SUMMER SCHOOL AND CONFERENCE ON DYNAMICAL SYSTEMS

A Physical Anosov System

Robert MacKay
Institute of Mathematics
University of Warwick
Coventry
UK

These are preliminary lecture notes, intended only for distribution to participants
A physical Anosov system

11 mathematics lessons

Euclidean geometry

Configuration space Σ

$= \{ (\theta_1, \theta_2, \theta_3) \in \mathbb{T}^3 : \text{circumradius of triangle } R_1R_2R_3 = l_2 \}$

i.e. $\frac{abc}{\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}} = l_2$

Can get a, b, c by Cartesian geometry

$a^2 = 3 + 2l_1^2 + l_2 \left[\sqrt{3} \sin \theta_3 - 3 \cos \theta_3 - \sqrt{3} \sin \theta_2 - 3 \cos \theta_2 \right]$}

Hence equation for Σ
Figure 3. The configuration space as a subset of T^3 for $l_1 = 19/180, l_2 = 181/180$.
2. **Topology** (cf. Thurston & Weeks)

{Allowed positions x of central pivot?}

$A = \text{intersection of 3 annuli } A_i$, where

A_i is centred on centre of i^{th} disk, inner radius $|l_1 - l_2|$, outer radius $l_1 + l_2$

e.g. $l_1 = 0.2$, $l_2 = 1.0$

But to each x in the interior of A correspond 8 configurations, joining in pairs on the edges and in 4s at the vertices.

So Σ is made of $F = 8$ faces, meeting along $E = 24$ edges, and at $V = 12$ vertices. So Σ has Euler characteristic $\chi = F - E + V = -4$
Except for some special \((l_1, l_2)\), \(\Sigma\) is an orientable compact surface, so homeomorphic to a disjoint union of \(X_g\) (surface of genus \(g\)) for some \(g \geq 0\).

For \(l_1 = 0.2, l_2 = 1.0\), \(\Sigma\) is connected, so just one \(X_g\) and then \(\chi = 2 - 2g\) implies \(g = 3\).

Can compute all the possibilities for the topological type of \(\Sigma\) as \((l_1, l_2)\) vary.

Can also study the transitions between types ("cobordisms").
Figure 3.4: The 27 generic patterns that can be formed by the overlap of three identical annuli centred on the corners of an equilateral triangle and the regions of parameter space corresponding to each.

$I, G, M: X_3 \quad H, F, E, J, N: X_0 \quad X: X_{12}$

$Z, AA: X_7 \quad Q, V, S: 3X_0 \quad Y: X_7 \cup X_0$

$W: 6X_0 \quad K, O: 4X_0 \quad U: 7X_0 \quad T: X_3 \cup 3X_0$
Singularity Theory

For generic \((l_1, l_2)\), \(\Sigma\) is a smooth surface.

Hexagon \(A\) is an exceptional image of a smooth \(X_3\).

Generic image of a smooth surface \(X\) under a
smooth map \(f: X \to \mathbb{R}^2\) is a region bounded
by pieces of fold curves, which can intersect
transversely or meet at cusp points.

e.g. torus \(X_1\), \(f\) →

So if instead of mapping \(\Sigma\) to \(X\), we use a
generic mapping to say \(\Sigma\) e.g. adda pantograph,
then will see two copies
of:

[diagram]

genetically folded tunnel "hyperbolic umbilic singularity"

[Levine] A global result: For generic \(f: \Sigma \to \mathbb{R}^2\), for each component \(c\) of the
singular set in \(\Sigma\), define \(\tau(c) = \#\) \(\frac{1}{2}\)-revolutions made by
unoriented tangent
to its image, following \(c\) in the direction keeping extra preimages on left: \(\Sigma \tau(c) = X(\Sigma)\)
Choose a point \(\Theta \in \Sigma \). Say two curves on \(\Sigma \) from \(\Theta \) to \(\Theta \) are homotopic if they can be continuously deformed into each other, keeping the end points fixed.

Let \(\Gamma \) be the set of homotopy classes.

It is a group under concatenation, and get isomorphic groups for different \(\Theta \): "fundamental group" \(\pi_1(\Sigma) \).

Can describe \(\Gamma \) by generators and relations, e.g. cut \(X_3 \) along 6 simple closed curves as shown, to obtain a 20-gon.

