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Ciruits in Random Graphs

Summary� Random graphs, iruits and avity. Themeaning of an approximation.� N !1: mean �eld approah.� Finite N : results from exat enumeration.With an algorithm by D. B. Johnson,SIAM J. Comput. 4, 77 (1975).� Reent interest on iruits and loops.� Conlusions.
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Ciruits in Random Graphs
Random graphs: large interest in probabilitytheory and in statistial mehanis.Many di�erent (interesting...) types of randomgraphs exist:� Erd�os-Renyi. Here edges are hosen independentlybetween pairs of a set of N verties with �xedprobability O( 1N )� Random -regular graphs. Uniformly drawnfrom the set of all graphs with N verties, eahobliged to have degree . Easy to generate for large N .� Sale free graphs (modern...) with powerlaw onnetivity degree distribution.Here we will deal with random -regulargraphs.We will try to reah some quantitativeunderstanding of the behavior of losed iruitsin random graphs.
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Ciruits in Random Graphs
Around a vertex seleted at random (we all itroot) the graphs looks like a regular tree.

root

The probability that a iruit (self-avoiding losedpath) of length L passing through the root existsgoes to zero when N !1 and L is �nite: itdeparts from zero when log(N) = O(L) (there are�nite length loops but not in an extensive amount).
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Ciruits in Random Graphs
There are two main points that motivate us.First: reah a better understanding of equilibriumproperties of models of interating �elds living onthese graphs.Frustration emerges from iruits of odd length:the number of suh iruits is related to the amountof glassiness present in the system at low T .Dynamial point of view: interating agents,routers, internet...Seond: the fat that random graphs are loallytree like (i.e. that very are very few short iruits)is ruial to the analyti treatment of spin modelson random graphs for example by avity methods.They are solved by assuming that f is equal to theone on a tree with self-onsistent boundaryonditions.We stress that this proedure is equivalent to makeassumptions on the distribution of long loops.
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Ciruits in Random Graphs
N =1 mean �eld approah: ounting loops.(Di�erent from ounting iruits...)We de�ne loops as losed paths going through eahvertex an even number of times and through eahedge at most one. (i.e. the ones that appear inthe high T expansion of statistial models).The model: Munish the graph shown before withIsing spins Si = �1 on verties i = 1; : : : ; N andferromagneti ouplings Jij = 1 on edges (i; j).Compute f : onsider the leaves of the unoveredloal tree i.e. verties at distane D from the root.At large �, a spontaneous magnetization m isexpeted to be present in the bulk.The spins attahed to the leaves will feel anexternal �eld H > 0. Integrating these spins outwill in turn produe an external �eld H 0 ating onspins at distane D � 1 from the root, withH 0 = (� 1)� tanh�1[tanh(�) tanh(�H)℄(Bowman and Levin, PRB 1982).
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Ciruits in Random Graphs
After repeated iterations of this proedure the �eldat the root reahes a stationary value, H�, withm = tanh[�H�℄ and the free-energy densityf(�) = � 2� ln 2�e�� + e� osh 2�H��

+ � 1� ln 2 osh��H�� 1 � :The ritial inverse temperature is the smallestvalue of � for whih H� is non zero i.e.� = tanh�1( 1�1 ).Use high T loop expansion funtional form: thehigh temperature expansion of the partitionfuntion Z of the Ising model an be written as asum over loops. Eah loop is given a weight(tanh�)L depending upon its length L:Z(�) = 2N (osh�) N2 XL M(L) (tanh�)L ; (1)where M(L) is the number of loops of length Lthat an be drawn on the graph.
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Ciruits in Random Graphs

Use Legendre transform: assume that loopmultipliity grows exponentially with the graphsize:M(L = `N) = exp[N �(`) + o(N)℄ ;where ` is the intensive length of the loops, and� is the entropy of loops having length `. Theentropy � gives information about large-saleloops i.e. with lengths of the order of N .Inserting the saling hypothesis for M(L) inthe partition funtion Z gives��f(�) = � ln 2� 2 ln osh�+ max` ��(`) + ` ln tanh� �in the in�nite N limit.
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Ciruits in Random Graphs
Results for the loop entropy: see next two �gures.Entropy departs from ` = � = 0 with a slope� ln(tanh �) = ln(� 1). Max is in `M = 4 , �M =( 2 � 1) ln 2, for loops going through half of the edges.The left part of the urve (` � `M ) is parametrized by� going from � (` = 0: there is a para/ferro transitionwhen extensive loops start ontributing to Z) to 1 (topof the urve: at T = 0, Z is dominated by the mostnumerous paths).The right part of the urve (` � `M ) is for tanh � > 1,that is, for inverse temperatures with an imaginary partequal to �2 .Even . � is unhanged under the transformation ` ! 2� `. The right part of the urve is the mirror symmetriof the left part, from a duality between long and shortextensive loops. The largest loop has length 2 .Odd . Duality does not hold. The maximal length `+is reahed with an in�nite slope (�nite entropy �+). Forodd degrees  loops annot oupy all edges: thelongest loops have one free edge per vertex, ating asdefets, the positions of whih an be hosen with somefreedom, giving rise to a �nite entropy. The frustrationoming from the parity of  is less important as inreases. G. Parisi, private ommuniation: RS solution isorret in this range of (omplex-valued) temperature.

