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Why decoherence control?

Goal: Maintain & coherently manipulate long-lived quantum
states under realistic open-system dynamics.

© Practical motivation:
= Challenge to practically realize quantum information processing.
= Experimental progress in nanoscale design and fabrication.
= Precision measurements, quantum-limited systems.
© Conceptual motivation:
= Develop control-theoretic framework for open quantum systems.

Control toolbox:
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From: Coherent averaging techniques
Coherent control of nuclear spin Hamiltonians in HR multi-pulse NMR spectroscopy.

E.L. Hahn, PR 80, 580 (1950);
U. Haeberlen & J.S. Waugh, PR 175,453 (1968).
To: Dynamical decoupling techniques

Open-loop dynamical control schemes relying on the repeated application
of pulsed or switched controls drawn* from a finite control set.

*deterministically or...
© Dynamical decoupling with unlimited control resources
— Bang-bang decoupling [arbitrary strength, arbitrarily fast, perfect control]

Problem: How do we design efficient and robust
schemes operating under realistic ¢

© Dynamical decoupling with limited control resources
= Eulerian decoupling [bounded strength, still arbitrarily fast, faulty control]

* . stochastically!

= Random decoupling [arbitrary strength, not necessarily ultrafast?, perfect control]



Quantum bang-bang control

L. Viola & S. Lloyd, PRA 58,2733 (1998).

Dephasing spin-boson model:
i 1
H0=v00‘z+zk w, b, l:',k,+crzzk gk(bk+bk)

Control action:
A train of identical, resonant 7 pulses, with
separation At - arbitrarily strong and fast (BB).

Decoherence suppression if Ar<T,
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Control-theoretic framework 4

e I N
OPEN-LOOP | : CONTROLLED
CONTROLLER | —3pp| | TARGETSYSTEM | | _, DYNAMICS
H()® I : H, | H,;
| |
|

ENVIRONMENT
Hg = Cd for some d

@ Target system S is coupled to uncontrollable environment E:Total drift
H,=H®I +1,®H .+ Za S.®B,, S,eEnd(#y), traceless
© Adjoin controller acting on S alone, Hy= Hy+H (1) ® I
Design object:  / (f)=Texp {—if; dx H (x)] Control propagator
Controlled evolution: U (#)=U (1)U (1)

U(t):Texp{—if; dx U'(x)H, U (x)] Logical propagator

= The logical propagator () describes the evolution of the system in a
logical frame that follows the applied control.



' Average-Hamiltonian theory

© Assume that controller operates cyclically: U.(t+T,) = U,.(¢) for T, > 0.
= Logical and physical frames coincide at times 7,=M T, .

Stroboscopic controlled evolution: U (t,=MT )=U(t,=MT,).

© Assume that drift Hamiltonian is time-independent, with HH p HZ <K = Max|eig(H ,)|
= A time-independent average Hamiltonian exists s.t.

Ulty=MT, )=exp|-i HIM}:QXP[_i(ﬁ[(}]"'ﬁm"'---)tm} Magnus series
Convergent for KT, < 1.

© First-order decoupling: Generate H to lowest order in T,
H =-1—J~Trdx U'(x)H, U, (x)
0 T | 0 c 0~ ¢

H ,approaches H in the fast control limit, T.= T/M, M — oo.

© Physical requirement for manipulation:
Coupling must remains coherent over manipulation time scale, T. < T, = min; {T,0"" }

Decoherence contributions from H'* scale as O(KT,)*= O(T,/t.)* ,k>1.Focus on H,,.



Bang-bang symmetrization

L. Viola, E. Knill, S. Lloyd, PRL 82, 2417 (1999).

Keyword: Map time-average into group-theoretical average.

© Decoupling group: G = {g; }, j = 0,.., |Gl- 1. €CG = decoupling algebra.
G acts on state space # via a faithful, unitary, projective representation,
Ll(g_;)=§’j€Matd(C), ng'jg'k up to phase, 8&,=1 .

