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Qubit decoherence
Decoherence and relaxation of a quantum system result from coupling to the environment

(reservoir, bath), described by

H = HS + HR + V

For 2-level system (qubit) HS = h̄ωa|e〉〈e|,
HR – reservoir, V = Vr + Vp – system-reservoir interaction,

Vr = Rr|e〉〈g| + R†
r|g〉〈e|, Vp = Rp|e〉〈e|.

|e〉, |g〉 excited and ground states; Rr, Rp: reservoir operators;

Vr : off-diagonal coupling, causing population relaxation (PR) of ρee, ρgg (decay,

excitation) and (life-time) relaxation of the coherence ρeg (decoherence);

Vp: diagonal coupling (proper dephasing – PD), causing decoherence.
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Dynamical control of decay and decoherence

A. G. Kofman and G. Kurizki, Nature 405, 546 (2000); PRL 87, 270405 (2001);

IEEE Trans. Nanotechnology (in press).

Our purpose is to control (suppress or, sometimes, enhance) decoherence and relaxation

by external perturbations. Typically, population relaxation and proper dephasing are due to

different reservoirs and their rates are significantly different.

Then it is sufficient to control only the fastest of them.

Consider off-diagonal coupling to zero-temperature reservoir in the rotating-wave

approximation (RWA):

V = h̄
∑

j

Vje|g, j〉〈e, vac| + h.c..

Reservoir consists of oscillators (modes) or two-level systems (spins),

|vac〉 is its ground state,

|j〉 is an excited mode of the reservoir with energy h̄ωj .
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External perturbation – 2 types

Kofman and Kurizki, PRL 87, 270405 (2001);

Barone, Kurizki and Kofman, PRL 92, 200403 (2004).

V (t)(t)δ m
je

g

H(t) = H0 + Vm(t) + H1(t),

H0 = HS + HR ≡ h̄ωa|e〉〈e| + h̄
∑

j ωj |j〉〈j|,
Vm(t) = h̄ε̃(t)

∑
j Vje|g, j〉〈e, vac| + h.c. – modulated coupling,

Ĥ1(t) = h̄δa(t)|e〉〈e| + h̄δf (t)
∑

j |j〉〈j| – time-dependent energy shifts.

One can modulate:

(a) the coupling amplitude/phase, as, e.g., in photoionization;

(b) the energies/phases of the levels, e.g., by Stark shifts with an

off-resonant field. 2π-pulses at adjacent transition change the

level phase by π (Agarwal, Scully, Walter, 2001).
ωa

(t)

∆

g

e

u

sΩ
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Wave-function approach

For off-diagonal coupling to T = 0 reservoir the qubit and reservoir are described by the

wave function. In the interaction representation it is given by

|Ψ(t)〉 = α(t)e
−iωat−i

∫
t

0
δa(t′)dt′ |e, vac〉 +

∑
j

βj(t)e
−iωjt−i

∫
t

0
δf (t′)dt′ |g, j〉,

the initial condition being |Ψ(0)〉 = |e〉. From the Schroedinger equation

ih̄
∂

∂t
|Ψ〉 = H(t)|Ψ〉

we obtain the equations

α̇ =
∑

j ε∗(t)Veje
i(ωa−ωj)tβj , β̇j = ε(t)Vjee

−i(ωa−ωj)tα,

where ε(t) = ε̃(t) exp
[
−i

∫ t

0
[δa(t1) − δf (t1)]dt1

]
.

Both above types of modulation are accounted for by a single function ε(t).

External perturbations can provide phase, amplitude or amplitude-phase modulation.
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α̇ =
∑

j ε∗(t)Veje
i(ωa−ωj)tβj , β̇j = ε(t)Vjee

−i(ωa−ωj)tα,

where ε(t) = ε̃(t) exp
[
−i

∫ t

0
[δa(t1) − δf (t1)]dt1

]
.

Integrating equation for βj , we get βj(t) = Vje

∫ t

0

dt′ε(t′)e−i(ωa−ωj)t
′

α(t′).