September 2004 ICTP, Trieste Page 9



Ciruits in Random Graphs
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Ciruits in Random Graphs
N =1 mean �eld approah: ounting iruits.The same proedure an be applied to derive theentropies of other spin models. The ferromagnetiO(n) model with n! 0 gives information oniruits.A spin ~S is submitted to two �elds H1;H2onjugated to the magnetization and its squaredvalue. One getsf = � � 22� ln� (� 1)� � 2� 2 �+ 2� ln �(� 1)��(for an alternative derivation see M�ezard, Montanari andM�uller, PRL 2004). The entropy of iruits is�(`) = �(1� `) ln(1� `)+ � 2 � `� ln�1� 2̀ �+ ` ln(� 1) :Results are in the former �gure. The rightmostpoint orresponds to Hamiltonian yles.Our result oinides with the output of rigorousalulations (Garmo 1999; Janson, Luzak and Ruinski2000); the replia symmetri hypothesis is exat forthe O(n! 0) model (see again M�ezard et al. 2004).
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Ciruits in Random Graphs

From now on we only refer to iruits (and notto loops).For �nite L, M(L) is asymptotiallyPoisson-distributed when N !1,
P[M(L) =M ℄ = 1M ! " (� 1)L2L #M e� (�1)L2L
that holds for iruit-length L� logN . Theexpeted number of iruits of intensive length` = L=N is for ` < logNN ,
hM(`)i = (� 1)L2L = eN�(`)�log(N)+~�(`) ;with �(`) = ` log(� 1) and ~�(`) = log(2`).
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Ciruits in Random Graphs
Finite size orretions: exat enumerationFinite N : we have implemented a fast algorithmfor �nding all iruits in a given graph. We �nd,not only ount, all the iruits: our method we anin priniple give all interesting haraterizations.We �rst generate a random graph and then ountthe iruits: we average over a number of samples.To generate a �xed onnetivity random graph westart by assuming that eah site has  onnetionsthat onnet it to  di�erent sites. Self-onnetionsand double edges are not allowed.We start with all onnetions free: pairs ofonnetions are extrated and mathed together.We ontinue �lling them up (we use a table whihis resized after eah step to keep the proesse�etive) till all onnetions are set, or till we arestuk (if for example there are only two freeonnetions belonging to the same site): in thisase we disard the full graph and restart theproedure from srath.
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Ciruits in Random Graphs
The algorithm for iruit enumerationTo enumerate iruits we have implemented analgorithm by Johnson SIAM J. Comput. 4, 77 (1975)that �nds all elementary iruits of a graph.Computer time is bounded byO((N +E)(M + 1)), where N is the number ofverties of the graph, E is the number of edges,and M is the total number of iruits in thegraph. The time used between the output oftwo onseutive iruits is bound by O(N +E)(this is true also for the time elapsed before the outputof the �rst iruit and after the output of the last one).The memory spae is bounded by O(N +E).One �rst orders the verties in somelexiographi sequene, and labels them withintegers. The searh starts from a root vertex r,in the subgraph indued by r and by vertiesafter r. The input to the proedure is theadjaeny list A(v) for eah vertex v: Aontains u if and only if (v; u) 2 E , where E isthe set of edges of the graph.

September 2004 ICTP, Trieste Page 14



Ciruits in Random Graphs
We blok a vertex v when it is added to a pathbeginning in r.We build elementary paths starting from r.The verties of the urrent trial paths are loadedonto a stak.A proedure adds the vertex to the path, ifappropriate, and appends the vertex to the stak:the vertex is deleted from the stak when exitingfrom this proedure.Ingenious part: keep a vertex bloked as long aspossible. This has to be done while maintainingthe proedure orretness: the basi rule that hasto be satis�ed to guarantee that all iruits arefound (only one) is that if a path exists from thevertex v to r that does not interset the pathloaded on the stak, then v has to be free (i.e. itannot be in a bloked state).On an Intel Xeon 2:8 GHz proessor ourimplementation takes of the order of 0:07 seondsfor �nding all iruits of a N = 30 graph (they areO(50000)), 2:4s for N = 40 (O(1:5 106) iruits)and 80s for N = 50 (O(4 107) iruits).
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Ciruits in Random Graphs