Given \(\Theta \) in interior of 20-gon, can label any curve from \(\Theta \) to \(\Theta \) by its "cutting sequence". Every sequence can occur. 2 curves are homotopic iff their cutting sequences can be obtained from each other by inserting or deleting words of the form \(x \bar{x} \) or \(wxyz \) for going round any of the 5 vertices.
Thus $\Gamma \equiv \langle a, b, c, d, e, f, \bar{e}, d' \ldots | a\bar{a}, \ldots, c\bar{b}'c'b, \ldots \rangle$

Can deduce that the number of homotopy classes represented by a sequence of length $\leq N$ grows exponentially with N, $\sim (18\ldots)^N$

"Free" homotopy classes of closed curves, where Θ^0 is allowed to vary, correspond to conjugacy classes in Γ

$$C_\gamma = \{ g^{-1} \gamma g : \gamma \in \Gamma \}$$

The number of conjugacy classes represented by a sequence of length $\leq N$ also grows exponentially with N
If we ignore friction, the motion is given by Lagrange's equations
\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) = \frac{\partial L}{\partial q_j} \quad j=1,2 \] for any local coordinate system \(q_1, q_2 \), where \(L = T - V \),

\[T(q, \dot{q}) = \text{kinetic energy} \]
\[V(q) = \text{potential energy} \]
e.g. if centre of mass of each rod is on the line joining its pivots, then

\[T = \frac{1}{2} \left(\mu_1 |\dot{x}|^2 + \mu_2 \dot{x} \cdot \sum \dot{r}_i + \mu_3 \sum |\dot{r}_i|^2 \right) \]

with
\[\mu_1 = \frac{3}{l_2^2} \left(I_c + m |\dot{r}|^2 \right) \]
\[\mu_2 = -\frac{2}{l_2^2} \left(I_c + m (x-c) \cdot (\dot{x} - c) \right) \]
\[\mu_3 = \frac{I}{l_1^2} + \frac{1}{l_2^2} \left(I_c + m |\dot{x} - c|^2 \right) \]

where
\[m = \text{mass of rod} \]
\[I_c = \text{moment of inertia of rod about its centre of mass} \]
\[I = \text{moment of inertia of disk} \]

No obvious coordinate systems (though could use redundant set \(\Theta \)). Instead, note that energy \(E = T + V \) is conserved, and up to a reparametrisation of time, the motion at energy \(E \) is equivalent to the geodesic flow of
Riemannian metric

\[ds = 2 \sqrt{(E-V(q)) T_q(dq)} \]

\[\text{on the part of } \Sigma \text{ with } V(q) \leq E, \]

i.e. paths \(q \) making \(\int_{\tau_1}^{\tau_2} 2 \sqrt{(E-V(q(t))) T_q(q(t))} \, dt \)

stationary with respect to variations fixing \(q(t_1), q(t_2) \)

(and recover true time-parametrisation \(t \) by \(\frac{dt}{d\tau} = \frac{1}{2\sqrt{E-V}} \)).

Focus on \(E > \max_{q \in \Sigma} V(q) \).
6 Hyperbolic Geometry

One can view X_3 as $\hat{\mathbb{D}}/\Gamma$, where

$$\hat{\mathbb{D}} = \{ z \in \mathbb{C} : |z| < 1 \}$$

with Poincaré metric $ds = \frac{2|dz|}{1-|z|^2}$, and Γ acts on $\hat{\mathbb{D}}$ by a certain isomorphic group of isometries of $\hat{\mathbb{D}}$ of the form

$$z \mapsto \frac{\alpha z + \beta}{\overline{\beta} z + \bar{\alpha}}$$

with $|\alpha|^2 - |\beta|^2 = 1$ and $\Re \alpha > 1$ (except for the identity: $\alpha = 1, \beta = 0$).

These are "translations", moving everything in $\hat{\mathbb{D}}$ from one fixed point on $\partial \hat{\mathbb{D}}$ to another.

The straight lines in $\hat{\mathbb{D}}$ are arcs of circles perpendicular to the boundary.

Can choose a 20-gon in $\hat{\mathbb{D}}$ whose sides are straight lines, and a translation for each generator of Γ that takes side x to side x. (In fact, there is a lot of freedom of choice: Teichmüller theory)

cf. Escher for X_2.

