abdus salam

international centre for theoretical physics

Entropy/information bounds and gravitation

Jacob D. Bekenstein
Racah Institute of Physics
The Hebrew University of Jerusalem

[^0] GEOMETRICAL PHASES IN COMPLEX SYSTEMS

ICTP, Trieste
1 November 2004

Entropy/information bounds and gravítation

Jacob Bekenstén
The Hebrew University, Jerusalem

The problem

- What is the ultimate information storage capacity of a physical system?
- emphasis on storage, not communication
- emphasis on physically significant parameters
- emphasis on "ultímate"

Information storage capacity

 Holevo's theorem for quantum communication channel$$
\begin{gathered}
\text { symbol } i \Longleftrightarrow{ }_{i} \quad S(i)=-\operatorname{Tr} i_{i} \ln i \\
=\sum_{i} \mathrm{p}_{i} i_{i}()=-\operatorname{Tr} \ln \\
I \leq S()-\sum_{i} \mathrm{p}_{i} \mathrm{~S}\left(i_{i}\right)
\end{gathered}
$$

also bounds stored information

$$
I \leq S() \text { any subject to constraints }
$$

Black holes in natural settings

- Collapse of star at end of its active life
+ stellar mass black hole; 2-20 M
+ powerhouses of some of the galactic X-ray sources
- Aggregation of smaller black holes in galaxy's core
+ supermassive black hole; $10^{6}-10^{9} \mathrm{M}$
- powerhouses of quasars
- Collapse of overdense regions early in universe
- primordial black holes $10^{12}-10^{30} \mathrm{Kg}$
- hypothetical; may lurk everywhere

Black hole varieties

- Mathematically black holes are peculiar solutions of Einstein's gravity equations - (Einstein did not accept such objects)
- they behave like particles
- also show up in competing theories
- Simple objects - few parameters
- Schwarzschild (1916) - mass M
- Reíssner-Nordstrom (1918) - mass and charge Q
- Kerr (1962) - mass and angular momentum J
- Newman (1965) -M, Q,J

The black hole horizon

$$
m=G M / c^{2} \quad q=\sqrt{ } G Q / c^{2} \quad a=J / m c
$$

"Black holes have no hair" (Wheeler 1969)

- The Kerr-Newman family - the totality of equilibrium black holes
- On condition that only allow gravity and electromagnetism - no more parameters
- True in competing theories
- In presence of extra interactions exceptions occur
* black holes with scalar fields
* colored black holes
* black holes with magnetic monopole

Why black hole thermodynamics?

- Analogy - few parameters
- ordinary systems: E, V, N
- black hole: M, Q, J
- Contradictions
- ordínary systems: thermodynamícal - second law
- black hole: mechanical
- combined system: violates second law

Formula for black hole entropy (1972)

$$
\begin{aligned}
\mathrm{A} & =4\left[\left(\mathrm{~m}+\sqrt{\mathrm{m}^{2}-\mathrm{q}^{2}-\mathrm{a}^{2}}\right)^{2}+\mathrm{a}^{2}\right] \\
d\left(M c^{2}\right) & =d A+d Q+d J \Longleftrightarrow d E=T d S+d Q+d J \\
& \equiv c^{4}(2 G A)^{-1} \sqrt{m^{2}-q^{2}-a^{2}} \\
& \equiv 4 Q\left(m+\sqrt{\mathrm{m}^{2}-\mathrm{q}^{2}-\mathrm{a}^{2}}\right) \mathrm{A}^{-1} \\
& \equiv 4 \mathrm{JM}^{-1} \mathrm{~A}^{-1}
\end{aligned}
$$

Conclusion: $S_{B H}=f(A)$
Choice $f(A) \propto \sqrt{ } A$ ruled out $\Longleftrightarrow S_{B H}=\mathrm{Ac}^{3} / h \mathrm{~h}$

$$
\mathrm{T}_{B H}=\left(\mathrm{S}_{B H} / \mathrm{A}\right)^{-1}=\left(\mathrm{c}^{3} / \hbar \mathrm{G}\right)
$$

