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Cir
uits in Random Graphs

Summary� Random graphs, 
ir
uits and 
avity. Themeaning of an approximation.� N !1: mean �eld approa
h.� Finite N : results from exa
t enumeration.With an algorithm by D. B. Johnson,SIAM J. Comput. 4, 77 (1975).� Re
ent interest on 
ir
uits and loops.� Con
lusions.
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Cir
uits in Random Graphs
Random graphs: large interest in probabilitytheory and in statisti
al me
hani
s.Many di�erent (interesting...) types of randomgraphs exist:� Erd�os-Renyi. Here edges are 
hosen independentlybetween pairs of a set of N verti
es with �xedprobability O( 1N )� Random 
-regular graphs. Uniformly drawnfrom the set of all graphs with N verti
es, ea
hobliged to have degree 
. Easy to generate for large N .� S
ale free graphs (modern...) with powerlaw 
onne
tivity degree distribution.Here we will deal with random 
-regulargraphs.We will try to rea
h some quantitativeunderstanding of the behavior of 
losed 
ir
uitsin random graphs.
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Cir
uits in Random Graphs
Around a vertex sele
ted at random (we 
all itroot) the graphs looks like a regular tree.

root

The probability that a 
ir
uit (self-avoiding 
losedpath) of length L passing through the root existsgoes to zero when N !1 and L is �nite: itdeparts from zero when log(N) = O(L) (there are�nite length loops but not in an extensive amount).
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Cir
uits in Random Graphs
There are two main points that motivate us.First: rea
h a better understanding of equilibriumproperties of models of intera
ting �elds living onthese graphs.Frustration emerges from 
ir
uits of odd length:the number of su
h 
ir
uits is related to the amountof glassiness present in the system at low T .Dynami
al point of view: intera
ting agents,routers, internet...Se
ond: the fa
t that random graphs are lo
allytree like (i.e. that very are very few short 
ir
uits)is 
ru
ial to the analyti
 treatment of spin modelson random graphs for example by 
avity methods.They are solved by assuming that f is equal to theone on a tree with self-
onsistent boundary
onditions.We stress that this pro
edure is equivalent to makeassumptions on the distribution of long loops.
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Cir
uits in Random Graphs
N =1 mean �eld approa
h: 
ounting loops.(Di�erent from 
ounting 
ir
uits...)We de�ne loops as 
losed paths going through ea
hvertex an even number of times and through ea
hedge at most on
e. (i.e. the ones that appear inthe high T expansion of statisti
al models).The model: Munish the graph shown before withIsing spins Si = �1 on verti
es i = 1; : : : ; N andferromagneti
 
ouplings Jij = 1 on edges (i; j).Compute f : 
onsider the leaves of the un
overedlo
al tree i.e. verti
es at distan
e D from the root.At large �, a spontaneous magnetization m isexpe
ted to be present in the bulk.The spins atta
hed to the leaves will feel anexternal �eld H > 0. Integrating these spins outwill in turn produ
e an external �eld H 0 a
ting onspins at distan
e D � 1 from the root, withH 0 = (
� 1)� tanh�1[tanh(�) tanh(�H)℄(Bowman and Levin, PRB 1982).
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After repeated iterations of this pro
edure the �eldat the root rea
hes a stationary value, H�, withm = tanh[�
H�℄ and the free-energy densityf(�) = � 
2� ln 2�e�� + e� 
osh 2�H��

+ 
� 1� ln 2 
osh��
H�
� 1 � :The 
riti
al inverse temperature is the smallestvalue of � for whi
h H� is non zero i.e.�
 = tanh�1( 1
�1 ).Use high T loop expansion fun
tional form: thehigh temperature expansion of the partitionfun
tion Z of the Ising model 
an be written as asum over loops. Ea
h loop is given a weight(tanh�)L depending upon its length L:Z(�) = 2N (
osh�) 
N2 XL M(L) (tanh�)L ; (1)where M(L) is the number of loops of length Lthat 
an be drawn on the graph.
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Cir
uits in Random Graphs

