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Circuits in Random Graphs

‘Circuits in Random Graphs'
‘ Enzo Marinari '

‘ (Roma La Sapienza, Italy) I

Work in collaboration with Remi Monasson (cond-mat

0409238, in print on JSTAT).

N = oo (analytic) and finite IV (from exact
enumeration) results about number of circuits

(and loops) on random graphs.
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Circuits in Random Graphs

Summary

Random graphs, circuits and cavity. The

meaning of an approximation.

N — o0o: mean field approach.

With an algorithm by D. B. Johnson,
STAM J. Comput. 4, 77 (1975).

Recent interest on circuits and loops.

Conclusions.
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Circuits in Random Graphs

Random graphs: large interest in probability
theory and in statistical mechanics.

Many different (interesting...) types of random
graphs exist:

o Erdés—Renyi. Here edges are chosen independently
between pairs of a set of N vertices with fixed

probability O(%)

e Random c-regular graphs. Uniformly drawn
from the set of all graphs with N vertices, each

obliged to have degree c. Easy to generate for large N.

e Scale free graphs (modern...) with power

law connectivity degree distribution.

Here we will deal with random c-regular

graphs.

We will try to reach some quantitative
understanding of the behavior of closed circuits

in random graphs.
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Circuits in Random Graphs

Around a vertex selected at random (we call it

root) the graphs looks like a regular tree.

7
Znmnni

The probability that a circuit (self-avoiding closed

path) of length L passing through the root exists

goes to zero when N — oo and L is finite: it
departs from zero when log(N) = O(L) (there are

finite length loops but not in an extensive amount).
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Circuits in Random Graphs

There are two main points that motivate us.

First: reach a better understanding of equilibrium
properties of models of interacting fields living on

these graphs.

Frustration emerges from circuits of odd length:
the number of such circuits is related to the amount

of glassiness present in the system at low T

Dynamical point of view: interacting agents,

routers, internet...

Second: the fact that random graphs are locally
tree like (i.e. that )
is crucial to the analytic treatment of spin models

on random graphs for example by cavity methods.

They are solved by assuming that f is equal to the

one on a tree with self-consistent boundary

conditions.

We stress that this procedure is equivalent to make

assumptions on the distribution of long loops.
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Circuits in Random Graphs

N = oo mean field approach: counting loops.

(Different from counting circuits...)

We define loops as closed paths going through each
vertex an even number of times and through each
edge at most once. (i.e. the ones that appear in

the high T" expansion of statistical models).

The model: Munish the graph shown before with
Ising spins S; = +1 on vertices: =1,..., N and

ferromagnetic couplings J;; = 1 on edges (i, j).

Compute f: consider the

At large [, a spontaneous magnetization m is

expected to be present in the bulk.

The spins attached to the leaves will feel an
external field H > 0. Integrating these spins out
will in turn produce an external field H' acting on

spins at distance D — 1 from the root, with

H = (C; D tanh~'[tanh(B) tanh(B8H)]

(Bowman and Levin, PRB 1982).
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Circuits in Random Graphs

After repeated iterations of this procedure the field
at the root reaches a stationary value, H™, with

m = tanh[ScH™] and the free-energy density

f(B) = —%11’12(6_6—%66 coshQBH*)

+ C; ! In 2 cosh (ic_ﬂl>

The critical inverse temperature is the smallest

value of 8 for which H" is non zero i.e.
Be = tanh™ ' (1=).

Use high T' loop expansion functional form: the
high temperature expansion of the partition
function Z of the Ising model can be written as a
sum over loops. Each loop is given a weight

(tanh 8)* depending upon its length L:
(1)

where M (L) is the number of loops of length L
that can be drawn on the graph.
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Circuits in Random Graphs

Use Legendre transform: assume that loop
multiplicity grows exponentially with the graph

M(L=¢N)=-exp[N o(f)+o(N)],

where , and
o is the entropy of loops having length ¢. The
entropy o gives information about large-scale
loops ¢.e. with lengths of the order of V.

Inserting the scaling hypothesis for M (L) in
the partition function Z gives

—Bf(B) = —In2-— glncoshﬁ

+ max o(¢) + ¢ Intanh 3 |

in the infinite N limit.
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Circuits in Random Graphs

Results for the loop entropy: see next two figures.

Entropy departs from £ = o = 0 with a slope
—In(tanh 8.) = In(c — 1). Max isin £y = 7, o =
(5 — 1) In2, for loops going through half of the edges.

The left part

The right part of the curve (¢ > £;,) is for tanh 8 > 1,

that is, for inverse temperatures with an imaginary part

equal to 7.