Hawking radiance (1974)

- Quantum fields in black hole grav. field
- Spontaneous emíssion
- Thermal character
- spectrum - Planckían
- modes-uncorrelated
- statistics - black body radiation

$$
\begin{gathered}
\mathrm{T}_{B H}=\frac{\mathrm{c}^{3} \hbar}{8 \mathrm{GM}} \Longrightarrow=1 / 4 \\
S_{B H}=A c^{3} / 4 \hbar G
\end{gathered}
$$

The laws of black hole thermodynamics

Oth: In equilibrium a suitable local temperature is constant all over horizon (Carter 1970)

1st: $d\left(M c^{2}\right)=T_{B H} d S_{B H}+d Q+d J$
2nd: $\quad S_{B H}^{\prime}+S_{m}^{\prime}+S_{r}^{\prime}>S_{B H}+S_{m}+S_{r} \quad$ (GSL, 1972)
$3 \mathrm{rd}: T_{B H} \rightarrow 0$ is hard to achieve

Evidence for generalized second law (GSL)

- Black hole mergers
- area theorem (Christodoulou, Penrose \& Floyd, Hawkíng 1970)
- total black hole entropy increases
- some (gravitational) radiation entropy produced
- Infall into black hole
- matter entropy decreases
- black hole entropy increases
- sum of the two increases (1972-74)
- Hawking radiation
- radiation entropy increases
- black hole entropy decreases
- sum of the two increases (1975)

Gravitational redshift

$$
{ }_{2}{ }_{2}^{2}
$$

$$
\begin{aligned}
& c^{2} d^{2}=c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2} \\
& c^{2} d^{2}=-g_{t t} d t^{2}-\cdots
\end{aligned}
$$

$\nu_{2} \quad \tau_{2}$ cycles

$$
\begin{aligned}
& \frac{2}{1}=\frac{\sqrt{ }-g_{t t}\left(\mathbf{x}_{1}\right)}{\sqrt{ }-g_{t t}\left(\mathbf{x}_{2}\right)} \\
& g_{t t}=-c^{2}\left(1-2 G M / r c^{2}\right)
\end{aligned}
$$

$$
10
$$

$$
\begin{aligned}
& \infty=\left(1-2 \mathrm{GM} / r_{1} c^{2}\right)^{1 / 2} 1 \\
& \infty \approx\left(\frac{r}{2 G M / c^{2}}\right)^{1 / 2}
\end{aligned}
$$

A Gedanken experiment

$$
d s^{2}=-\left(1-2 G M / r c^{2}\right) d t^{2}+\left(1-2 G M / r c^{2}\right)^{-1} d r^{2}+\cdots
$$

$$
=\int \frac{d r}{\left(1-2 G M / r c^{2}\right)^{1 / 2}} \approx 2\left(2 G M / c^{2}\right)^{1 / 2}(r)^{1 / 2}
$$

$$
\infty \approx\left(\frac{r}{2 G M / c^{2}}\right)^{1 / 2}
$$

$$
\mathrm{E}_{\infty} \approx \frac{}{4 \mathrm{GM} / \mathrm{C}^{2}} \mathrm{E}
$$

$$
(M) c^{2} \approx \frac{R}{4 G M / c^{2}} E
$$

First try at an entropy bound (1981)

$$
\begin{aligned}
& A=4\left[\left(m+\sqrt{m^{2}-2}\right)^{2}+\not 2\right]=16\left(G M / c^{2}\right)^{2} \\
& A \approx 32 \quad\left(G / c^{2}\right)^{2} M \quad M \approx 8 \quad\left(G / c^{2}\right) E R \\
& S_{B H}=\left(C^{3} / 4 \hbar G\right) \quad A \approx 2 E R / \hbar C \\
& S_{B H}+\quad S_{\text {world }}=2 E R / \hbar C-S \geq 0
\end{aligned}
$$

$$
S \leq 2 \mathrm{ER} / \mathrm{hc}
$$

Observations

- Bound applicable to isolated object
- don't use for pieces of a system !
- E means object's total proper energy
- don't forget rest mass energy !
- Object not strongly self-gravitating
- nevertheless bound works for black hole itself!
- Bound independent of gravitation
- should apply to flat spacetime physics!