© BB protocol: Let 7. =| | At and assign U (¢) over T, as

0 At s TC=|g|At
. | 2
U ((l-1)At+s)=5,_, S — T | :
t=(-DAt+s  I1=1,..lg]
i.e.
2, =% sE[O,Ar)
U(n= 8 t=At+s

Instantaneously change control propagator
at the end of each control subinterval.




Quantum error suppression

@ Lowest-order BB effective Hamiltonian:

| G | Z =11 = (H,), G -symmetrizatic

where II - is the projector onto the commutant Cg '

© Noise suppression on entire state space iff II3(S,)=0 Va.

I (Hy))=M(H)®I,+1,®H,+), IIS,)®B

G

a

(1) Maximal averaging: Cg '=CI
= G acts irreducibly over #Hg. Averaging over a unitary error basis.
= Required when unwanted interaction is arbitrary/unknown.
(2) Selective averaging: €¢ '#C I
= G acts reducibly over Hj.
= G may be determined from available knowledge of unwanted interaction.

© Examples: Single qubit

= Suppression of pure dephasing via %, symmetrization. * y * y

= Suppression of arbitrary noise via .7, X.7, symmetrization.



Control of decoupled dynamics

L. Viola, S. Lloyd, E. Knill, PRL 83, 4888 (1999).

Problem: Manipulations of effective dynamics are constrained in symmetry and timing.

© Decoupled control schemes:

(1) Arbitrary (strength)/fast (switching) control (BB).
= Use BB pulses available beside BB decoupling pulses. Must be synchronized with cycle time.

(2) Weak (strength)/slow (switching) control.
= Any Hamiltonian A€ C G 'can be applied in parallel with controller for times AT > T ..

(3) Weak (strength)/fast (switching) control.
= A Hamiltonian B& C g 'can be obtained by applying a modulated Hamiltonian
B,=g.B gt, during the jth sub-interval of each control cycle: T-.I"(,ﬁ =T G(H o) +B.

© Universal decoupled control over #:
Achievable by combining control according to different decoupled schemes, e.g.

= Alternate slow control from mwo distinct commutants (if two controllers available);

= Alternate slow control from C g 'with weak/fast control outside.

Noise-tolerant universal quantum computc
solely on unitary means possible in




How far away from reality?

Required control resources unrealistic for three main reasons:

© Amplitude requirement for BB control design: Arbitrarily strong control

Instantaneous control pulses imply unbounded control strengths even for finite 7.

Additional drawbacks:
= Poor spectral selectivity.

= Inappropriate for including drift during pulses.

© Timescale requirement for complete decoherence suppression: Arbitrarily fast control
Coupling must be coherent over manipulation time scale, 7, < T, = min; {T,c0" }

— Estimated control rates may be prohibitively high if T.1s short.

— Averaging is more and more inefficient with growing group size | G|.
= What about interactions which fluctuate on time scale short wrto 7. ?

Q [deal control resources: Arbitrarily accurate control

= How tolerant of systematic control faults?
= How tolerant of random imperfection/jitter?

Can we decouple under more realistic assumptions?...



Eulerian control design

L. Viola & E. Knill, PRL 90, 037901 (2003).
Keyword: Design continuous U, (t) according to Eulerian cycle.
© Control resources: Assume ability to implement group generators,
§u=Texp(—i [ ds hy(s)) = u (A1), A=1,...|r].

© Eulerian protocol: Choose Eulerian cycle Pr = (yy;, ¥ - Ya) On G (G, I).
LetT, =L At and assign U, (f) over T, as

0 A S, T,
UL.(II_1+S)=ul(s)UL(tl_l) l : H i I
t.y = (I-1)At =5 .
u,(s) 1= sel0,A1)
u,(s) ¥y t=At+s
U.(t)= us(s) ¥, ¥a t=2At+s During the [-th interval, use

as a control Hamiltonian
R the one that implements the
u (s)y,  t=(L—1)At+s generator Y, , with Y,

colouring the /-th edge in 7.

