > 3 and r > 2 if dimM = 2.

One of the important problem remaining open is

Conjecture 2.9. (Smale) Let S be a compact surface. The set of diffeomorphism f of S for
which 72.(/) is hyperbolic is a dense subset of Diff1(S).

Exercise 15. Build a diffeomorphism f on a compact manifold such that O,(f) is hyperbolic but
IZ(f) is not hyperbolic.



3 C1-Generic diffeomorphisms: motivations

3.1 Definition and discussion

We want to study non-hyperbolic diffeomorphisms and more precisely the complement of the
closure of hyperbolic diffeomorphisms. In this set, no diffeomorphisms is 7£-stable, that is, there
are everywhere bifurcations. Then there is no hope of describing all systems. The hope is that,
even if some systems presents very complicated behavior, "most of them" could present some
regularity. In other word, we will avoid fragil pathological behavior.

The topological way to say "most of all " consist in focus on generic diffeomorphisms. Let
me first recall this notion :

For any complete metric space (X,d), Baire proved that the countable intersection of dense
open subset are dense. A residual set is a set containing such countable intersection of dense
open subsets.

The sentense:
any generic point x 6 X verifies property V

means:
There is a residual subset 7Z of X on which property V holds.

Example 1. For any manifold M, the set Diffr(M) (endowed with the Cr topology, is a Baire
space.

Digression l:There are other attempts to define a notion of "most of. One of the most popular notion is the
following:

Consider generic families with k parameter (that is, generic smooth pas from R* -¥ Diff(M)). A property
V is called prevalent if for any generic family with fc-parameters, the Lebesgues measures of parameter for
which V does not hold is 0. The problem is that many generic properties,are not prevalent. For instance,
generic diffeomorphismson S1 have rationnal rotation number but in generic 1-parameter family of analytic
diffeomorphism of S1 the measure of those with irrationnal rotation number may be positive.

Let me make an ingenuous question:

Naive question 2. // a property is prevalent for family with k parameters, is it prevalent for family with k + 1-
parameters ?

My feeling is that the answer is no... The stupid example is the notion of being prevalent for family with 0
parameters is the usual notion of being generic!

Anoter way to formulate this question is

Naive question 3. Does it exist a subset £ o/R2 having 0 Lebesgue measure, such that any generic path 7: [0,1]
in R2 meets £ in a full (positive?) set of parameters t 6 [0,1] ?

This time, my intuition is that the answer would be "no", contracdicting my intuition for the previous
question!

Other notion use families with infinitely many parameters, using a probability on the Hilbert cube.
This different notions lead to the philosophical question:

What is the good notion of considering "most of all diffeomorphisms"... ?

Digression 2: Many people ask Why the C1 -topology?, and most of them means, why not C2, Cr C°°, analytic?
There is nothing philosophical here..It is just that, for the C-topology (r > 1) only few phenomena are

understood. In contrast, for the C1 topology, one has now some hope to present a global picture of the dynamic
of generic diffeomorphisms.

Recently, Fangois Beguin ask me: Why not the C°-topology ? In fact I never though deeply on this, but my
intuition was that everything was very unstable in the C° topology, so that nothing interesting could be told on
C°-generic homeomorphisms. Preparing this course, tried to organize my arguments, but indeed I was completely
wrong. Let me begin by some words on C°-generic homeomorphisms.
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3.2 C°-generic homeomorphism

3.2.1 In dimension 1

Homeo(M) is a complete space for the metric sup{d(x, f(x) + d(x, f~l(x)),x € M}, that is, for
the uniform convergence of / and f~l. As a consequence it is a Baire space. Moreover it admits
a countable basis of open set.

The dynamics of generic homeomorphisms is very complicated, but in some sense, uniformly
complicated:

Theorem 3.1. There is a residual subset TZQ of orientation preserving homeomorphism of the
circle Sl with the following properties:

1. All f ETZ has a rational rotation number;

2. Let f,g£lZ and p,q € Z such that the rotation numbers of fp and gq are equal. Then fp

and gq are conjugated by an orientation preserving homeomorphism;

Lemma 3.1. There is a open and dense subset of Homeo+{Sl) of homeomorphisms having a
rationnal rotation number, and this rotation number is locally constant on this open set.

Demonstration : Just notice that any homeomorphism / may be perturbed in a homeomor-
phism g having a periodic point x; let n denotes the period of x. Up to considering another
perturbation, one can assume that the graph of g7' cuts transversally the diagonal at x. Now a
neighborhood of g has the same rotation number has g. •

Lemma 3.2. Let f be a generic homeomorphism with rotation number | with p A q = 1. Then
the set of periodic points of f is a Cantor set.

Demonstration : One kows that all the periodic points have the same period (q) so that Per(f)
is compact. It sufices to verify that Per(/) has no isolated points. For any homeomorphism /
with p(f) = £, let denote S(f) = max{d(x,Per(/) \ {x} \ x 6 Per(/)}. It suffices to show that
8(f) = 0 for generic / .

For that one show that {/ | S(f) < e) contains an open and dense subset in the set of
homeomorphisms with rotation number £ . This is easily obtained by a local argument: any
isolated periodic points may be perturbed in a set of periodic points wery close one to each
others. •

For a homeomorphism / of 5 1 having rational | rotation number, the sign of / — id is
well defined between two successive periodic points (that is, in any connected component of

Lemma 3.3. Assume that I is an interval of S1 and that Ji, J2 C J are two distinct components
of S1 \ Per(f) on which the sign of f — id is th same. Then there is J3 C /, between J\ and J2,
on which the sign of f — id is different from the sign of f — id on J\ and J2

Demonstration : Just notice that, for generic homeomorphism, any periodic point is accumu-
late by intervals of both signs for f — id. •

One conclude the prof of the theorem by the following lemma:
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Lemma 3.4. Two homeomorphisms f and g with the same rotation number, whose sets of
periodic points are Cantor sets, and verifying the property of Lemma 3.3 are conjugated.

