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e Non-holonomic control of unitary evolution

e Coherence protection with non-holonomic control



Control of an N-level quantum system

Hg

Uncontrolled evolution: U(t) = e *Hot

Complete control:  U(t) = e Hdt
for any desired Hermitian Hamiltonian Hy

Control by periodic guidance:
U(t — T) — e—in 5t

U(t = 2T) = e Ha 20t

U(t — ,nT) — e—’in not



Control parameters for N x N Hermitian
Hamiltonians

Example: N =2
FE
Ho= ("1 ©
O FE»
H, = hl- a— b
a —+ b ho
Hd A (h17h27avb)

e The NxN Hermitian Hamiltonians form a
linear space of N2 real dimensions

e N2 real control parameters are needed for
complete control



Introducing N2 control parameters

Va Vg
Hy
A = Hog+Vy t1
B = Hy+ Vg to
A = Ho+Vy tna—1
B = Hg+ Vg tn-

T = tl + tQ —I— tN2_1 —I— th

Ut =T) = o iBty2 ~tAtNo 4 —iBty ,—iAty

S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).



Complete control of N levels

Physical means of control:
o —1A o .
U(t1,...,tx2) =e iBty2 o T1AEN2 g | o—iBt g—iAly

Mathematical problem:
Given Hermitian H,; and small evolution time 6t >0
find timings ti1, ..., ty2 such that

U(t1, .. ty2) = e Hq 0t

(N? nonlinear equations in N2 variables - hard)

A way to solve the problem:

1. Solve for the special case H; = 0 :
Find timings Ti, ..., T 2= 0 such that

U(Ty, .., Th2) =1

2. Compute first order corrections for ¢, =T, + dt, :

N2

n=1



3. The N? matrix coefficients H,, are Hermitian, and
normally form a complete basis for the NxN Hermitian
matrices

4. Given Hy;#0 and 46t >0 find timing variations
dt1, ..., 8ty> such that

N2
n=1
(N? linear equations in N2 variables - easy)

5. The problem is now solved to first order in 4t :
For timings t, =T, + 6t, we have
N2

n=1

= 1 —in5t —|—O(5t)

U(t]_, ceey tNQ)

= e Hao% 4 o(6t)

6. The 6t, are improved iteratively (Newton method);
hence, for T =3 T, + 6t, we get

Ut ="T) = U(ty,...,tp2) = e Ha ot

G. Harel, V.M. Akulin, Phys. Rev. Lett. 82, 1 (1999).
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Control of a trapped cold atom

Nd:Glass
~1060 nm .

/ TiSa /
/786 nm [/

unperturbed Hamiltonian

boundary conditions

perturbation A

perturbation B

h2 92
Ho - —%@—I—mgz

¥(0) =y(L) =0

Vi = vy Sin2(27'rz/)\A)

Vs = vgsin?(2mrz/Ap)



Timings for complete control of N =10
translational levels of a trapped cold atom

Hd =0
n | Th (u sec) n | Th (u sec)
1 230.667 §) 343.634
2 333.121 7 277.201
3 259.938 8 235.567
4 248.654 9 331.637
5 320.099 10 326.410

T=10(T1+To+...4+T1p) = 29.069280 msec

Ut=T)=1+10"%



Complete control of N = 10 levels

Energy
100 \
N, '\
80 / \
L5
60| ~ ~ i\ y
‘ / \./A \\_'[ AN
40
20
AR AR PAY
=20 |\ \\’."-.. ..-\"\’ A \\/A'-._ \
n T, (nsec) | t, (usec) | ot, (u sec)
1 230.667 230.335 -0.332
2 333.121 330.169 -2.952
3 259.938 257.599 -2.339
4 248.654 247.880 -0.774
5 320.099 321.819 1.720
6 343.634 344.247 0.613
7 277.201 275.666 -1.535
8 235.567 239.881 4.314
9 331.637 330.457 -1.180
10 326.410 329.022 2.612




Solving for the special case H; =20

Physical means of control:
—9 —1 At = .
U(t1,...,tx2) =e Bty2 ot N2y | —iBlg g—iAly

Mathematical problem:
Find timings Ti, ..., T2 2= 0 such that

U(Ty, ..., Tr2) = 1

(N2 nonlinear equations in N2 variables - hard)

A way to reduce the problem:

1. Define . ‘ . .
Up(t1,....,tn) = e BtV g7 A1 o—iBt2 o—idly

2. Find timings Ti, ..., Ty # 0 such that

Ur(Ty, ..., TN =1

3. Construct the desired timings T, ..., Tn2 by repeat-
ing N times the sequence 7Ti, ..., TN, thus obtaining

U(Ty, ..., Tp2) = Up(Ty, ..., TN)Y =1
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Solving the reduced problem