Rest mass quandary

lowest lying states have energies of $\mathcal{O}\left(\hbar^{2} / \mu R^{2}\right)$ total energy $E=\mathcal{O}\left(N \hbar^{2} / \mu R^{2}\right)$
make $2 \mathrm{ER} / \mathrm{hc}$ as small as you want.
Hence can violate the bound!
Wrong: forgot the rest mass part of E !

$$
\begin{gathered}
W=\frac{(+N-1)!}{(-1)!N!} \\
S=(+N) \ln (+N)-N \ln N-\ln +\cdots \\
S=\ln (1+N /)+N \ln (1+/ N)+\cdots \\
=(\mu \mathrm{cR} / 2 \bar{\hbar})^{3} \\
\frac{S}{N \mu c R / \hbar}<\frac{S}{N \Omega^{1 / 3}}=\frac{1}{N^{1 / 3}} \underbrace{\frac{\ln (1+\bar{n})+\bar{n} \ln (1+1 / \bar{n})}{\bar{n}^{2 / 3}}}<1 . \frac{1.581}{N^{2}} \\
S<\frac{1.581 N \mu c^{2} R}{N^{1 / 3} \hbar c}<\frac{2 \operatorname{Ne} \mathrm{R}}{\hbar c}
\end{gathered}
$$

The low temperature quandary

D. Deutsch (1982): canonical ensemble
simple case: black body radiation

$$
E \sim T^{4} V \quad \text { and } \quad S \sim T^{3} V
$$

specific entropy $S / E \sim T^{-1}=$
to violate bound take $>2 \mathrm{R} / \mathrm{hc}$
Wrong: forgot effect of boundary

Microcanonical ensemble calculations

A - scalar radiation in a unit cube
thermal
B - photons in box $1 \times 2 / 3 \times 1 / 5$
C - neutrinos in unit ball

Universal entropy bound - summary

$$
\mathrm{S} \leq 2 \mathrm{ER} / \mathrm{hc}
$$

- originated from black hole physics
- E is gravítating energy
- system must be complete, isolated
- is example tested
- may fail for strong ly gravitating or rapidly evolving systems
- tightest of known bounds

Holographic entropy bound

('t Hooft 1993; Gonzales-Diaz 1983)

- A area of any closed circumscribing surface
- is example tested

$$
S \leq c^{3} A / 4 \hbar G
$$

- includes G
- valid for weak and strong self-gravity
- fails for rapidly evolving systems
- is overly generous

$$
\square R=1 \mathrm{~cm} ; \quad \mu=1 \mathrm{~g} \quad S \leq\left\{\begin{array}{l}
2 \times 10^{38} ; \text { universal } \\
1 \times 10^{66} ; \text { holographic }
\end{array}\right.
$$

How do we know? (Susskind 1995)

$$
S<S_{B H}=c^{3} A_{B H} / 4 \hbar G<c^{3} A / 4 \hbar G
$$

$S_{B H}=\left(4 \mathrm{GM}^{2} / \mathrm{C} \mathrm{\hbar}\right) \approx 8 \mathrm{GM}\left(\mathrm{E} / \mathrm{c}^{2}\right) / \mathrm{ch}=c^{3} A / 4 \hbar G$

$$
2 \mathrm{GM} / \mathrm{C}^{2}>\sqrt{\mathrm{A} / 4} \equiv \mathrm{R}
$$

$$
M=\frac{C^{6} A}{32 G^{2} E}
$$

Bousso covariant entropy bound

$$
S \leq c^{3} A / 4 \hbar G
$$

A - area of surface with fixed sign of Gaussian curvature

S- entropy that is illuminated by "light rays" up to caustics
but still overly generous