Ya, - j}az j)?h =1 by cyclicity.

L



%, decoupling revisited

G=%=40,1}, additive (mod 2), abelian
Generatingset I'={ v, }={1}, 2, = (7.v,)

© Applications: Elimination of unwanted o_dynamics in a single qubit.
Hg =~ C2, represent G in U(#H)as G ={I ,0,],with I (o,)=0.

BB implementation:

- 1 [ At At ] ™ .
H,=—— dslTo. I + dso o.0o & *
DY.Y ‘[0 : f“ YUeme +0, | —0, I
1 1
—E[crz+crxcrzcrx ]—0 A Af

Eulerian implementation: ) (r)=exp{—if; duh (u),

h ()= f(1o,, u,(A)=0,

— 1 At t At :
Hy=——o/| ], dsu,(s)o.uls)+ ), dso,uls)o.u/ls)o,

At

1 At ¥
= [ dsu, (s)o, u (s)+

! - u (s) |=
===| Jy dsu,(s)(—o,)u,l )] 0

0

No time overhead wrto BB case.
Intrinsic robustness against any systematic error along z, y.



Eulerian symmetrization

Generalize to arbitrary time-independent systems and couplings:
© Under mild assumptions on the control Hamiltonians, h ,(s]ElEE Vsel0,At], V1,

Eulerian design is able to retain the same G-symmetrization of the BB limit:

s 1 P = |
HO:HZJ gt{HO gj

= For every finite control period, 0 < 7, < 1., control can be implemented
using bounded-strength Hamiltonians.

@ Stability analysis: Non-ideal control implementation due to systematic errors:
H'.(t) =H_(t) + AH_(t) = ideal control + error component,
H, (t)=H, +H'.(t) =[Hy+ AH.(t)]1+H_(1).

= Eulerian decoupling is intrinsically stable against faulty control implementations:
Residual th 1 trized: T (ol
> Residual errors are themselves symmetrized: 4 7 () LAF (e § X

> They are either averaged out, or they can be compensated for by encoding into subsystems of S.

Improved amplitude requirements + added robustness



© Eulerian design:

= Solves amplitude requirement;
= Significantly mitigates ideality requirement.

© Disadvantage: Control cycle is lengthened by a (polynomial) factor |I|...

> Partial fix for few-body Hamiltonians/interactions via combinatorial design:
Euleri th ) L Eanan
uerian ortnogona arrays P. Wocjan, quant-ph/0410107.

> Complexity of decoupling (= required number of averaging subinterval in a cycle) still
quadratic in the number n of qubits — still significant for large n.

© Enhanced error tolerance also achievable by concatenated dynamical decoupling:

Nested cycles of pulses, with pulse interval shrinking between successive layers.
K. Khodjasteh & D. A. Lidar, quant-ph/0408128.
© Disadvantage: Exponential number of pulses needed...

= Timing requirements very stringent;
— No general applicability to time-dependent interactions.

Try a different approach...



Random decoupling design

L. Viola & E. Knill, submitted (2004).
Keyword: Assign U, () according to a random control path.

Focus on switching off the evolution due to a generic H(f) (no environment).

© Control resources: Available control in a discrete or continuous compact G,
u (gj) =9 = Mat, (C), projective.
© Random protocol: Rotate state of S according to G randomly over time:

= Past control operations and control times: Known.
= Future control path: Uniformly random.

Depict the evolution of the system directly in
that follows the applied contr

~

Logical state: gy(1)=U!(t)ps(t)U (t)  Logical evolution: g(1)=0 (1) g,(0)U" (1)
O()=UN)U(N=Texp|~i [ dx Ul(x)H,U,(x)]

= Logical and physical frames almost never coincide: Acyclic decoupling.