The geodesics for the Poincaré metric on $\hat{\mathbb{D}}/\Gamma$ are the quotient of the straight lines by Γ.

E.g. γ/Γ is a closed geodesic on $\hat{\mathbb{D}}/\Gamma$ iff γ is the axis of a (non-identity) element of Γ, so there is precisely one closed geodesic for each (non-identity) conjugacy class in Γ.
25. Circle limit IV
More generally, there is precisely one geodesic for each equivalence class (under the relations) of doubly infinite sequences of generators of Γ: "symbolic dynamics". Every geodesic of the Poincaré metric has Lyapunov spectrum $\{+1,-1\}$. The stable and unstable manifolds of a unit tangent vector are the sets of unit normals to the "horocycles".

\[W^s \times W^u \]

Morse: For any Riemannian metric R on $\Sigma = \mathbb{B}/\Gamma$ there is a closed subset Y of $T_1\Sigma$ and continuous surjection $h: Y \rightarrow T_1\Sigma$ carrying geodesics on Σ_R to geodesics on Σ_p (generalised by Denneir & Mackay to surfaces with $X < 0$ and geodesically convex boundary). Thus the triple linkage at $E > \max V$ on any component of the configuration space with genus ≥ 2 has at least one motion which does qualitatively the same as any Poincaré geodesic.
Riemannian Geometry

The linearised equations about a geodesic (\Rightarrow Lyapunov exponents) are:

\[\frac{d^2}{ds^2} s + k s^2 = 0, \]

where $k(q) = \text{Gaussian curvature at } s$.

Curvature measures deviation from flatness locally, e.g.

Length of set of points at distance r from $q \sim 2\pi (r - \frac{k}{6} r^3)$.

Area of set within distance $r \sim \pi (r^2 - \frac{k}{12} r^4)$.

Poincaré metric has $k = -1$ everywhere.

Can compute by Brioschi formula: if $ds^2 = [du \, dv] [E \, F \, G] [du \, dv]$ in local coordinates u, v, then

\[k = \frac{1}{4 (E G - F^2)} \left(\det \begin{bmatrix} 2 E_{uu} + 4 F_{uv} - 2 G_{ww} & E_u & 2 F - E_v \\ 2 F_v - G_u & E & F \\ G_v & F & G \end{bmatrix} - \det \begin{bmatrix} E & F & G_u \\ E_v & F & G \end{bmatrix} \right) \]

Gauss-Bonnet: $\int_\Sigma k \, dS = 2\pi \chi(\Sigma)$

So $\chi = -4 \Rightarrow k < 0$ on average.

If $k < 0$ everywhere then Jacobi equation implies exponential separation of most geodesics and strong chaotic properties (like for the Poincaré metric).

So Tim searched parameter space $(l_1, l_2, \mu_1, \mu_2, \mu_3)$ for a case with $k < 0$ everywhere, and found one:

\[l_1 = \frac{7}{40}, \quad l_2 = \frac{41}{40}, \quad \mu_1 = \frac{11}{50}, \quad \mu_2 = \frac{3}{100}, \quad \mu_3 = \frac{23}{100} \]

(taking $V = 0$)
Figure 3.24: A plot of curvature over the whole of the configuration space at \((\mu_1, \mu_2, \mu_3) = (\frac{11}{60}, \frac{3}{100}, \frac{23}{100})\),
\((l_1, l_2) = (\frac{7}{40}, \frac{11}{40})\)