- covariant
- example tested
- valid for strong gravity
- valid for rapílly evolving systems

Quantum buoyancy
Unruh effect (1976) $\mathrm{T}_{U}=\frac{\mathrm{ha}}{2 \mathrm{c}}$

$$
a=c^{2} \frac{d}{d r}\left(1-2 G M / r c^{2}\right)^{1 / 2}
$$

$$
+\mathrm{p}=\mathrm{Ts} \quad \text { (Gibbs-Duhem relation) }
$$

W reaches its maximum at $E=E_{\text {rad }}$

$$
E-W=T_{B H} S_{\mathrm{rad}}
$$

$$
\begin{aligned}
& S_{B H}=(E-W) / T_{B H} \\
& S_{B H}+S_{\mathrm{world}}=S_{\mathrm{rad}}-S
\end{aligned}
$$

Not everything is so simple

$$
3 \mathrm{p}==\frac{\mathrm{T}^{4}}{15 \hbar^{3} c^{3}} \quad R \gg \frac{\hbar c}{E}
$$

For $r-2 G M / c^{2} \ll 2 G M / c^{2}$,
$\mathrm{T} \approx \frac{\hbar}{2} \Longrightarrow \lambda_{\text {typical }} \approx \ell$
Buoyant force drops rapidly with ℓ

1. Drop sphere from a few radii out

- buoyancy makes little difference

Weak version of universal bound

More precisely

b) Account for buoyant force in detail

- fluid model of radíation a poor one (1999)
- wave scatteríng problem
- the important parameter
 take $\sigma \gg 1$
at floating $E \neq E_{\mathrm{rad}}$ and $\Delta S_{B H}<S_{\mathrm{rad}}$

$$
\mathrm{S}_{B H}>2 \mathrm{ER} / \text { hc }
$$

now consider $\sigma \ll 1$

$$
\mathrm{S}_{B H}=2 \mathrm{ER} / \mathrm{hc}[(1+/ 2) \overline{1+}-\cdots]
$$

Alternative way

$$
F(r)=\frac{\mathcal{N} \hbar c^{2}}{61,440(\mathrm{~m} \mathrm{r})^{2}}
$$

$$
R=m /
$$

$$
t \quad 5 \times 10^{4} \frac{E(m / c)^{2}}{\hbar \mathrm{~N}}
$$

$$
\mathrm{d} \quad 12 \times 10^{3}\left(\frac{\mathrm{R}}{\mathrm{~N}} \frac{\mathrm{hc} / \mathrm{E}}{\mathrm{D}^{2 / 3} \mathrm{~m}}\right.
$$

$$
\frac{f_{\text {rad }}(r)}{f_{\text {grave }}(\Upsilon)}=\frac{\mathcal{N}_{e}}{61,440^{2}} \frac{(\hbar c / E) R^{2}}{m^{3}}
$$

choose parameters so that M is
$-2 m \rightarrow$
unchanged overall

Entropy accounting

$$
S \bigcirc_{E}^{R=m /}
$$

$$
S_{\mathrm{rad}}=8 \quad E R / \text { hc }
$$

$$
S_{\mathrm{rad}}-S>0
$$

$$
\mathrm{S}_{\mathrm{rad}}=\frac{\mathrm{E}}{\mathrm{~T}_{B H}}
$$

$$
S<8 \quad E R / h c
$$

$$
\mathrm{S} \leq 2 \mathrm{ER} / \mathrm{h} \mathrm{c}
$$

[^0]: These are preliminary lecture notes, intended only for distribution to participants