Inserting this into the equation for α, yields the integro-differential equation

α̇ = −
∫ t

0

dt′eiωa(t−t′)ε∗(t)ε(t′)Φ(t − t′)α(t′),

where Φ(t − t′) =
∑

j |Vej |2e−iωj(t−t′) is the reservoir memory function.
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If the reservoir is sufficiently broad and smooth, Φ(t) decays faster than α(t) =⇒
α(t′) ≈ α(t). This simplification yields the solution

α(t) = exp

[
−

∫ t

0

dt′ε∗(t′)
∫ t′

0

dt′′ε(t′′)Φ(t′ − t′′)eiωa(t′−t′′)

]
. (1)

Expression (1) can be made more transparent by introducing the Fourier transform in the

“window” (0, t),

εt(ω) = 1√
2π

∫ t

0
ε(t1)e

iωt1dt1. (2)

From the definition of Φ(t) we obtain that
∫ ∞
0

dtΦ(t)eiωt = πG(ω) − iχ(ω) (3)

Here G(ω) is the coupling spectrum, a weighted density of modes of the reservoir,

G(ω) =
1

h̄2

∑
j

|µej |2δ(ω − ωj),

χ(ω) is the generalized susceptibility, satisfying the Kramers-Kronig relation

χ(ω) = P
∫

G(ω′)dω′

ω′ − ω
, where P is the principal value of the integral.
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Universal formulas

Using Eq. (3) and the definition (2), one can transform (1) into

α(t) = e−[R(t)/2+i∆a(t)]Q(t),

where Q(t) =
∫ t

0
dτ |ε(τ)|2 is the fluence. The density-matrix elements are

ρee(t) = ρee(0)|α(t)|2 = ρee(0)e−R(t)Q(t),

ρgg(t) = 1 − ρee(t), ρeg(t) = ρeg(0)α(t).

R(t) and ∆a(t) are the average decay rate and shift of level |e〉, respectively, in the

interval (0, t). They are modified by external perturbation.
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The modified decay rate obeys the universal formula:

R(t) = 2π

∫ ∞

−∞
dωG(ω + ωa)Ft(ω), (4)

overlap of reservoir coupling spectrum G(ω) and the normalized spectral intensity of

modulation

Ft(ω) =
|εt(ω)|2
Q(t)

;

∫ ∞

−∞
dωFt(ω) = 1.

This overlap determines suppressed or enhanced coupling to environment.

The same formula determines quantum Zeno and anti-Zeno effects

(Kofman and Kurizki, Nature, 2000).

The modulation-modified level shift is given by a similar spectral overlap,

∆a(t) = −
∫ ∞

−∞
dωχ(ω + ωa)Ft(ω). (5)

If modulation is sufficiently slow, Ft(ω) is narrow and one can set Ft(ω) ≈ δ(ω) in Eqs.

(4) and (5), yielding unmodified results

R = 2πG(ωa) – Golden Rule, ∆a = −χ(ωa).
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Quasiperiodic modulation

Coherent amplitude and phase modulation (APM): ε(t) =
∑

k

εke−iωkt.

Here ωk (k = 0,±1, . . .) are arbitrary discrete frequencies with the minimum spectral

distance Ω. Now we obtain

Q(t) = ε2ct + ε2c
∑
k �=l

λkλ∗
l

ei(ωl−ωk)t − 1

i(ωl − ωk)
, (6)

|εt(ω)|2 = ε2ct
∑

k

|λk|2S(ηk, t) + ε2c
∑
k �=l

λkλ∗
l

1 + ei(ηk−ηl)t − eiηkt − e−iηlt

2πηkηl
.

(7)

Here ε2c =
∑

k |εk|2 equals the average of |ε(t)|2 over a period of the order of 1/Ω,

λk = εk/εc, ηk = ω − ωk, and S(ηk, t) is a bell-like function of ηk normalized to 1,

S(ηk, t) =
2 sin2(ηkt/2)

πtη2
k

.

For t � Ω−1 the first term in the expression for |εt(ω)|2 is a sum of peaks, whose

spacings are much greater than their width 2/t.
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The fast oscillating second term is also peaked at ω = ωk , but we then find that the ratio of

the first to the second terms, and that of their counterparts in (6), is ∼ (Ωt)−1 � 1. In the

long-time limit, we then neglect these fast oscillating terms and obtain the decay probability

P (t) ≡ |α(t)|2 = exp[−R(t)ε2ct], (8)

whereas the universal formula for R(t) now involves

Ft(ω) ≈
∑

k

|λk|2S(ηk, t).

