

the **abdus salam** international centre for theoretical physics 40 anniversary 2004

SMR.1587 - 9

SCHOOL AND WORKSHOP ON QUANTUM ENTANGLEMENT, DECOHERENCE, INFORMATION, AND GEOMETRICAL PHASES IN COMPLEX SYSTEMS (1 November - 12 November 2004)

Propagation, collision and entanglement of electron wavepackets in quantum dot arrays

D. PETROSYAN

Institute of Electronic Structure & Laser (IESL) Foundation of Research and Technology-Hellas (FORTH) Heraklion 71110, Crete Greece

These are preliminary lecture notes, intended only for distribution to participants

Propagation, collision and entanglement of electron wavepackets in quantum dot arrays

David Petrosyan

dap@iesl.forth.gr

Institute of Electronic Structure & Laser (IESL) Foundation for Research and Technology – Hellas (FORTH) Heraklion 71110, Crete GREECE

Outline

- Design and Multidot Experiments
- Mathematical Formalism
 - Mott-Hubbard Hamiltonian
 - Parameters and Approximations
 - Quantum Monte-Carlo Stochastic Wavefunctions
- One Excess (mobile) Electron
- Two Excess Electrons, Bonding and Collisions
- Quantum Entanglement with Heisenberg Exchange Interaction
- Quantum Channel with QD Array
- Summary

Design of Quantum Dot Array

Schematic drawing of the Heterostructure

- ~ 5 nm thick AlGaAs layer is sandwiched between two GaAs layers
 2DEG is formed at the top GaAs-AlGaAs interface
- Array of metallic gates on top of the structure (with externally controlled voltages) restricts the movement of electrons and forms a chain of 0D QDs.
- Resonant tunneling of electrons between the QDs mediates their coherent propagation in 1D

Multidot Experiments: Static Properties

SEM photograph and schematic view of a chain of 3 QDs

Conductance vs. gate voltage V₅ for double–dot system (QDs 2 and 3)

$$t_{23} = 0.03$$
 (a)
= 0.88 (b)
= 1.37 (c)
= 1.94 (d) X $e^{2/h}$

F. Waugh et al., PRL 75, 705 (1995)

Multidot Experiments: Static Properties

Conductance vs. gate voltage V_{q2} for a chain of 15 QDs

L. Kouwenhoven et al., PRL 65, 361 (1990)

$$H = \sum_{j,\alpha} \varepsilon_{j\alpha} a_{j\alpha}^{\dagger} a_{j\alpha} + \frac{1}{2} \sum_{j} U n_j (n_j - 1) + \sum_{j=i\pm 1,\alpha} t_{ij,\alpha} a_{i\alpha}^{\dagger} a_{j\alpha} + \sum_{i< j} V_{ij} n_i n_j$$

• $a_{j\alpha}^{\dagger}(a_{j\alpha})$ creation (annihilation) operator for electron in state $|\alpha\rangle$ with energy $\varepsilon_{j\alpha}$ and electronic orbital $\psi_j(\mathbf{r})$

•
$$n_j = \sum_{\alpha} a_{j\alpha}^{\dagger} a_{j\alpha}$$
 electron number operator
• $U = \frac{e^2}{8\pi\epsilon_r\epsilon_0} \int d\mathbf{r} d\mathbf{r}' \frac{|\psi_j(\mathbf{r})|^2 |\psi_j(\mathbf{r}')|^2}{|\mathbf{r}-\mathbf{r}'|} \simeq \frac{e^2}{C_g}$ On-site Coulomb repulsion
 $C_g \simeq 8\epsilon_r\epsilon_0 R$ self-capacitance for 2D disk-shaped QD ($\epsilon_r \simeq 13$ for GaAs)

• $t_{ij} = \frac{\hbar^2}{2m^*} \int d\mathbf{r} \, \psi_i^*(\mathbf{r}) \nabla^2 \psi_j(\mathbf{r})$ Interdot tunneling rate m^* electron effective mass ($m^* \simeq 0.067m_e$ in GaAs)