I do not know if a so strong statments may hold in higher dmension. Let present a general-
isation that holds in dimension 2(and may be in any dimension):

3.2.2 In dimension 2

Let S a compact surface and <pi: Ui —> R2 a covering of S by charts (relatively compact in larger
charts for avoidin boundary-like problems). Denote by ID2 the unit disk of E2. We will say that
a homeomorphism / is k-universal if it admits two families X>+ and V~ of disks, each embedded
is one Ui, verifying the following properties:

1. each disk D G T>+ is dsjoint from its iterates f(D),.. .,fk-l(D) and fk(D) C D.

2. each disk D G T>+ is dsjoint from its iterates / (£>) , . . . , fk~l{D) and fk(D) C D.

3. for any two distinct disks D\,D2 G T>+UV~ the unions of their k first iterates are disjoint.

4. for any D G X>+,(resp. T)~) there is i(D) such that D C t/j(m and D is a ball for
the euclidian metrics in the coordinates of U^py One denote by fn: D2 —> int(ID)2) the
homeomorphism obtained by renormalization (conjugation by a homothety-translation) of
the restriction of fk (resp. f~k) to D.

5. for any open set O of Homeo+(lD)2,int(P2) there is D+ G V+ and D~ G T>~ such that
fD+ E O and fD- G O.

Theorem 3.2. Let S a compact surface and ipi: Ui —>• R2 a covering of S by charts. There is
a residual subset TZ C Homeo+{S) of diffeomorphism f verifying the following properties:

1. f has a periodic orbit x;

2. for each k > 0, period of a periodic orbit of f, f is k-universal.

Demonstration : The C° closing lemma allows to build f\ arbitrarily close to / ad having a
periodic orbit x of period p. Then there is f% arbitrarily close to f\ having a periodic disk DQ,
disjoint from /2(-Do), • • • , /f" (-Do) on which f% is the identity. Finally there is /3 arbitrarily
close to fi and having a strictly invariant disk D C Do, h{D) C int(D) and f$\D is conjugated
to an element of O, by the composition of a chart ip and an homothety-translation A. This
property is open and we just proved that it is dense.

Using a countable basis of the topology of Homeo+(D2, int(Z)2)) one gets that generic dhome-
omorphisms verify this property simultanuously for all open set O.

U

Corollary 3.5. Any generic homeomorphism of a compact surface S has infinite topological
entropy.

Question 1. Are all generic homeomorphisms of the sphere S2 conjugated?
On any surface, are the generic homeomorphisms structurellement stable behind the world

of generic homeomorphisms ?

In this direction, Sylvain Crovisier notices that Theorem 3.2 implies that the conjugacy class
of any generic (orientation preserving) homeomorphism of S2 is dense in Homeo+(52).
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3.3 Genericity in Cr-topology r > 2

Very few is known! The following open problem show how large is our ignorance2:

Problem 1. Among C2 diffeomorphisms of the torus T2 which are isotopic to identity, are
those having a periodic orbit dense for the C2 topology?

Let just mention an important result on Cr-generic diffeomorphisms, r > 1: the Kupka-
Smale theorem:

Theorem 3.3. (Kupka-Smale) For any r > 1, there is a residual subset TZ of Diffr(M) such
that, for any f 6 1Z any periodic point x is hyperbolic and for any periodic points x,y the
invariant manifolds Ws(x) and Wu(y) are transverse.

This theorem is the generic consequence for diffeomorphisms of Thorn's transversality theo-
rem.

Notice that the set of Kupka-Smale diffeomorphisms is disjoint from the set of generic home-
omorphisms described in Theorem 3.2.

3.4 semi-cont inuity and genericity

Let M be a compact metric space and K(M) C V{M) be the set of compact subsets of M,
endowed with the Hausdorff metric. Let X be a topological space and (p: X —> K,{M) be a map.

Definition 3.6. 1. The map ip is lower semi-continuous if for any x E X and any e > 0
there is a neighborhood U of x such that, for any y EU the compact set (p(x) is contained
in the e-neighborhood of cp(y). In other word:

Vp E (f(x)3q e (p(y),d(p,q) < e

2. The map ip is upper semi-continuous if for any x 6 X and any neighborhood V of ip(x)
there is a neighborhood U of x such that, for any y £ U the compact set ip(y) is contained
in V. In other word, if yn converges to x and pn € <p(yn) and Pn —> P then p G <p{x).

Exercise 16. 1. The closure of set of hyperbolic periodic points of f varies lower semi-
continuously

2. The chain recurrent set varies upper-semi continuously.

Theorem 3.4. Let X be a complete metric space with a countable basis of open sets, and M
be a compact metric space. Let ip: X —> K(M) be a semi-continuous function. Then there is a
residual subset 1Z of X such that ip is continuous at each point ofiZ.

2 The answer is positive among conservative diffeomorphisms of the torus T2: the proof consisit in noticing
that, componing the diffeomorphisms by a translation, one changes the rotation vector of Lebesgue measure,
getting a rational rotation vector. Then one uses the non trivial fact that such a a diffeomorphisms admits a
periodic orbit.
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