SUMMER SCHOOL AND CONFERENCE ON DYNAMICAL SYSTEMS

Polynomial Diffeomorphisms of $\mathbf{C}^{\wedge} 2$

 (Lecture 2)John D. Smillie
Department of Mathematics
Cornell University
Ithaca
USA

Definition. A diffeomorphism is Axiom A if its chain recurrent set is a hyperbolic set,

Shadowing Lemma. Given $\delta>0$ there is an $\varepsilon>0$ so that for any ε-pseudo orbit $\left(x_{j}\right)$ there is an actual orbit $\left(y_{j}\right)$ with $d\left(x_{j}, y_{j}\right) \leq \delta$.

We can interpret our horseshoe discussion in terms of pseudo-orbits.

The Shadowing Lemma is the key to structural stability.

If f, g are nearly $A x 10 \mathrm{~m} A$ maps with chain recurrent sets X and Y then $f \mid X$ is topologically conjugate to gly.

Why?

We ended our last lecture with a negative result:

There are open sets of differmonphisms which the Axiom A theory cannot handle.
Are there other mechanisms that explain the dynamics of diffeomorphisme?

In the 70's the French astronomer Hénon was studying the equations for toubolent fluid flow.

These are partial differential equations which he simplified by dropping higher order Fourier coefficients. and approximating by an ordinary differential equation.

He computed a fist return map to a section for the flow.

He observed a region which was taken into itself and folded.

There were two problems: time and large dissipation.

He replaced this first return map by a polynomial diffeomorphism in which he observed the same qualitative behavior.

$$
H\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1+y-a x^{2} \\
b x
\end{array}\right]
$$

with $a=1.4$ and $b=0.3$.
actor by computing ten thousand successive iterates of (1), starting from the orin . You really must try this for yourself on a computer. The effect is eerie-the mints $\left(x_{n}, y_{n}\right)$ hop around erratically, but soon the attractor begins to take form, ike a ghost out of the mist" (Gleick 1987, p.150).
The attractor is bent like a boomerang and is made of many parallel curves (Fige 12.2.3a).

igure 12.2.3 Hénon (1976), pp 74-76
'inure 12.2 .3 b is an enlargement of the small square of Figure 12.2.3a. The charcteristic fine structure of the attractor begins to emerge. There seem to be six parlat rimose a lone nerve near the middle of the frame then two closely spaced

Benedicks and Carleson established the existence of strange attractors with non uniform expansion and contraction for a set of parameters of positive measure and opened a new chapter in the field of dynamical systems.

It is useful to write the Hénon family of diffeomorphisms. in different coordinates than those used by Hénon.

$$
f_{a, b}(x, y)=\left(-x^{2}+a-b y, x\right)
$$

We can write f as the composition of 3 simpler diffeomor phisms:

$$
\begin{aligned}
& f_{1}(x, y)=(x, b y) \\
& f_{2}(x, y)=(-y, x) \\
& f_{3}(x, y)=\left(x+\left(-y^{2}+a\right), y\right)
\end{aligned}
$$

Exercise. There exists an $R=R(a, b)$ so that the following holds

This family of diffeomouphisms provides an excellent laboratory in which to study the dynamics of diffeomorphisms of \mathbb{R}^{2}.

Horseshoes appear when ass (Devaney-Niteck1).

The Newhouse persistent tangency appears. There are $f_{a, k}$ with ∞ many sink orbits.

Strange attractors appear.

The case of extreme dissipativity $b=0$ corresponds to one dimensional dynamics.
image of faro

If $g_{a}(x)=-x^{2}+a$ then

$$
\begin{aligned}
& f_{a, 0}(x, y)=\left(-x^{2}+a, x\right)=\left(g_{a}(x), x\right) \\
& f_{a, 0}^{n}(x, y)=\left(g_{a}^{n}(x), g_{a}^{u-1}(x)\right) .
\end{aligned}
$$

Hénon chose to work with polynomial diffeomorphisms because they were easy to Aerate by computer. An unintended consequence of this choice is that these diffeomorphisms have holomorphic extension to \mathbb{C}^{2}.

In the mid 80's John Hubbard gave a number of lectures making this point.

There are a number of reasons why one might want to work with holomorphic mappings. We focus on one of these now.

Let us start with the family $f_{c}(z)=z^{2}+c, f_{c}: \mathbb{G}$.

It can be a somewhat daunting task to prove that a diffeomorphismin $\boldsymbol{R}^{\text {is }}$ Axiom A.

For the family $f_{c}: \mathbb{C} S$ there is a complete characterization of $A \times 10 \mathrm{~m} A$.

A holomorphic is a differentiable map where the derivative is \mathbb{C} - linear. In many situations holomorphic maps $f: u^{c \mathbb{A}} \rightarrow \mathbb{C}$ behave move like affine maps $g: I \xrightarrow{C \mathbb{R}} \mathbb{R}$ than like C^{\prime} maps.

The Schwartz-Pick Lemma is an example of this.

If $I \mathbb{C R}^{\mathbb{R}}$ is an interval and $f: I \rightarrow I$ is an affine map then either f decreases distance or f is a bijection.

Consider the Poincare metric $\frac{d s}{\left|-|z|^{2}\right.}$ on the unit disk D_{1}.

Schwautz-lick Lemma. If $f: D_{1} \rightarrow D_{1}$ is holomorphic then of does not uncrecuse distance. If of is an isometry at some point then f is a bijection.

Move sophisticated version:
Let M, N be proper solssets of \mathbb{C}. We can define Poncavé metrics on M and N by identifying their universal covers with D_{1}.

Lemma. Let $f: m \rightarrow N$ be holounouphic then of does not increase distance. If of is an isometry at some point then f is a covering map.

Let $f_{c}: \mathbb{C}$ ⿹. Let $K_{c}=\left\{z: f_{c}^{u}(z) \rightarrow \infty\right.$ as $u \rightarrow \infty$.
Let $J_{c}=7 K_{c}$. J_{c} is the Julia set.
Exercise. The interior of K_{c} consists of ports that are byapunov stable. p is Lyapunou stable if for every $\varepsilon>0$ there is a $s>0$ so that $d(p, q) \leq \delta \Rightarrow d\left(f^{u}(p), f^{n}(q)\right) \leq \varepsilon$. (Hint: Schwarz-Pick.)

In the Axiom A case f_{c} is expanding on J_{c} and int K_{c} consists of basins of finitely many sink orbits.

Examples of hyperbolic maps fo.
If $|c|>2$ then there $1 s$ an R so that $K C^{\frac{n t}{2}} D_{R}$ but the image of the critical pout is not in O_{R}.

L decreases distance f is an isometry fol L^{-1} expands distance f_{c} is Axiom A.
(One sided horseshoe.)

Example z.
Consider $f_{-1}(z)=z^{2}-1$.

$$
f(0)=-1 \quad f(-1)=0
$$

Thus we have a sink of period z which contains the critical port. Choose disks Δ_{0}, Δ_{-1} around 0 and -1 so that $f\left(\Delta_{0}\right) \subset \Delta_{1}$ and $f\left(\Delta_{-1}\right) \subset \Delta_{0}$.

f is a proper map of degree 2 with no critical point so f is a covering. f preserves distance, L decreases distance fol is expanding.

$$
c=-1
$$