Even c. o is unchanged under the transformation £ — ¢

— £. The right part of the curve is the mirror symmetric
of the left part, from a duality between long and short

extensive loops. The largest loop has length %

Odd c. Duality does not hold. The maximal length ¢4
is reached with an infinite slope (finite entropy o). For
odd degrees ¢ loops cannot occupy all edges: the
longest loops have one free edge per vertex, acting as
defects, the positions of which can be chosen with some
freedom, giving rise to a finite entropy. The frustration
coming from the parity of c is less important as ¢
increases. G. Parisi, private communication: RS solution is

correct in this range of (complex-valued) temperature.
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Circuits in Random Graphs
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Circuits in Random Graphs

N = oo mean field approach: counting circuits.

The same procedure can be applied to derive the
entropies of other spin models. The ferromagnetic
O(n) model with n — 0 gives information on

circuits.

A spin S is submitted to two fields Hi, Ho

conjugated to the magnetization and its squared

value. One gets

f:—c_21n [0(6—1)5—2] + S [(c—1)8]

28 c—2 28

(for an alternative derivation see Mézard, Montanari and

Miiller, PRL 2004). The entropy of circuits is
= —(1—=¢)In(1-2¢)

n (g_e> ln(1—2—f)—|—€ln(c—1).

Results are in the former figure. The rightmost

point corresponds to Hamiltonian cycles.

Our result coincides with the output of rigorous
calculations (Garmo 1999; Janson, Luczak and Rucinski
2000); the replica symmetric hypothesis is exact for

the O(n — 0) model (see again Mézard et al. 2004).
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Circuits in Random Graphs

From now on we only refer to circuits (and not

to loops).
For finite L, M (L) is asymptotically
Poisson-distributed when N — oo,

M
1 |(c—1)" _(e=nt

2L
M| 2L c

that holds for circuit-length L. < log N. The

expected number of circuits of intensive length

. log N
{ = L/N is for { < =8~

with o(¢) =/ log(c — 1) and 6(¢) = log(2/¢).
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Circuits in Random Graphs

Finite size corrections: exact enumeration

Finite N: we have implemented a fast algorithm
for finding all circuits in a given graph. We find,
not only count, all the circuits: our method we can

in principle give all interesting characterizations.

We first generate a random graph and then count

the circuits: we average over a number of samples.

To generate a fixed connectivity random graph we
start by assuming that each site has ¢ connections
that connect it to ¢ different sites. Self-connections

and double edges are not allowed.

extracted and matched together

all connections are set. or till we are

discard
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Circuits in Random Graphs

The algorithm for circuit enumeration

To enumerate circuits we have implemented an
algorithm by Johnson SIAM J. Comput. 4, 77 (1975)
that finds all elementary circuits of a graph.

Computer time is bounded by
O(N + E)(M + 1)), where N is the number of
vertices of the graph, F is the number of edges,
and M is the total number of circuits in the
graph. The time used between the output of
two consecutive circuits is bound by O(N + F)
(this is true also for the time elapsed before the output

of the first circuit and after the output of the last one).
The memory space is bounded by O(N + E).

One first orders the vertices in some
lexicographic sequence, and labels them with
integers. The search starts from a root vertex r,
in the subgraph induced by r and by vertices
after ». The input to the procedure is the

adjacency list A(v) for each vertex v: A
contains v if and only if (v,u) € £, where £ is
the set of edges of the graph.
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Circuits in Random Graphs

We block a vertex v when it is added to a path

beginning in r.
We build elementary paths starting from r.

The vertices of the current trial paths are loaded

onto a stack.

Ingenious part: keep a vertex blocked as long as
possible. This has to be done while maintaining
the procedure correctness: the basic rule that has

to be satisfied to guarantee that all circuits are

found (only once) is that if a path exists from the

vertex v to r that does not intersect the path
loaded on the stack, then v has to be free (i.e. it

cannot be in a blocked state).

On an Intel Xeon 2.8 GH z processor our
implementation takes of the order of 0.07 seconds
for finding all circuits of a N = 30 graph (they are

0(50000)), 2.4s for N = 40 (O(1.5 10°) circuits)
and 80s for N = 50 (O(4 107) circuits).
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Circuits in Random Graphs

101 circuits (a large number)

For small ¢ values we can study larger graphs
(we have analyzed graphs with up to 64
vertices in the ¢ = 3 case and up to 22 vertices
for ¢ = 6, and averaged our results over samples

ranging from 1000 to 10000 random graphs).

Typically we find of the order of 300 million
circuits for a N = 56, ¢ = 3 graph, one billion
circuits on a N = 26, ¢ = 5 graph and 1.5
billion circuits on a NV = 22, ¢ = 6 graph.

