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What is the ultimate information storage capacity of a
physical system ?

emphasis on storage, not communication
emphasis on physically significant parameters

emphasis on “ultimate”

The problem



Information storage capacity

Holevo’s theorem for quantum communication channel

=

∑

i

pi i

I≤ S( ) any subject to constraints

also bounds stored information

S( ) = −Tr ln

S( i) = −Tr i ln isymbol i⇐⇒ i

I≤ S( ) −
∑

i

piS( i)



Collapse of star at end of its active life
stellar mass black hole; 2-20 Mo
powerhouses of some of the galactic X-ray sources

Aggregation of smaller black holes in galaxy’s core

supermassive black hole; 106-109 Mo
powerhouses of quasars

Collapse of overdense regions early in universe

primordial black holes 1012-1030 Kg
hypothetical; may lurk everywhere

Black holes in natural settings



Mathematically black holes are peculiar solutions of
Einstein’s gravity equations - (Einstein did not accept
such objects)

 they behave like particles
also show up in competing theories

Simple objects - few parameters

Schwarzschild (1916) - mass M

Reissner-Nordstrom (1918) - mass and chargeQ

Kerr (1962) - mass and angular momentum J

Newman (1965) -M,Q,J

Black hole varieties

M

JQ



ϑ

rh = m +

√
m

2 − a
2

r

The black hole horizon

r∞ = m +

√
m 2 − a2

cos
2

horizon is one-way membrane

m = GM/c
2

q =

√
GQ/c

2
a = J/mc



The Kerr-Newman family  - the totality of equilibrium
black holes

On condition that only allow gravity and
electromagnetism - no more parameters

True in competing theories

In presence of extra interactions exceptions occur

black holes with scalar fields

colored black holes

black holes with magnetic monopole

“Black holes have no hair” (Wheeler 1969)



Analogy - few parameters
ordinary systems: E, V, N
black hole: M, Q, J

Contradictions
ordinary systems: thermodynamical - second law
black hole: mechanical
combined system: violates second law

Why black hole thermodynamics ?

S



Formula for black hole entropy (1972)

d(Mc
2)= dA + dQ + dJ

A = 4 [(m +

√
m 2 − q2 − a2

)
2

+ a2
]

dE = TdS + dQ + dJ⇐⇒

≡ c
4(2GA)−1

√
m

2 − q
2 − a

2

≡ 4 Q (m +
√
m 2 − q2 − a2)A−1

≡ 4 JM −1A−1

Conclusion: SBH = f(A)

Choice f(A) ∝
√

A ruled out SBH = Ac3/̄hG

TBH = ( SBH/ A)−1 = ( c3/̄hG )



Quantum fields in black hole grav. field

Spontaneous emission

Thermal character

spectrum - Planckian
modes - uncorrelated
statistics - black body radiation

Hawking radiance (1974)

= 1/4

SBH = Ac
3
/4h̄G

M

JQ

TBH =
c3h̄

8 G M



The laws of black hole thermodynamics

0 th : In equilibrium a suitable local temperature is
constant all over horizon (Carter 1970)

1 st: d(Mc
2)= TBHdSBH + dQ + dJ

3 rd : TBH → 0 is hard to achieve

SBH → 0 as TBH → 0

2 nd: S
′

BH
+ S

′

m
+ S

′

r
> SBH + Sm + Sr (GSL, 1972)



Evidence for generalized second law (GSL)
Black hole mergers

area theorem (Christodoulou, Penrose & Floyd,
Hawking 1970)
total black hole entropy increases
some (gravitational) radiation entropy produced

Infall into black hole
matter entropy decreases
black hole entropy increases
sum of the two increases (1972-74)

Hawking radiation
radiation entropy increases
black hole entropy decreases
sum of the two increases (1975)



Gravitational redshift

c2d 2
= c2dt2 − dx2

− dy2
− dz2

c2d 2
= −gtt dt

2 − ···

ν2 τ2 cycles

ν1 τ1 cycles

gtt = −c
2
(1 − 2GM/rc

2
)

2

1

=

√
− gtt(x1)

√
− gtt(x2)

2

1
∞ = (1 − 2G M /r1c

2
)
1/2

1

∞ ≈

( r

2G M /c2

)1/2

1



AGedanken experiment

ds
2

= − (1 − 2GM/rc
2
) dt

2
+ (1 − 2GM/rc

2
)
−1

dr
2

+ ···

=

∫
dr

(1 − 2G M /rc2)1/2
≈ 2(2GM/c

2)1/2( r)1/2

M

E

S
R

( M)c2
≈

R

4GM/c
2

E

E∞ ≈
4G M /c2

E

∞ ≈

( r

2G M /c2

)1/2

1



First try at an entropy bound (1981)

A = 4 [(m +

√
m 2 − q2 − a2

)
2

+ a2
] = 16 (G M /c2)2

A ≈ 32 (G /c2)2M M ≈ 8 (G /c2)E R

SBH = (c3/4̄hG ) A ≈ 2 E R /̄hc

SBH + Sworld = 2 E R /̄hc− S ≥ 0

S ≤ 2 E R /̄hc



Bound applicable to isolated object

don’t use for pieces of a system !