Error bounds

© Characterize decoupling performance by an appropriate error metric on pure states:

A-priori error probability: e-(Pg)=E{trg (Pf P (r))} P,= ‘UJ >s<‘4‘f|

=E(r (PsU(T)P,U(T)))

Worst-case pure-state —M P )
error probability: €r MP.\-{ET( s)j

© Theorem (Random decoupling). Suppose that the following conditions hold:

(i) G acts irreducibly on the state space.
(i1) U (1) 18 uniformly random for every fixed t.
(iii) For any ¢, s >0, U (#) and U (t+s) are independent for s > At.

(iv) H H(1)|,<K uniformly in time. Then

e,=0(TAtK?) TAtk*«<l1

; ; ; ; Random averaging works!
© Simplest implementation setting:

= Discrete control group G . Enforce random walk on G through a

sequence of equally spaced BB pulses randomly drawn from G .



Random decoherence suppression

@ Extend to a system S coupled to an environment E: Seek error metric depending
only on reduced state of S in the logical frame:

A-priori error probability: € (Psg)=E {trS(Pé ﬁs(r))} P=|w)s(w|, Pi=|d): (@]
=E{r,  (P:®1, 0 (T)P;@P,U'(T)")

0" (1)=Texp =i [, dv U (x)|H+H U ()

Worst-case pure-state ( \
error probability: €r=Max, {€;(Pg)]

© Theorem (Random decoherence control). Suppose that the same irreducibility,

uniformity, and independence assumptions hold as before, and that in addition

) ||H g (t)+H g(1)|,< K uniformly in time. Then

‘ e,=0(TAtK?) TAiK’><]1

= K is a measure of the overall noise strength, /K ~ T.= min; {1, }.

Arbitrarily accurate decoupling of S
on average in the logical




Random vs deterministic decoupling

How does this compare to standard cyclic decoupling?...

© Theorem (Deterministic error bound). Suppose that the following conditions hold:
(i) G acts irreducibly on the state space.

(it) U (1) 1s assigned according to a cyclic scheme with M=| G | intervals.
Gii) ||Hs|.<K, KT, < 1. Then

eT=O((TT{,K2)2) TT K*«1-=KT,

© Meaning: R=TAtK*=(K At)’ —AT—: Max error probability/step * No. of Steps
t

Random Deterministic
e "=0(R) s € &

= Superior performance of cyclic decoupling expected if:
1. Any time-dependence has time scale longer than T,=MAt;
2.M?R<<1

= Superior performance of random decoupling expected if:
1. Time-dependencies have time scale short compared T,=MAt , long compared to At,
2.M?R>>1



Randomly kicked decohering qubit

L. F. Dos Santos & L. Viola, submitted (2004).

Keyword: Assign U, (t) according to a random control path on %.

@ System: Single qubit decohering via coupling to a bosonic bath,

H0=Vogz+zk w, b, b +o, Zk gk(bﬁbz)

© Control: A train of random BB pulses, with separation At,
[ ] ( P, P, P, .. P,
Proble=Ij=0.5 P?‘Oblpj:“x]:o-s | At | | | |

Ty = MAt

2
w
th k
o (szT)}

2 iw Al
Ey=(=1MN B (An="2E(1-e )
wk

— Exact expression for decay of coherence element in the logical frame:

= Poi(ty)=2Z,(ty) Do, (0) Zm(fM)=eXp{——zk ZT;;EJEW*'I'EEk(A 1)

ZUI(tM)=eXp{_F(tM)}

Decoherence suppression |
in the fast control limit: ‘

= Quantitative study of typical performance in various regimes possible...



Constant interactions-

HSE: 0-:;

Low-temperature
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1. Randomization works.

2. No improvement for const couplings (G too small!) - yet...
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Generalizations and outlook

© Hybrid decoupling schemes: Merge cyclic with random control design

= Randomize the cycles:
If IG1=M, there are M! paths to follow to traverse G

Permute elements

| 8o | 8 | |gM—I| 8> | 8 I | 8o | Tc= MAt

Retains stroboscopic overlap between physical and logical frame.
= Significantly faster averaging expected for large control groups:
Examples, n qubits: Unitary error groups, M=4"; Symmetric groups: M=n!...