Use Legendre transform: assume that loopmultipli
ity grows exponentially with the graphsize:M(L = `N) = exp[N �(`) + o(N)℄ ;where ` is the intensive length of the loops, and� is the entropy of loops having length `. Theentropy � gives information about large-s
aleloops i.e. with lengths of the order of N .Inserting the s
aling hypothesis for M(L) inthe partition fun
tion Z gives��f(�) = � ln 2� 
2 ln 
osh�+ max` ��(`) + ` ln tanh� �in the in�nite N limit.
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Cir
uits in Random Graphs
Results for the loop entropy: see next two �gures.Entropy departs from ` = � = 0 with a slope� ln(tanh �
) = ln(
� 1). Max is in `M = 
4 , �M =( 
2 � 1) ln 2, for loops going through half of the edges.The left part of the 
urve (` � `M ) is parametrized by� going from �
 (` = 0: there is a para/ferro transitionwhen extensive loops start 
ontributing to Z) to 1 (topof the 
urve: at T = 0, Z is dominated by the mostnumerous paths).The right part of the 
urve (` � `M ) is for tanh � > 1,that is, for inverse temperatures with an imaginary partequal to �2 .Even 
. � is un
hanged under the transformation ` ! 
2� `. The right part of the 
urve is the mirror symmetri
of the left part, from a duality between long and shortextensive loops. The largest loop has length 
2 .Odd 
. Duality does not hold. The maximal length `+is rea
hed with an in�nite slope (�nite entropy �+). Forodd degrees 
 loops 
annot o

upy all edges: thelongest loops have one free edge per vertex, a
ting asdefe
ts, the positions of whi
h 
an be 
hosen with somefreedom, giving rise to a �nite entropy. The frustration
oming from the parity of 
 is less important as 
in
reases. G. Parisi, private 
ommuni
ation: RS solution is
orre
t in this range of (
omplex-valued) temperature.
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Cir
uits in Random Graphs
N =1 mean �eld approa
h: 
ounting 
ir
uits.The same pro
edure 
an be applied to derive theentropies of other spin models. The ferromagneti
O(n) model with n! 0 gives information on
ir
uits.A spin ~S is submitted to two �elds H1;H2
onjugated to the magnetization and its squaredvalue. One getsf = � 
� 22� ln� 
(
� 1)� � 2
� 2 �+ 
2� ln �(
� 1)��(for an alternative derivation see M�ezard, Montanari andM�uller, PRL 2004). The entropy of 
ir
uits is�(`) = �(1� `) ln(1� `)+ � 
2 � `� ln�1� 2
̀ �+ ` ln(
� 1) :Results are in the former �gure. The rightmostpoint 
orresponds to Hamiltonian 
y
les.Our result 
oin
ides with the output of rigorous
al
ulations (Garmo 1999; Janson, Lu
zak and Ru
inski2000); the repli
a symmetri
 hypothesis is exa
t forthe O(n! 0) model (see again M�ezard et al. 2004).
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Cir
uits in Random Graphs

From now on we only refer to 
ir
uits (and notto loops).For �nite L, M(L) is asymptoti
allyPoisson-distributed when N !1,
P[M(L) =M ℄ = 1M ! " (
� 1)L2L #M e� (
�1)L2L
that holds for 
ir
uit-length L� logN . Theexpe
ted number of 
ir
uits of intensive length` = L=N is for ` < logNN ,
hM(`)i = (
� 1)L2L = eN�(`)�log(N)+~�(`) ;with �(`) = ` log(
� 1) and ~�(`) = log(2`).
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Cir
uits in Random Graphs
Finite size 
orre
tions: exa
t enumerationFinite N : we have implemented a fast algorithmfor �nding all 
ir
uits in a given graph. We �nd,not only 
ount, all the 
ir
uits: our method we 
anin prin
iple give all interesting 
hara
terizations.We �rst generate a random graph and then 
ountthe 
ir
uits: we average over a number of samples.To generate a �xed 
onne
tivity random graph westart by assuming that ea
h site has 
 