The main component of the configuration space always contains the type I fixed points. Figures 3.12 to 3.15 show that it is difficult to get negative curvature at these points. In fact it seems to be necessary to be near the bottom corner of the mass parameter space where most of mass is in the \(\mu_3\)
This suggested studying the limiting cases
\[l_2 = l + b, \quad l_1 \to 0, \]
\[\mu_1, \mu_2 \to 0, \quad \mu_3 = 1/l_2. \]
Then \(\Sigma \) has formula \(\sum \cos \theta_i = -3b \),
and the kinetic energy is just \(T = \frac{1}{2} \sum \theta_i^2. \)
Then \(\kappa \) is just the product of the principal curvatures
of \(\Sigma \) as a surface embedded in Euclidean \(\mathbb{R}^3 \), which evaluates to
\[\kappa = \left(\frac{9}{2} b^2 + 3b \Pi \cos \theta_i - \frac{1}{2} \sum \cos^2 \theta_i \right) / \sum \sin^2 \theta_i. \]
For \(|b| < \frac{1}{3} \), \(\Sigma \cong X_3 \); and for \(b = 0 \), \(\kappa \leq 0 \)
with equality only if all \(\theta_i \in \{ \pm \frac{\pi}{2} \} \).
The case \(b = 0 \) is the Schwarz P-surface from the
theory of minimal surfaces (soap films), i.e.
sum of principal curvatures = 0.
It is also the Fermi surface for a half-filled
simple cubic tight-binding model.
An invariant set Λ for an autonomous system
\[\dot{x} = \nu(x) \]
on a manifold M is uniformly hyperbolic
if $\exists K$ s.t. the linearised equations for the \perp component \dot{x}_\perp of a displacement from any orbit x in Λ under any bounded forcing function f_\perp
\[\dot{x}_\perp = P_\perp D\nu_{x(t)} x_\perp + f_\perp(t) \]
have a unique bounded solution x_\perp and $\|x_\perp\| \leq K \|f_\perp\|$. It follows that the set of points whose forward orbit converges with $x(t)$ is a smooth submanifold $W^s(x(0))$, and the same for backwards: $W^u(x(0))$, and the orbits converge together at least like $Ce^{-\lambda t}$
for some C, λ.

Also if $\tilde{\nu}$ is a small perturbation of ν then $\exists \tilde{\Lambda}$ near to Λ, invariant and u. hyp. under $\tilde{\nu}$, and with topologically equivalent dynamics.

The case where the whole of M is uniformly hyperbolic is called Anosov.
For geodesic flow on a surface, the uniform hyperbolicity condition is equivalent to \(\exists K \) s.t.
\[
\dot{\xi}_\perp + \kappa(g(t)) \xi_\perp = f_\perp(t)
\]
has a unique bounded solution \(\xi_\perp \), and \(\|\xi_\perp\| \leq K \|f_\perp\| \).

If \(\kappa < 0 \) everywhere, we see that the geodesic flow is Anosov (because the Green function decays exponentially both ways). The same is true if \(\kappa \leq 0 \) and \(= 0 \) at only a finite set of points.

Thus the geodesic flow on the Schwartz P-surface is Anosov.

But then all nearby vector fields on \(T_1 \Sigma \) are also Anosov and topologically equivalent.

This includes the geodesic flow for the triple linkage for all \(l_1, b, m \) small enough, for variations in \(V \) sufficiently small compared with \(E \). It also includes breaking the D6 symmetry weakly.

Also Anosov and topological equivalence are preserved under the time reparametrisation, so the true motion is Anosov on each (large enough) energy level.
Anosov systems have other wonderful properties e.g. a "Markov partition": a finite partition of M into regions $(R_i)_i^N$ such that (except for ambiguities on the boundaries) there is a 1-1 correspondence between orbits and doubly infinite paths in an associated graph G with nodes 1, ..., N e.g. and the graph has a node with at least 2 paths back to it.

"chaos", "symbolic dynamics"

We can make a concrete Markov partition for any Anosov geodesic flow on Σ: take the 6 curves a, b, c, d, e, f to have minimal length in their free homotopy classes, then for each pair of the 20 symbols $x = a, \overline{a}, b, b', b, b'$ etc., let R_{xy} be the set of unit tangents whose geodesic has crossing sequence beginning xy. Pairs of the form $x\overline{x}$ don't occur, and also pairs corresponding to passing opposite sides of a vertex e.g. $c \rightarrow b' \leftarrow b \rightarrow c'$

are regarded as equivalent. So we have 360 regions. Put an edge from xy to yz for all x, y, z except those corresponding to going round a vertex more than 180° e.g. $c \rightarrow b' \leftarrow b \rightarrow c'$ is forbidden.
Probability Theory

What do typical orbits do?

For a Hamiltonian system H, Liouville measure

$\delta(H - E) \prod dp dq$ is invariant on energy level $H^{-1}(E)$. For a geodesic flow this reduces to $dS d\phi$.

For an Anosov energy level, Liouville measure is ergodic, meaning there is no decomposition into 2 invariant sets of positive measure.