© Ongoing work:
= Develop more physical understanding: How is randomization working?

= Error-bounds for hybrid schemes.
= Typical performance of discrete randomly-controlled (qudit) systems.

= Typical performance of continuous randomly-controlled (harmonic) systems.
= Stability analysis: Concatenation and fault-tolerance properties.
= Schemes for randomly controlled universal quantum computation.



Conclusions

© Dynamical decouplmg techmques offer a well-defined conceptual framework to
address a variety of open=loop coherent-control problems for quantum systems:
= Decoherence control.
= Quantum-dynamical

© Randomization offers the potential for faster convergence and relaxed timing
requirements compared to cyclic decoupling in relevant control scenarios.

- New prospects for efficient, robust dynamical decoupling schemaé%i.
- Largely unexplored setting for quantum-dynamical control...

More soon!...



Further reading (A very incomplete list...)

1968
1998
1999

2000

2001

2003

Coherent averaging in NMR. Haeberlen & Waugh, PR 175,453
BB control/Spin echo for single qubit. Viola & Lloyd, PRA 58, 2733; Ban, IMO 45, 2315

Error suppression/symmetrization. Viola, Knill, Lloyd, PRL 82, 2417; Zanardi, PLA 2358, 77
Universal decoupled control. Viola, Lloyd, Knill, PRL 83, 4888; Duan & Guo, PLA 261, 139

Parity kicks for quantum oscillator. Vitali & Tombesi, PRA 59,4178
Dynamical generation of Nss/DFSs. Viola, Knill, Lloyd, PRL 85, 3520
Algebraic framework. Knill, Laflamme, Viola, PRL 84, 2525; Zanardi, PRA 63,012301
Collisional decoherence suppression. Search & Berman, PRL 85, 2272; PRA 62,053405
Off-resonant effect suppression. Tian & Lloyd, PRA 62,050301
Exp. BB suppression of single-photon dephasing. Berglund, quant-ph/0010001
Inhibition of decay to continuum. Agarwal, Scully, Walther, PRL 86,4271
Encoded dynamical decoupling. Lidar & Wu, PRL 88,017905; Viola, PRA 66, 012307
Exp. realization of encoded dynamical decoupling. Fortunato, Viola, NJP 4, 5.1
Universal quantum simulation. Wocjan et al, QIC 2, 133; Lloyd & Viola, PRA 65,010101
Heating/finite temperature reservoir. Vitali & Tombesi, PRA 65, 012305
DFS dynamical generation. Wu & Lidar, PRL 88, 207902
Solid-state QC design and decoherence. Byrd & Lidar, PRL 89, 047901
Universal leakage suppression. Wu, Byrd, Lidar, PRL 89, 127901
Empirical BB control. Byrd & Lidar, quant-ph/0205156
Non-linear reservoir couplings. Uchiyama & Aihara, PRA 66,032313
Robust bounded-strength design. Viola & Knill, PRL 90, 037901

(over »)



Further reading (continued)

2004 Connection with Quantum Zeno physics. Facchi, Lidar, Pascazio, PRA 69,032314

Application to 1/f spectral densities/power spectra. Shiokawa & Lidar, PRA 69, 030302
Faoro & Viola, PRL 92, 117905

Falci et al, PRA 70.040101

Connection with universal dynamical control. Kofman & Kuritzki, PRL 93, 130406
Decoupling based on Hamilton cycles. Roetteler, quant-ph/0408078
Concatenated dynamical decoupling. Khodjasteh & Lidar, quant-ph/0408128
Control of entanglement. Uchiyama & Aihara, quant-ph/0408139
Equivalence with orthogonal arrays. Roetteler & Wocjan, quant-ph/0409135
Decoupling based on Eulerian orthogonal arrays. Wocjan, quant-ph/0410107
Random dynamical decoupling. Viola & Knill, submitted

Dos Santos & Viola, submitted
Application to nanomechanical resonator cooling. Zhang, Wang, Sun, quant-ph/0410149