onne
tionsthat 
onne
t it to 
 di�erent sites. Self-
onne
tionsand double edges are not allowed.We start with all 
onne
tions free: pairs of
onne
tions are extra
ted and mat
hed together.We 
ontinue �lling them up (we use a table whi
his resized after ea
h step to keep the pro
esse�e
tive) till all 
onne
tions are set, or till we arestu
k (if for example there are only two free
onne
tions belonging to the same site): in this
ase we dis
ard the full graph and restart thepro
edure from s
rat
h.
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Cir
uits in Random Graphs
The algorithm for 
ir
uit enumerationTo enumerate 
ir
uits we have implemented analgorithm by Johnson SIAM J. Comput. 4, 77 (1975)that �nds all elementary 
ir
uits of a graph.Computer time is bounded byO((N +E)(M + 1)), where N is the number ofverti
es of the graph, E is the number of edges,and M is the total number of 
ir
uits in thegraph. The time used between the output oftwo 
onse
utive 
ir
uits is bound by O(N +E)(this is true also for the time elapsed before the outputof the �rst 
ir
uit and after the output of the last one).The memory spa
e is bounded by O(N +E).One �rst orders the verti
es in somelexi
ographi
 sequen
e, and labels them withintegers. The sear
h starts from a root vertex r,in the subgraph indu
ed by r and by verti
esafter r. The input to the pro
edure is theadja
en
y list A(v) for ea
h vertex v: A
ontains u if and only if (v; u) 2 E , where E isthe set of edges of the graph.
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Cir
uits in Random Graphs
We blo
k a vertex v when it is added to a pathbeginning in r.We build elementary paths starting from r.The verti
es of the 
urrent trial paths are loadedonto a sta
k.A pro
edure adds the vertex to the path, ifappropriate, and appends the vertex to the sta
k:the vertex is deleted from the sta
k when exitingfrom this pro
edure.Ingenious part: keep a vertex blo
ked as long aspossible. This has to be done while maintainingthe pro
edure 
orre
tness: the basi
 rule that hasto be satis�ed to guarantee that all 
ir
uits arefound (only on
e) is that if a path exists from thevertex v to r that does not interse
t the pathloaded on the sta
k, then v has to be free (i.e. it
annot be in a blo
ked state).On an Intel Xeon 2:8 GHz pro
essor ourimplementation takes of the order of 0:07 se
ondsfor �nding all 
ir
uits of a N = 30 graph (they areO(50000)), 2:4s for N = 40 (O(1:5 106) 
ir
uits)and 80s for N = 50 (O(4 107) 
ir
uits).
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Cir
uits in Random Graphs

Thanks to our algorithm and implementationwe have been able to enumerate of the order of1014 
ir
uits (a large number).For small 
 values we 
an study larger graphs(we have analyzed graphs with up to 64verti
es in the 
 = 3 
ase and up to 22 verti
esfor 
 = 6, and averaged our results over samplesranging from 1000 to 10000 random graphs).Typi
ally we �nd of the order of 300 million
ir
uits for a N = 56, 
 = 3 graph, one billion
ir
uits on a N = 26, 
 = 5 graph and 1:5billion 
ir
uits on a N = 22, 
 = 6 graph.For ea
h value of N , we average over of theorder of 10000 samples for all the 
 = 3enumerations, and 1000 graphs for 
 > 3.
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Cir
uits in Random Graphs
�N (`) as a fun
tion of ` for 
 = 3, and for graphsizes ranging from N = 10 to 64 (from bottom totop). The full 
urve is for the analyti
al
al
ulation. Data for sizes multiple of 10 use adi�erent drawing style.
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Finite N data approa
h very slowly the N =1 limit.Verify that �nite N and N �!1results are 
ompatible.loghM(`)i � ` log(
� 1) as `! 0 where hM(`)i isthe average number of 
ir
uits of length L = ` �N .Numeri
al investigations do not allow us to be very
lose to ` = 0 sin
e the minimal intensive 
ir
uitlength, `min is of the order of 1=N .
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Cir
uits in Random Graphs
Flattening of loghM(`)i when ` approa
hes theminimum allowed value: �nite size e�e
ts.In the small ` region, relatively safe from �nite sizee�e
ts, the slope is very similar to the asymptoti
slope. We have �tted a linear behavior (that is
lear in the data) for example for ` in the range(:13; :19) for 
 = 3.Using this approa
h we �nd for 
 from 3 to 6 slopesabout 20% smaller than the theoreti
al predi
tion(on the larger graphs we 
an study).For 
 = 3 we �nd 0:54 versus a theoreti
allog 2 � 0:69; for 
 = 4 we �nd 0:87 versus 1:10; for
 = 5 we �nd 1:12 versus 1:39; for 
 = 6 we �nd1:31 versus 1:61.Finite size e�e
t 
an be drasti
ally redu
ed if we
ompare dire
tly di�erent 
 values. The ratio ofthe slopes 
orresponding to 
 and 
+ 1 is 0:62 for
 = 3 versus a theoreti
al 0:63, 0:78 versus 0:79 for
 = 4 and 0:85 versus 0:86 for 
 = 5.This remarkable agreement gives us 
on�den
e thatwe have a good 
ontrol over �nite size e�e
ts.