It follows that for almost every orbit the fraction of time it spends in any subset is proportional to its measure. Actually, for any Anosov system there is a unique invariant (ergodic) probability measure μ^+ (called SRB) s.t. almost every orbit w.r.t any Borel measure spends fraction $\mu^+(A)$ of time in A. It can be obtained as the unique Gibbs state for symbol sequences with energy function $\int \lambda^u(\gamma(t)) dt$, where $\lambda^u(\gamma(t))$ is the expansion rate along $W^u(\gamma(t))$ and γ is the orbit corresponding to the given symbol sequence.

Note that in general μ^+ is not Markov. Also backwards SRB $\mu^- \neq \mu^+$ in general (but both = Liouville for Hamiltonian systems).
Actually, the triple linkage is not just ergodic (on energy levels), but also mixing: \(\forall \) measurable subsets \(A, B, \)
\[\mu (\Phi_t A \cap B) \xrightarrow{t \to +\infty} \mu (A) \mu (B) \quad \text{(normalising} \ \mu (M) = 1) \]

For transitive Anosov flows, either there is a surface of section with constant return time, or it is mixing.

All Anosov geodesic flows are mixing, and so are all flows near an Anosov geodesic flow. Hence the triple linkage in our parameter regime. This includes allowing a potential with small variation compared to \(E \) because then the time-rescaling rate is close to constant.

Under certain conditions on a mixing Anosov flow (which hold for Anosov geodesic flows on surfaces and near-constant time-rescaling rates), the correlations of Hölder continuous functions decay exponentially:

\[\int f (\Phi_t x) g (x) \, d\mu (x) \leq C_{f,g} e^{-\mu t} \quad \text{[Dolgopyat]} \]

In particular, the velocity-autocorrelations in any Abelian cover are integrable:
\[C_{ij} (t) = \int h_i (u (\Phi_t x)) h_j (u (x)) \, d\mu (x), \]

\[D_{ij} = \int_0^\infty C_{ij} (t) \, dt < \infty, \] and \(D \) is positive-definite.

So the motion in the Abelian cover is "diffusive" on a large scale.

Note: \(B, (T, X_2) = 7 \) so there are \(k \) additional Abelian direct-times
PDE

Given a kinetic energy function T on a surface Σ, can you design a potential V to make the Jacobi metric for given energy have constant negative curvature?

"Yamabe problem"

Yes, for $g \geq 2$:

$$\Delta \phi - e^{2\phi} = \kappa$$

has a unique solution $\phi: \Sigma \rightarrow \mathbb{R}$, where κ and Δ are the curvature and Laplacian of T.

Then choose $V = E - \frac{1}{2} e^{2\phi}$

Hence energy level $H^{-1}(E)$ (and all nearby ones) are Anosov.
Normally hyperbolic theory

Real system suffers from friction.
Can we add a driving force to obtain a (non-trivial) uniformly hyperbolic attractor?

Yes, choose E sufficiently $> V_{\text{max}}$,
let $\tilde{K} = \frac{1}{2} \sum I \dot{\theta}_j^2$ and apply feedback torques $\Gamma_j = -\gamma (\tilde{K} - E) \dot{\theta}_j$ for some $\gamma > \sqrt{\frac{I}{2E}}$
(or any feedback law close on a neighbourhood of $\tilde{K}'(E)$).

Then $\tilde{K}'(E)$ is "normally hyperbolic" and attracting for the limit system, and the motion on it is unchanged.
So for all small smooth perturbations it persists to an invariant attracting normally hyperbolic submanifold, and the dynamics on it is a small perturbation of the frictionless case, so is topologically equivalent and Anosov.
12) Partially hyperbolic theory

If instead of the high gain feedback required for normal hyperbolicity, we can use only low gain feedback, what can we get? (or even just a constant or time-periodic driving force)

The unperturbed system is "partially hyperbolic" on the whole of \(T^1 \):

\[
T^1(T^1) = E^+ \oplus E^- \oplus \left\{ R \times H(\theta) \oplus R \Delta H(\theta) \right\}
\]

"centre subspace" with weak (actually only linear) expansion or contraction.

Perturbation keeps partial hyperbolicity

\[
T^1(T^1) = \tilde{E}^+ \oplus \tilde{E}^- \oplus \tilde{E}^c
\]

There are robustly transitive partially hyperbolic attractors. Can we make one using friction and a weak driving force?