E means object’s total proper energy

don’t forget rest mass energy !

Object not strongly self-gravitating

nevertheless bound works for black hole itself !

Bound independent of gravitation

should apply to flat spacetime physics !

Observations
S ≤ 2 E R /̄hc



Rest mass quandary

lowest lying states have energies of O(h̄2/µR2)

total  energy E = O(Nh̄2/µR2)

make 2 E R /̄hc as small as you want.

Hence can violate the bound !

Wrong: forgot the rest mass part of E !

N massive nonrelativistic bosons
R



S = ( + N)ln( + N)− N lnN − ln + ···

S = ln(1+ N/ )+ N ln(1+ /N)+ · · ·

= ( µcR/2 h̄)3

S

NµcR/h̄
<

S

NΩ1/3
=

1

N1/3

ln(1 + n̄) + n̄ ln(1 + 1/n̄)

n̄2/3

︸ ︷︷ ︸

< 1.581

S <
1.581Nµc2R

N1/3h̄c
<

2 N µc2R

h̄c

W =
( + N − 1)!

( − 1)!N!



The low temperature quandary

D. Deutsch (1982): canonical ensemble

simple case:  black body radiation

Wrong:  forgot effect of boundary 

E ∼ T
4
V S ∼ T

3
Vand

to violate bound take > 2 R /̄hc

S/E ∼ T−1
=specific entropy



Microcanonical ensemble calculations
h̄ = c = 1

}

thermalA - scalar radiation in a unit cube

B -  photons in box  1 x 2/3 x 1/5

C - neutrinos in unit ball



originated from black hole physics

E is gravitating energy

system must be complete, isolated

is example tested

may fail for strong ly gravitating or rapidly evolving
systems

tightest of known bounds

Universal entropy bound - summary

S ≤ 2 E R /̄hc

R



A area of any closed circumscribing surface

is example tested

includes G

valid for weak and strong self-gravity

fails for rapidly evolving systems

is overly generous

Holographic entropy bound
(’t Hooft 1993; Gonzales-Diaz 1983)

S ≤ c3A/4h̄G

R = 1 cm; µ = 1 g S ≤

{
2 × 1038; universal

1 × 1066; holographic



How do we know ?  (Susskind 1995)

A

S

S < SBH = c
3
ABH/4h̄G < c

3
A/4h̄G

M =

c6A

32 G 2E

M

SBH = (4 G M 2/c̄h)≈ 8 G M (E /c2)/c̄h = c
3
A/4h̄G

E

2G M /c2 >
√
A/4 ≡ R



Bousso covariant entropy bound

   example tested

valid for strong gravity

valid for rapidly evolving systems

S ≤ c3A/4h̄G

A - area of surface with
fixed sign of Gaussian
curvature

S - entropy that is
illuminated by “light
rays” up to caustics covariant

but still overly generous



Quantum buoyancy

O

Unruh effect (1976) TU =

h̄a

2 c

Unruh and Wald (1982)

a = c
2

d

dr

(1 − 2GM/rc
2
)
1/2

a

+ p= Ts (Gibbs-Duhem relation)

SBH = (E − W)/TBH

E − W = TBH Srad

W reaches its maximum at E = Erad

SBH + Sworld = Srad − S M

E S



Not everything  is so simple

For r − 2GM/c
2

 2GM/c

2
,

Buoyant force drops rapidly with �

Weak version of universal bound
M

3p= =
T 4

15h̄3c3
R �

h̄c

E

T ≈

h̄

2

1. Drop sphere from a few radii out

=⇒ λtypical ≈ �

  buoyancy makes little difference



More precisely

M

b) Account for buoyant force in detail

wave scattering problem
fluid model of radiation a poor one (1999)

SBH > 2 E R /̄hc

take σ � 1

now consider σ � 1

SBH = 2 E R /̄hc[(1+ /2) 1+ − ··· ]

the important parameter
√

N h̄

180 E R

at floating E �= Erad and ∆SBH < Srad



Alternative way

d 1.2 × 10
3

(

N

R

h̄c/E

)2/3

m

frad(r)

fgrav(r)
=

Ne

61,440
2

(h̄c/E )R 2

m 3

S

E

R = m /

t 5 × 10
4

E(m/c)
2

h̄N

d≈ 2(c2t2m / 2
)
1/3

F (r) =

N h̄c2

61,440( m r)2

M

2m

choose parameters so that M is
unchanged overall



Entropy accounting

M

Srad =

E

TBH

Srad − S > 0

S

E

R = m /

S < 8 E R /̄hc

TBH =

c̄h

8 m

S ≤ 2 E R /̄hc

Srad = 8 E R /̄hc