Physical means of control:
Up(ty,...,ty) = e BtV e=tdiN-1  ¢—iBt2 o—idts

Mathematical problem:
Find timings Ti, ..., Thw 720 such that

Ur(Ty,....,Tn)Y =1

A way to solve the problem:
Ensure that the eigenvalues X, of U, will be

A = e2™/N ¢gq=1,2,...N,
that is, find timings Ty, ..., Tw 7 0 such that

det[\ — U (Ty,....,Tn)] = AV — 1

1. Define coefficient functions a; by

N :
Z CLj(T]_, ...,TN))\J = det [)\ — Ur(Tl, ,TN)]
j=0

2. Minimize Zé-V:O |a,j(T1,...,TN)|2 with respect
to T1, ..., TnN.
11



Spectral rigidity

The spectral rigidity property of ensembles of random

unitary matrices allows for easy convergence to a so-
lution for

U (Ty, ... T\)N =1

that has a non-degenerate spectrum.

Re Re

This is because for a generic choice of the pertur-
bations V4 and Vp and an initial guess for the tim-
ings 11, ..., Ty theinitial spectrum will already be well

spread around the unit circle in the complex plane.
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Related formulas

Generators of su(2) (Pauli matrices):
_ (0 1 _ ({0 —i _ {1 0
°$_<1 o) Gy_(i o) JZ_(O —1)

General element of SU(2):

e—ioz (0% e—i,@o'y e—ifyo-z — e—?a cospf e—'i’Y _Q—ia sin 3 d”y
e'*sinBe™" e'*cos 3 e

[0y, 0.] = 2io,

eABe=A = elAB] =14 [4,B] + L[4,[A,B]] + - --

A6 BS,—AS,— B8 — [A,BI6% | (43

JAB — A+ B+ 3[A Bl +

(3) +-51[4, Bl, Al + 5[4, B, B]

(4) —541[[4, B], B, A]

(5) —75511[[4, B], B, B], B] — 7551[[[B, 4], 4], 4], A]
(5) +1551[[4, B, A, A], B] — 55l[[[B, A, A, B], B]
(5) —15511[4; Bl, A], [A, Bl] - 555[[B, A], Bl, [4, B]]

13



Coherence protection by the Zeno effect

Decoherence in a two-level system:

@) T2 7, W b

11

0

B - Bloch vector representation of the density operator

1
p = 5([ + Poz + Qoy + Wo)

T> - coherence loss (uncontrolled Hamiltonian)
Ty - decay of a pure state into a statistical mixture

Zeno effect in a two-level system:

For an initial state W = 1 evolving with a o, Hamil-
tonian for a short time ¢t € T, measurement of o,
projects the state at ¢ onto the initial state, restoring
the initial state with probability 1 up to second order
int/Ts.
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Multidimensional Zeno effect:
Restore any state v in a subspace of possible initial
states C by applying a projective measurement.

To protect quantum data in a K-dim space K against
decoherence due to error Hamiltonians F,,, m = 1..M.:

1. Add an A-dim ancilla space A, with A > M, to
obtain a KA-dim space N = K® A; prepare the ancilla
in a fixed state |a) € A.

2. Move the data to an “error-orthogonal’” subspace
C C N by a unitary transformation C implemented with
non-holonomic control (M K? control parameters).

3. Transform back with C~1 after a short time ¢t <« T5.

4. Measure the ancilla in the state |«a), restoring the
initial state of the data space with probability 1 up to
second order in t/T5.

M
.dpk _ i _ -1 _
T [he, o] he = m;l fm(a|CT " EnCla) =0
E. Brion et al., Europhys. Lett. 66, 157 (2004).
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Coherence protection by random coding

When the data and ancilla systems are built with a
large number of particles, e.g. with & and n—k qubits,
it is impractical to satisfy exactly the orthogonality
conditions

(k|{a|C I EnCla)|s) =0; m=1.M

for all |k),|k’) € K, because of the exponentially-high
dimensions: K = 2k,

In this case however, typical error Hamiltonians E,, are
sparse matrices because they arise from single-particle
or binary interactions.

Therefore, a generic unitary transformation C will
spread the matrix elements of FE,, over all the 2"
states of the system, and the subsequent measurement
of the ancilla will project the matrix to 2 dimensions,
reducing its effect by the exponential factor 27—*,

In contrast, the number and strength of relevant error
Hamiltonians E,, are only polynomial in n, say

M~ (") ~n® || B | ~ n?

assuming that at most s qubits are affected. Hence,
decoherence will be strongly suppressed: h, ~ 2~ (n=k)

Non-holonomic control can afford such a generic C
(random coding) when Hamiltonians H4 and Hp that
allow complete control are switched ~ n times, with
control timings that ensure big acquired actions. If
—H4, and —Hg are also feasible, C~1 can be per-
formed at the same level of complexity.

E. Brion et al., quant-ph/0211003.
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