For a sufficiently long time, the function S(ηk, t) becomes narrower than the respective

characteristic width ξ(ωa + ωk) of G(ω) around ωa + ωk , and one can set

S(ηk, t) ≈ δ(ηk) (t � 1/ξ(ωa + ωk)).

11



Thus, when

t � Ω−1, t � tc ≡ max
k

{1/ξ(ωa + ωk)},
where tc is the effective correlation (memory) time of the reservoir, the formula for R(t) is

reduced to

R = 2π
∑

k

|λk|2G(ωa + ωk). (9)

For the validity of (9) it is also necessary that

ε2cRtc � 1. (10)

This condition is well satisfied in the regime of interest, i.e., weak coupling to essentially any

reservoir, unless (for some k) ωa + ωk is extremely close to a sharp feature in G(ω), e.g.,

a band edge (Kofman, Kurizki and Sherman, JMO, 1994). Since R and tc depend on the

modulation, this criterion may be achieved using a suitable modulation, even if in the

absence of modulation the coupling is strong(!).

Hence, the long-time limit of the general decay rate under the APM is a sum of the

Golden-Rule rates, corresponding to the resonant frequencies shifted by ωk , with the

weights |λk|2. Formula (9) provides a simple general recipe for manipulating the decay

rate by APM.
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Impulsive phase modulation

Let the phase of the coupling amplitude jump by an amount φ at times τ, 2τ, . . .. Such

modulation can be achieved by a train of identical, equidistant, narrow pulses of

nonresonant radiation, which produce pulsed frequency shifts δaf (t). Now

ε(t) = ei[t/τ ]φ,

where [. . .] is the integer part. One then obtains that

Q(t) = t, εc = 1, Fnτ (ω) =
2 sin2(ωτ/2) sin2[n(φ + ωτ)/2]

πnτω2 sin2[(φ + ωτ)/2]
.

The decay, according to Eq. (8), has then the form (at t = nτ )

P (nτ) = exp[−R(nτ)nτ ],

where R(nτ) is defined by the universal formula with the above Fnτ (ω).

For sufficiently long times one can use Eq. (9). The poles and residues of

ε̂(s) =
1 − e−sτ

s(1 − eiφ−sτ )
=⇒ ωk =

2kπ

τ
− φ

τ
, |λk|2 =

4 sin2(φ/2)

(2kπ − φ)2
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For small phase shifts, φ � 1, the k = 0 peak dominates,

|λ0|2 ≈ 1 − φ2

12
,

whereas

|λk|2 ≈ φ2

4π2k2
(k 	= 0).

In this case one can retain only the k = 0 term in Eq. (9) [unless G(ω) is changing very

fast]. Then the modulation acts as a constant shift

∆ ≡ ω0 = −φ/τ.

With the increase of |φ|, the difference between the k = 0 and k = 1 peak heights

diminishes vanishing for φ = ±π.

Thus for φ = π

|λ0|2 = |λ1|2 = 4/π2, ω1 = −ω0 = π/τ,

i.e., Ft(ω) for φ = ±π contains two identical peaks symmetrically shifted in opposite

directions [the other peaks |λk|2 decrease with k as (2k − 1)−2, totaling 0.19].
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The above features allow one to adjust the modulation parameters for a given scenario to

obtain an optimal decrease or increase of R.

AC Stark modulation: δ(t) 
 Ω2
s(t)/∆.

Periodic PM (φ � 1) – most effective near band edge.

On the other hand, if ωa is near a symmetric peak of G(ω), periodic PM with φ = π

(Agarwal, Scully, Walther, 2001) more effectively reduce R, since the main peaks of Ft(ω)

at ω0 and ω1 then shift stronger with τ−1 than the peak at ω0 = −φ/τ for φ � 1.
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Amplitude modulation can be considered similarly: Fischer, Gutierrez-Medina and

Raizen, PRL (2001) – experiment; Kofman and Kurizki, PRL (2001) – theory.
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Master equations for the density matrix

This approach is applicable for the most general case: diagonal and off-diagonal coupling,

thermal reservoirs (baths), and violation of the RWA.