• $V_{ij} \simeq U\left(\frac{C}{C_g}\right)^{|i-j|}$ Interdot Coulomb repulsion partially screened by image charges (interdot capacitance $C \ll C_g$)

Assumptions

- Near-neighbor tunnel t_{ij} and electrostatic $V_{ij} = V$ interactions $\Rightarrow t_{ij}, V_{ij} \neq 0$, for $i = j \pm 1$
- Single-particle level spacing $\Delta \varepsilon > t_{ij}$ ($\Delta \varepsilon \simeq \frac{\hbar^2 \pi}{m^* R^2}$ in 2D potential) ⇒ one double- (spin-) degenerate level per QD ($\alpha \in \{\uparrow, \downarrow\}$)
- Coulomb Blockade regime $U \gg \Delta \varepsilon > t_{ij}$ ⇒ at most one electron per QD

Typical experimental parameters

for $30-50~\mathrm{nm}$ size GaAs/AlGaAs QDs, separated by $\sim 100~\mathrm{nm}$

- Tunneling rates $t_{ij} \sim 0.05 \text{ meV}$
- Single-particle level spacing $\Delta \varepsilon \sim 1.0 \text{ meV}$
- On-site Coulomb repulsion $U \sim 15 \text{ meV}$
- Thermal energy at $T \sim 2 10$ mK is $k_{\rm B}T \sim 0.2 1 \ \mu {\rm eV}$

1D Array of N Quantum Dots

• The array is initially doped with n = 1, 2... ($n \ll N$) electrons

- Lower tunnel barriers and raise the confining potentials
 deplete the array
- Lower confining potentials and open and close the tunnel barriers
 dope preselected QDs with single electrons
- Nth QD is dissipatively coupled to a SED with $\gamma \ll t_{ij}$
 - \Rightarrow detector monitors the evolution

Quantum Monte Carlo Simulations

- Disorder due to
 - Structure imperfections & Gate voltage fluctuations
 - Electron-phonon interactions & Thermal fluctuations
 - $\Rightarrow \varepsilon_{ij}, t_{ij}$ —Gaussian random numbers with mean ε_0, t_0 & FWHM $\delta \varepsilon = 0.1 t_0 (\sim 5 \,\mu \text{eV}), \, \delta t = 0.05 t_0 (\sim 2.5 \,\mu \text{eV})$
- Detector signal with $\gamma = 0.2t_0 (\sim 2.4 \text{ GHz})$
 - Generate random $r (0 \le r < 1)$
 - Propagate $|\Psi(\tau)\rangle$ with $H_{\text{eff}} = H \frac{i}{2}\gamma n_N$ until $||\Psi(\tau)||^2 = r$ \Rightarrow Quantum Jump $|\Psi\rangle \rightarrow \sum_{\alpha} \frac{a_{N\alpha} |\Psi\rangle}{\sqrt{\langle\Psi| a_{N\alpha}^{\dagger} a_{N\alpha} |\Psi\rangle}}$

• Continue (with new r) until $|\Psi(au)
angle=0$

One Mobile Electron

(a) Equal Tunneling Rates $t_{jj+1} = t_0 (\pm \delta t)$ (Equal Coupling – EC) \Rightarrow Incommensurate eigenenergies $\lambda_k = 2t_0 \cos\left(\frac{k\pi}{N+1}\right)$ Amplitudes $A_j^{\alpha} = \frac{2}{N+2} \sum_{k=1}^{N} \exp\left[-i2t_0 \tau \cos\left(\frac{k\pi}{N+1}\right)\right] \sin\left(\frac{jk\pi}{N+1}\right) \sin\left(\frac{k\pi}{N+1}\right)$