Thanks to our algorithm and implementationwe have been able to enumerate of the order of1014 iruits (a large number).For small  values we an study larger graphs(we have analyzed graphs with up to 64verties in the  = 3 ase and up to 22 vertiesfor  = 6, and averaged our results over samplesranging from 1000 to 10000 random graphs).Typially we �nd of the order of 300 millioniruits for a N = 56,  = 3 graph, one billioniruits on a N = 26,  = 5 graph and 1:5billion iruits on a N = 22,  = 6 graph.For eah value of N , we average over of theorder of 10000 samples for all the  = 3enumerations, and 1000 graphs for  > 3.
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Ciruits in Random Graphs
�N (`) as a funtion of ` for  = 3, and for graphsizes ranging from N = 10 to 64 (from bottom totop). The full urve is for the analytialalulation. Data for sizes multiple of 10 use adi�erent drawing style.
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Finite N data approah very slowly the N =1 limit.Verify that �nite N and N �!1results are ompatible.loghM(`)i � ` log(� 1) as `! 0 where hM(`)i isthe average number of iruits of length L = ` �N .Numerial investigations do not allow us to be verylose to ` = 0 sine the minimal intensive iruitlength, `min is of the order of 1=N .
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Ciruits in Random Graphs
Flattening of loghM(`)i when ` approahes theminimum allowed value: �nite size e�ets.In the small ` region, relatively safe from �nite sizee�ets, the slope is very similar to the asymptotislope. We have �tted a linear behavior (that islear in the data) for example for ` in the range(:13; :19) for  = 3.Using this approah we �nd for  from 3 to 6 slopesabout 20% smaller than the theoretial predition(on the larger graphs we an study).For  = 3 we �nd 0:54 versus a theoretiallog 2 � 0:69; for  = 4 we �nd 0:87 versus 1:10; for = 5 we �nd 1:12 versus 1:39; for  = 6 we �nd1:31 versus 1:61.Finite size e�et an be drastially redued if weompare diretly di�erent  values. The ratio ofthe slopes orresponding to  and + 1 is 0:62 for = 3 versus a theoretial 0:63, 0:78 versus 0:79 for = 4 and 0:85 versus 0:86 for  = 5.This remarkable agreement gives us on�dene thatwe have a good ontrol over �nite size e�ets.
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Ciruits in Random Graphs
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Ciruits in Random Graphs
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Here we show the same quantity for ` = 1 i.e. forHamiltonian iruits, that pass through all vertiesof the random graph.The saling of Hamiltonian iruits is exellentalready at  = 3.We will ome bak later about the fat that salingproperty of Hamiltonian iruits are very di�erentfrom the ones of all other �nite `, less denseiruits.
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Ciruits in Random Graphs
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Inspired by the ase of small iruits we �t theiruit entropy for �nite values of ` to�N (l) = �1(l) + 1 logNN + 2 1N :In the �gure we show our results for  = 3, ` = 0:5.The quality of the best �t to data with sizesN � 30 only is exellent, and in very goodagreement with all data with N � 12. This twoparameter �t is learly superior to power law �ts.
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Ciruits in Random Graphs
With very good auray (surely better thanone perent)1 = �1 ;i.e. even at �nite ` the previous relation givesthe orret leading orretions.For all ` values (maybe exluding ` = 1, seelater) we �nd that the average number ofiruits of redued length ` equalshM(`N)i = (K(`) + o(1)� eN �1(`)N ;where K(`) is a bounded funtion of `.For 2, we �nd values lose to 1 e.g. :78 in thease of ` = 0:5. Here preision is not as goodsine this is a sub-leading orretion.What is lear from our data is that sub-leadingorretions to the iruit entropy are of theorder of 1=N .
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Ciruits in Random Graphs
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As we have said above the ase of Hamiltonianiruits (` = 1) is exeptional.Finite size e�ets are very strong; this isintuitively expeted sine these iruits �ll thegraph and are deeply a�eted by its �nite size.It is lear that here the struture of �nite sizee�ets is ompletely di�erent. On the ontrarywe have already explained that we �nd exatlythe same behavior for all intermediate ` values:the ase ` = 1 appears to be isolated.
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Ciruits in Random Graphs
The absene of small loops in random graphsallows one to argue that the free-energy of aspin model de�ned on the graph is equal to theone on a regular tree with a self-onsistentexternal �eld at boundary (leaves).In turn, this free-energy fully determines thedistribution of large-sale loops in the randomgraph.We have added to our exat omputation, validin the N �!1 limit, results from exatenumeration at �nite N .Thanks to them we have been able todetermine preisely the behavior of the leadingorretions to the thermodynamial behavior(at least for iruits with ` < 1): we have foundthat Hamiltonian iruits have stronger �nitesize orretions and a peuliar �nite Nbehavior.
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