The Hamiltonian in question is the sum of the system (S), reservoir bath (B) and

system-bath interaction (I ) terms,

H = HS(t) + HB + HI(t).

Here HS(t) is the driven (and modulated) system Hamiltonian.

The combined state of the system and the bath is described by the density operator

ρS+B(t), the density operator of the system

ρ = TrBρS+B, ρS+B(0) = ρ(0) ⊗ ρB, ρB = Z−1 exp[−(β/h̄)HB ]

the density operator of the bath in equilibrium, with Z as the normalization factor,

β = h̄/kBT the inverse temperature (in frequency units), and kB the Boltzmann constant.
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The Liouville equation ih̄ρ̇S+B = [H, ρS+B]

is convenient to recast in terms of superoperators Li,

ρ̇S+B = [LS(t) + LB + LI(t)]ρS+B, LiρS+B = −(i/h̄)[Hi, ρS+B].

We define the projection (P ) and averaging (Q) operators by

P . . . = ρB ⊗ TrB . . . , Q . . . = TrB(. . . ρB) ≡ 〈. . .〉.
Then one can use the well known technique (Zwanzig, 1964; Argyres and Kelley, 1964;

Agarwal, 1974) to obtain a non-Markovian master equation (NME), involving terms up to

2nd order in HI (the Born approximation). We shall use the differential NME (DME),

ρ̇ =

[
LS(t) + QLI +

∫ t

0

dτK(t, t − τ)U−1
S (t, t − τ)

]
ρ.

Here K(t, t′) is the second cumulant of the coupling operator,

K(t, t′) = Q[LI(t)US(t, t′) ⊗ UB(t − t′)LI(t
′)] − QLI(t)US(t, t′)QLI(t

′)

UB(t) = exp
[− i

h̄HBt
]
, US(t, t′) = T+ exp

[
− i

h̄

∫ t

t′
HS(τ)dτ

]
,

T+ being the time-ordering operator.
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HI(t) = S(t)B(t),

where S(t) is a system operator and B(t) is a bath operator, whose choice depends on

the system-bath coupling (linear or quadratic, diagonal or off-diagonal). These operators

vary with time due to external fields.

Assume that QB(t) = 〈B(t)〉 = 0 =⇒ QLI = 0.

Then the DME can be shown to reduce to

ρ̇ = − i

h̄
[HS(t), ρ] +

∫ t

0

dt′{ΦT (t, t′)[S̃(t′, t)ρ,S(t)] + H.c.}. (11)

Here

ΦT (t, t′) = 〈U †
B(t − t′)B(t)UB(t − t′)B(t′)〉

is the bath “memory” (correlation) function (CF) and

S̃(t′, t) = US(t, t′)S(t′)U †
S(t, t′).

Eq. (11) generalizes previously known master equations to arbitrary time-dependent

hamiltonians for the system and for system-bath coupling.
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Qubit decoherence

Henceforth, we explicitly consider a driven qubit undergoing both population relaxation and

proper dephasing. Qubit’s resonant frequency and dipolar coupling to the reservoir are

dynamically modulated, B(t) = B is constant, so that

HS(t) = h̄[ωa + δa(t) + δd(t)]|e〉〈e| + V (t)σx, HI(t) = S(t)B = ε̃(t)σxB.

Here δa(t) is the dynamically imposed Stark shift, δd(t) is its random counterpart (proper

dephasing),

V (t) = V0(t)e
−iωct + c.c.

is the control (flipping) field with the nominal frequency ωc, V0(t) being the Rabi frequency,

σx = |e〉〈g| + |g〉〈e| is the dipole-transition operator, whose time modulation is given by

the real amplitude ε̃(t).