For each value of IV, we average over of the
order of 10000 samples for all the ¢ = 3

enumerations, and 1000 graphs for ¢ > 3.
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Circuits in Random Graphs

on(£) as a function of £ for ¢ = 3, and for graph

sizes ranging from N = 10 to 64 (from bottom to
top). The full curve is for the analytical
calculation. Data for sizes multiple of 10 use a

different drawing style.

Finite N data approach very slowly the N = oo limit.

Verify that finite N and N — o0
results are compatible.

log(M (£)) ~ £ log(c — 1) as £ — 0 where (M(¥)) is
the average number of circuits of length L = /¢ - N.

Numerical investigations do not allow us to be very
close to £ = 0 since the minimal intensive circuit
length, ¢, is of the order of 1/N.
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Circuits in Random Graphs

Flattening of log(M (£)) when ¢ approaches the

minimum allowed value: finite size effects.

In the small ¢ region, relatively safe from finite size
effects, the slope is very similar to the asymptotic
slope. We have fitted a linear behavior (that is
clear in the data) for example for ¢ in the range
(.13,.19) for ¢ = 3.

Using this approach

(on the larger graphs we can study).

For ¢ = 3 we find 0.54 versus a theoretical
log2 ~ 0.69; for we find versus . for
c =5 we find 1.12 versus 1.39; for ¢ = 6 we find
1.31 versus 1.61.

Finite size effect can be drastically reduced if we
compare directly different ¢ values. The ratio of
the slopes corresponding to ¢ and ¢ + 1 is 0.62 for

c = 3 versus a theoretical 0.63,
and 0.85 versus 0.86 for ¢ = 5.

This remarkable agreement gives us confidence that

we have a good control over finite size effects.
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Circuits in Random Graphs

=0.5

(o(l)-0,,) N, |

L
40

N

We have seen that for small values of /, N times
the difference between the circuit entropy on (¢)

and its asymptotic value behaves as

(JN(E) — 0o (E))N = —log N +(¥)

with (/) = —log(2/): it is independent of ¢, with
a logarithmic dependence upon the graph size N.

To check if this behavior applies to finite values of
¢, we look at the number of circuits with £ = 0.5,

for different values of N and c.

The data show only a very weak dependence upon
¢, that becomes weaker with increasing c. ¢ =5

data are already indistinguishable ¢ = 6 data.
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Circuits in Random Graphs

Here we show the same quantity for £ =1 i.e. for

Hamiltonian circuits, that pass through all vertices

of the random graph.

The scaling of Hamiltonian circuits is excellent

already at ¢ = 3.

We will come back later about the fact that scaling
property of Hamiltonian circuits are very different
from the ones of all other finite ¢, less dense

circuits.
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Circuits in Random Graphs

Inspired by the case of small circuits we fit the

circuit entropy for finite values of ¢ to

log N 1
on(l) = oo (l) + c1 Ojgv e

In the figure we show our results for ¢ = 3, £ = 0.5.
The quality of the best fit to data with sizes
N > 30 only is excellent, and in very good
agreement with all data with N > 12. This two

parameter fit is clearly superior to power law fits.
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Circuits in Random Graphs

With very good accuracy (surely better than

one percent)
C1 — —1 ,

i.e. even at finite £ the previous relation gives
the correct leading corrections.

For all / values (maybe excluding £ = 1, see
later) we find that the average number of

circuits of reduced length £ equals

oN 0oo (6)
N

where K (/) is a bounded function of £.

(M(LN)) = (K(£) + o(1))

For ¢y, we find values close to 1 e.g. .78 in the
case of £ = 0.5. Here precision is not as good

since this is a sub-leading correction.

What is clear from our data is that sub-leading

corrections to the circuit entropy are of the
order of 1/N.
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Circuits in Random Graphs

1 (Hamiltonian circuits)

a(l), =3, |

As we have said above the case of Hamiltonian

circuits (£ = 1) is exceptional.

Finite size effects are very strong; this is
intuitively expected since these circuits fill the
eraph and are deeply affected by its finite size.

It is clear that here the structure of finite size
effects is completely different. On the contrary
we have already explained that we find exactly
the same behavior for all intermediate ¢ values:

the case £ = 1 appears to be isolated.
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Circuits in Random Graphs

The absence of small loops in random graphs
allows one to argue that the free-energy of a
spin model defined on the graph is equal to the
one on a regular tree with a self-consistent

external field at boundary (leaves).

In turn, this free-energy fully determines the
distribution of large-scale loops in the random

graph.

We have added to our exact computation, valid
in the N — oo limit, results from exact

enumeration at finite V.

Thanks to them we have been able to
determine precisely the behavior of the leading

corrections to the thermodynamical behavior

(at least for circuits with £ < 1): we have found

that Hamiltonian circuits have stronger finite
size corrections and a peculiar finite IV
behavior.
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