WP spreading and delocalization – dispersion

One Mobile Electron

(b) Tunneling Rates $t_{jj+1} = t_0 \sqrt{(N-j)j}$ ($\pm \delta t$) (Optimal or SM Coupling – OC) \Rightarrow Commensurate eigenenergies $\lambda_k = t_0(2k - N - 1)$ Amplitudes $A_j^{\alpha} = \left(\begin{array}{c} N-1\\ j-1 \end{array}\right)^{1/2} [-i\sin(t_0\tau)]^{(j-1)}\cos(t_0\tau)^{(N-j)}$ $|A_1^{\alpha}|^2 = \cos(t_0\tau)^{2(N-1)} |A_N^{\alpha}|^2 = \sin(t_0\tau)^{2(N-1)}$: Revivals at $t_0\tau = \frac{m\pi}{2}$

Perfectly periodic behavior

Two Mobile Electrons

(a) EC $t_{jj+1} = t_0 \& V = 0$ (No Repulsion)

WP dispersion as in 1e case

Two Mobile Electrons

(b) OC $t_{jj+1} = t_0 \sqrt{(N-j)j}$ & V = 0 (No Repulsion) \Rightarrow Commensurate (2N - 3 distinct) eigenenergies $\lambda_k = t_0(2k - N + 2)$ Amplitudes for states $|i_{\alpha}, j_{\beta}\rangle$ $B_{ij}^{\alpha\beta} = \left[\frac{(j-i)^2(N-1)!(N-2)!}{(i-1)!(j-1)!(N-i)!(N-j)!}\right]^{1/2} [-i\sin(t_0\tau)]^{i+j-3}\cos(t_0\tau)^{2N-i-j-1}$ $|B_{12}^{\alpha\beta}|^2 = \cos(t_0\tau)^{4N-8} |B_{N-1N}^{\alpha\beta}|^2 = \sin(t_0\tau)^{4N-8}$: Revivals at $t_0\tau = \frac{m\pi}{2}$

Perfectly periodic behavior

Two Mobile Electrons: Bonding

(c) EC $t_{jj+1} = t_0 \& 0 < V \le t_0$ (Weak Repulsion)

Enhanced dispersion of WP due to inhomogeneity

Two Mobile Electrons: Bonding

(d) EC $t_{jj+1} = t_0 \& V > t_0$ (Strong Repulsion)

Energy of $|j, j \pm 1\rangle$ is larger

than of $|j, j \pm 2\rangle$ etc., by $V > t_0$

 \Rightarrow transitions $|j, j \pm 1 \rangle \rightarrow |j, j \pm 2 \rangle$ are non-resonant

Effective tunneling rate for $|j, j+1\rangle \rightarrow |j+1, j+2\rangle$ is $t_{\text{eff}}^{(2)} = \frac{t_0^2}{V} < t_0$ \Rightarrow slow propagation

Two-electron bonding via Coulomb repulsion $(V > 0 \Rightarrow 2e \text{ bound state is unstable})$

Two Mobile Electrons: Collisions

(a),(c),(d) Equal Coupling $t_{jj+1} = t_0$: Electrons collide in the center \Rightarrow Each electron has $\frac{N}{2}$ accessible QDs

WP dispersion as in 1e case

Two Mobile Electrons: Collisions

(b) Optimal Coupling $t_{jj+1} = t_0 \sqrt{(N-j)j}$: Collisions & revivals at $t_0 \tau = \frac{m\pi}{4} \leftarrow$ Each electron has $\frac{N}{2}$ accessible QDs Perfectly periodic behavior

Two Mobile Electrons: Monte-Carlo Smls.