September 2004 ICTP, Trieste Page 18



Cir
uits in Random Graphs

 1

 1.5

 2

 2.5

 3

 3.5

 10  20  30  40  50  60  70

(σ
(l

)-
σ ∞

) 
N

, l
=

0.
5

N

c=3
c=4
c=5
c=6We have seen that for small values of `, N timesthe di�eren
e between the 
ir
uit entropy �N (`)and its asymptoti
 value behaves as��N (`)� �1(`)�N = � logN + ~�(`)with ~�(`) = � log(2`): it is independent of 
, witha logarithmi
 dependen
e upon the graph size N .To 
he
k if this behavior applies to �nite values of`, we look at the number of 
ir
uits with ` = 0:5,for di�erent values of N and 
.The data show only a very weak dependen
e upon
, that be
omes weaker with in
reasing 
. 
 = 5data are already indistinguishable 
 = 6 data.
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Here we show the same quantity for ` = 1 i.e. forHamiltonian 
ir
uits, that pass through all verti
esof the random graph.The s
aling of Hamiltonian 
ir
uits is ex
ellentalready at 
 = 3.We will 
ome ba
k later about the fa
t that s
alingproperty of Hamiltonian 
ir
uits are very di�erentfrom the ones of all other �nite `, less dense
ir
uits.
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Inspired by the 
ase of small 
ir
uits we �t the
ir
uit entropy for �nite values of ` to�N (l) = �1(l) + 
1 logNN + 
2 1N :In the �gure we show our results for 
 = 3, ` = 0:5.The quality of the best �t to data with sizesN � 30 only is ex
ellent, and in very goodagreement with all data with N � 12. This twoparameter �t is 
learly superior to power law �ts.
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With very good a

ura
y (surely better thanone per
ent)
1 = �1 ;i.e. even at �nite ` the previous relation givesthe 
orre
t leading 
orre
tions.For all ` values (maybe ex
luding ` = 1, seelater) we �nd that the average number of
ir
uits of redu
ed length ` equalshM(`N)i = (K(`) + o(1)� eN �1(`)N ;where K(`) is a bounded fun
tion of `.For 
2, we �nd values 
lose to 1 e.g. :78 in the
ase of ` = 0:5. Here pre
ision is not as goodsin
e this is a sub-leading 
orre
tion.What is 
lear from our data is that sub-leading
orre
tions to the 
ir
uit entropy are of theorder of 1=N .
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As we have said above the 
ase of Hamiltonian
ir
uits (` = 1) is ex
eptional.Finite size e�e
ts are very strong; this isintuitively expe
ted sin
e these 
ir
uits �ll thegraph and are deeply a�e
ted by its �nite size.It is 
lear that here the stru
ture of �nite sizee�e
ts is 
ompletely di�erent. On the 
ontrarywe have already explained that we �nd exa
tlythe same behavior for all intermediate ` values:the 
ase ` = 1 appears to be isolated.
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The absen
e of small loops in random graphsallows one to argue that the free-energy of aspin model de�ned on the graph is equal to theone on a regular tree with a self-
onsistentexternal �eld at boundary (leaves).In turn, this free-energy fully determines thedistribution of large-s
ale loops in the randomgraph.We have added to our exa
t 
omputation, validin the N �!1 limit, results from exa
tenumeration at �nite N .Thanks to them we have been able todetermine pre
isely the behavior of the leading
orre
tions to the thermodynami
al behavior(at least for 
ir
uits with ` < 1): we have foundthat Hamiltonian 
ir
uits have stronger �nitesize 
orre
tions and a pe
uliar �nite Nbehavior.

September 2004 ICTP, Trieste Page 24