If the bath consists of oscillators and the coupling is linear, then

HB =
∑

λ

h̄ωλa†
λaλ, HI(t) = h̄ε̃(t)σx

∑
λ

(κλaλ + κ∗
λa†

λ),

where ωλ and aλ are the frequency and annihilation operator, respectively, of the mode λ

and κλ is the coupling amplitude. HI(t) does not involve the RWA.
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Population relaxation

Consider first situations wherein population relaxation is dominant compared to the

proper-dephasing rate [determined by δd(t)], so that the latter may be neglected.

In the case δd(t) = 0, we obtain from the DME our generalized Bloch equations for the

components of the qubit density matrix

ρ̇ee = −ρ̇gg = iV (t)(ρeg − ρge) − Re(t)ρee + Rg(t)ρgg, (12)

ρ̇eg = ρ̇∗ge = −{R(t) + i[ω̃a(t) + δa(t)]}ρeg

+iV (t)(ρee − ρgg) + [R(t) − i∆a(t)]ρge. (13)

Equations (12) and (13) account for the presence of upward transitions |g〉 → |e〉 (caused

by either temperature or anti-resonant effects) at a rate Rg(t), in addition to downward

decay |e〉 → |g〉 at a rate Re(t).

Their half-sum R(t) = [Re(t) + Rg(t)]/2 provides the decoherence rate.

The resonance frequency is dynamically shifted by

ω̃a(t) − ωa = ∆a(t) = ∆e(t) − ∆g(t), where h̄∆e(g)(t) is the Lamb shift of |e〉
(|g〉), caused by the dynamically modified coupling to the bath.
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Since we are interested here in dynamical control of relaxation, we shall concentrate on the

transition rates Re(g)(t) rather than the level shifts. One can show that the average rate of

the |e〉 → |g〉 transition Re(t) and its |g〉 → |e〉 counterpart Rg(t) are given by

Re(g)(t) = 2π

∫ ∞

−∞
dωFt(ω)GT (±ω). (14)

Here the upper (lower) sign corresponds to the subscript e (g).

GT (ω) = (2π)−1

∫ ∞

−∞
ΦT (t)eiωtdt

is the SD of the bath CF. For the oscillator bath one finds that

GT (ω) = [n(ω) + 1]G0(ω) + n(−ω)G0(−ω),

where G0(ω) =
∑

λ |κλ|2δ(ω − ωλ) and n(ω) = (eβω − 1)−1 is the average number

of quanta in the bath mode with frequency ω.
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We apply Eqs. (14) to the case of coherent modulation of quasiperiodic form. Without a

limitation of the generality, we assume that
∑

k |εk|2 = 1. We then find, using Eq. (14),

that the rates Re(g)(t) tend to the long-time limits

Re(g) = 2π
∑

k

|εk|2GT (±(ωa + ωk)). (15)

The limits (15) are approached when Ωt � 1 and t � tc, as above.

Had we used the standard dipolar RWA hamiltonian in the case of an oscillator bath,

dropping the antiresonant terms in HI(t), we would have arrived at the transition rates

RRWA
e(g) = 2π

∫ ∞

0

dωF (ω)GT (±ω), (16)

wherein the integration is performed from 0 to ∞, rather than from −∞ to ∞, as in (14).

This means that the RWA transition rates hold for a slow modulation, when F (ω) 
 0 at

ω < 0, being peaked near ωa. However, whenever the suppression of Re(g) requires

modulation at a rate comparable to ωa, the RWA is inadequate. For instance, at T = 0,

the rate RRWA
g vanishes identically, irrespective of F (ω), in contrast to the true

upward-transition rate Rg in Eq. (15), which may be comparable to Re for ultrafast

modulation.
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The difference between the RWA and non-RWA decay rates stems from the fact that the

RWA implies that a downward (upward) transition is accompanied by emission (absorption)

of a bath quantum, whereas the non-RWA (negative-frequency) contribution to Re(g) in Eq.

(14) allows for just the opposite: downward (upward) transitions that are accompanied by

absorption (emission). The latter processes are possible since the modulation may cause

level |e〉 to be shifted below |g〉.
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Dynamically modified proper dephasing

We turn now to proper dephasing when it dominates over decay.

H(t) = h̄[ωa + δd(t)]|e〉〈e| + V (t)σx. (17)

The random frequency fluctuations δd(t) are typically characterized by a (single)

correlation time td, with ensemble mean δ̄d = 0. When the field V (t) is used only for gate

operations, we assume that it does not affect proper dephasing.