Decoherence & Decay

$$\Gamma_{\text{coherence}} \simeq \delta \varepsilon + \delta t, \quad \Gamma_{\text{population}} \simeq \gamma / N$$

 $t_e \ll U$ – Adiabatic elimination of nonresonant (virtual) $|L_{\uparrow}L_{\downarrow}\rangle$, $|R_{\uparrow}R_{\downarrow}\rangle$ \Rightarrow effective Heisenberg exchange interaction $|L_{\uparrow}R_{\downarrow}\rangle \leftrightarrow |L_{\downarrow}R_{\uparrow}\rangle$

$$H_s(\tau) = J(\tau)\vec{S}_L \cdot \vec{S}_R, \quad J(\tau) = -\frac{4t_e^2(\tau)}{U}$$

• For
$$\theta \equiv \int J(\tau) d\tau = \pi$$

 \Rightarrow swap $|L_{\alpha}R_{\beta}\rangle \rightarrow i |L_{\beta}R_{\alpha}\rangle$ ($\alpha, \beta \in \{\uparrow, \downarrow\}$)

 $t_e \ll U$ – Adiabatic elimination of nonresonant (virtual) $|L_{\uparrow}L_{\downarrow}\rangle$, $|R_{\uparrow}R_{\downarrow}\rangle$ \Rightarrow effective Heisenberg exchange interaction $|L_{\uparrow}R_{\downarrow}\rangle \leftrightarrow |L_{\downarrow}R_{\uparrow}\rangle$

$$H_s(\tau) = J(\tau)\vec{S}_L \cdot \vec{S}_R, \quad J(\tau) = -\frac{4t_e^2(\tau)}{U}$$

• For
$$\theta \equiv \int J(\tau) d\tau = \pi/2$$

 $\Rightarrow \sqrt{\text{SWAP}} |\phi\rangle = |L_{\uparrow}R_{\downarrow}\rangle \rightarrow \frac{1}{\sqrt{2}}(|L_{\uparrow}R_{\downarrow}\rangle + i |L_{\downarrow}R_{\uparrow}\rangle)$
For $\theta = \pi/2$ with $t_e(\tau) = t_e^{\max} \operatorname{sech}[(\tau - \tau^{\max})/\Delta\tau] \Rightarrow (t_e^{\max})^2 \Delta\tau = \pi U/16$

Loss, DiVincenzo (1998)

Quantum Channel with QD Array

(i) Coherent transport via OC & trapping $|1_{\uparrow}N_{\downarrow}\rangle \rightarrow |L_{\uparrow}R_{\downarrow}\rangle$ (ii) $\sqrt{\text{swap}}$ via Exchange interaction $|L_{\uparrow}R_{\downarrow}\rangle \rightarrow \frac{1}{\sqrt{2}}(|L_{\uparrow}R_{\downarrow}\rangle + i |L_{\downarrow}R_{\uparrow}\rangle)$ (iii) Reverse of (i) $\frac{1}{\sqrt{2}}(|L_{\uparrow}R_{\downarrow}\rangle + i |L_{\downarrow}R_{\uparrow}\rangle) \rightarrow \frac{1}{\sqrt{2}}(|1_{\uparrow}N_{\downarrow}\rangle + i |1_{\downarrow}N_{\uparrow}\rangle)$

• Monte Carlo simulations \Rightarrow Fidelity F = 0.98 N = 20, L = N/2 with $U = 100t_0, t_e^{\max} = 6t_0$, Disorder prms. $\delta \varepsilon = 0.1t_0, \delta t = 0.05t_0$

Summary & Conclusions

- By manipulating the absolute values and relative magnitudes of tunneling rates between QDs in a 1D array, it is possible to
 - accelerate/decelerate electron wavepacket propagation dynamics
 - enhance/suppress wavepacket spreading and interference
- By manipulating the interdot Coulomb repulsion, it is possible to
 - form bonded multi-electron states
 - control electron collisions
- Possible applications for Quantum Computation and Information
 - Entanglement of 2 qubits (represented by spin states of QD electrons) via controlled spin-exchange collisions
 - Quantum Communication & Information Transport via Quantum
 Channel
 Quantum Computer with QDs

Analogies with Other Systems

- Spin-wave propagation in spin chains
- EM wave propagation in periodic structures (PBG materials & Waveguide lattices)
- Matter-wave (BEC) propagation in optical lattices