The ensemble average over δd(t) results in an increase of the decoherence rate

R(t) → R(t) + Rd(t),

with the dephasing rate

Rd(t) =

∫ t

0

dt′Φd(t
′).

The dephasing CF Φd(t) = δd(t)δd(0) is the counterpart of the bath CF ΦT (t).
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Assuming, for simplicity, that the decay is neglected and the control field V (t) is resonant

(ωc = ωa) with real envelope V0(t), we derive the ME for the qubit density matrix

averaged over the random fluctuations δd(t). To this end, we transform the system to the

rotating frame, write the pseudospin vector in spherical coordinates,

Q ≡ (Q−1, Q0, Q1) = (ρge, (ρgg − ρee)/
√

2,−ρeg),

and tilt the frame to diagonalize the Hamiltonian of the TLS-field coupling [Eq. (17)] by the

transformation

Qm =
∑
m′

Q′
m′d

(1)
m′m

(
−π

2

)
,

where d
(1)
m′m(−π

2 ) is the finite-rotation matrix for spin 1. In the tilted frame, the master

equation is

Q̇′
±1 = {±i[V0(t) + ∆d(t)] − Rd(t)/2}Q′

±1, Q̇′
0 = −Rd(t)Q

′
0, (18)

where the dynamically affected decoherence rate and shift are given by the real and

imaginary parts of
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Rd(t) + 2i∆d(t) =

∫ t

0

dt′Φd(t − t′) exp

(
i

∫ t

t′
V0(t

′′)dt′′
)

. (19)

At t � td the decoherence rate and shift approach their asymptotic values

Rd = lim
t→∞

Rd(t), ∆d = lim
t→∞

∆d(t).

For the validity of Eq. (18) it is necessary that Rd, |∆d| � 1/td.

In Eq. (18) we have made the secular approximation, which holds if V0(t) � Rd, |∆d|.
Equation (19) reveals the analogy of dynamically modified dephasing to dynamically

modified relaxation, both inferred from our unified treatment. One can obtain from Eq. (19)

that

Rd(t) = π

∫ ∞

−∞
dωFt(ω)Gd(ω), (20)

where Ft(ω) is the spectrum of

ε(t) = exp

[
−i

∫ t

0

V (t′)dt′
]

, Q(t) = t, Gd(ω) =
1

π

∫ ∞

0

Φd(t) cosωtdt.
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The proper dephasing rate associated with Φd(t) = Ae−t/td is Rd = Atd. In the

presence of a constant V0 [cw V (t)], it is modified according to Eq. (19) into

Rd =
Atd

V 2
0 t2d + 1

. (21)

For a sufficiently strong field, the dephasing rate Rd can be suppressed by the factor

1/(V0td)
2 � 1. This suppression reflects the ability of strong, near-resonant Rabi

splitting to shift the system out of the bath bandwidth, or average its effects. By comparison,

the “bang-bang” (BB) method involving τ -periodic π-pulses (Viola and Lloyd, 1998) is an

analog of the above “parity kicks”. Using Eq. (20), such pulses can be shown to suppress

Rd approximately according to Eq. (21) with V0 = π/τ . This BB method requires pulsed

fields with Rabi frequencies � 1/τ , i.e., much stronger fields than the cw field in our Eq.

(21). Using td ∼ 10−7 s, cw Rabi frequencies exceeding 1 MHz achieve a significant

dephasing suppression.
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Conclusions

A. We discussed how to control qubit decoherence by external coherent perturbations.

B. Our simple universal formula results in general criteria for dynamical control of

decoherence due to relaxation and proper dephasing.

C. Coherent (unitary) modulation of the coupling to the reservoir can emulate the QZE and

AZE, but has advantages over frequent measurements:

(a) Coherent modulation does not destroy the coherence of the quantum system, in

contrast to measurements.

(b) It can be designed for much more effective suppression of decoherence than QZE.

D. We took into account thermal and antiresonant effects.

E. We considered control of decay/decoherence in various systems: tunneling in optical

lattices, Josephson junctions, entangled photon states.
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