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Parallel transport and geometric phase

A vector field |ψ〉 depending on a multidimensional parameter �q

ξq(  )

q|ψ(  )>

φ ex.: H�q

∣∣ψj(�q)
〉

= Ej(�q)
∣∣ψj(�q)

〉

|ψ(�q)〉 is parallel-transported along a path �q(ξ) if 〈ψ(�q(ξ))| d
dξ |ψ(�q(ξ))〉 = 0

|ψ(�q)〉 acquires a geometric phase factor 〈ψ(�qin)|ψ(�qfin)〉 / |〈ψ(�qin)|ψ(�qfin)〉|



Original formulation [Berry 1984]

The path �q = �q(s) is time-parameterized and closes to an adiabatic loop.

The vectors involved are single-valued eigenstates of H�q

∣∣∣ψj
�q

〉
= Ej(q)

∣∣∣ψj
�q

〉
.

The Berry phase associated to the loop is

φj =
∫ sfin

sin

i 〈ψj(�q)|∇�q ψ
j(�q)〉 · �̇q ds =

∫
Γ

i 〈ψj(�q)|∇�q ψ
j(�q)〉 · d�q

If |ψj
�q〉 is parallel transported then φj = 0, but then generally |ψj

�q〉 is not
single valued, and the BP is precisely φj = Im log〈ψ(�qin)|ψ(�qfin)〉
The circuit integral of the 1-form (connection) can be recast into a surface
integral of the 2-form (curvature) [Simon 1983]:

φj = −Im
∫

S(Γ)

〈∇�q ψ
j(�q)| ∧ |∇�q ψ

j(�q)〉 · dS =
∫

S(Γ)

−Im
∑
a<b

〈∂qa
ψj |∂qb

ψj〉dqa∧dqb



Formulation in terms of Bargmann invariants
[Simon Mukunda 1993]

The continuous adiabatic evolution could be replaced by a discrete
sequence of nonorthogonal states.
The evolution |ψk〉 −→ |ψk+1〉 need not even be unitary.

The geometric phase factor associated to this sequence of n states is:

eiφ = γ = Φ(〈ψ1|ψ2〉〈ψ2|ψ3〉... 〈ψn−1|ψn〉〈ψn|ψ1〉)

with Φ(z) = z/|z|
for complex z �= 0.

Phase tracking algorithms
n

|ψ2>|ψ1>

|ψ3>|ψ  >



Extensions

• The single-state |ψj〉 may be replaced by a degenerate n-dimensional
space: the “phase” relation becomes a whole unitary matrix in SU(n),
an element of a non abelian group [Wilczek Zee 1984].

• The path Γ need not be closed (Pancharathnam 1956).

geodesic

inq|ψ(    )>

qfin

Γ

|ψ(    )>

the open-path phase can
be reduced to a closed-path
phase by closing it with
a geodesic [Samuel Bhan-
dari 1988] provided that
〈ψ(�qin)|ψ(�qfin)〉 �= 0



What about the relative phases of several vectors |ψ1(�q)〉, |ψ2(�q)〉,... in a
nondegenerate context? Anything measurable there?
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Another generalization!?!

Take states |ψ‖
j (�q)〉 parallel-transported from �qin to �qfin along path Γ: their

Berry-Pancharatnam phase factor are

eiφΓ
j = γΓ

j ≡ Φ
(
〈ψ‖

j (�qin)|ψ‖
j (�qfin)〉

)
with Φ(z) = z/|z|

For n states, consider the parallel-evolution matrix

UΓ
jk = 〈ψ‖

j (�qin)|ψ‖
k(�qfin)〉,

⎛
⎜⎝
UΓ

11 UΓ
12 . . .

UΓ
21 UΓ

22 . . .
...

...
. . .

⎞
⎟⎠

the traditional Berry phase factor is just the diagonal element γΓ
j ≡ Φ

(
UΓ

jj

)
.

This is all is there for cyclic evolutions (matrix UΓ is diagonal).

What about the information contents of the off-diagonal elements UΓ
jk?



Is the phase factor σΓ
jk ≡ Φ

(
UΓ

jk

)
= Φ

(
〈ψ‖

j (�qin)|ψ‖
k(�qfin)〉

)
measurable?

NO!

It depends on arbitrary choices of the initial phases of two different
eigenstates |ψ‖

j (�qin)〉 and |ψ‖
k(�qin)〉.

σΓ
jk is not gauge-invariant −→ it is arbitrary, thus non-measurable.

Idea: combine two σ’s in the product:

γΓ
jk = σΓ

jk σ
Γ
kj = Φ

(
〈ψ‖

j (�qin)|ψ‖
k(�qfin)〉〈ψ‖

k(�qin)|ψ‖
j (�qfin)〉

)

γΓ
jk is clearly gauge invariant.

MAIN FINDING: γΓ
jk is a measurable geometric quantity!



Geometric interpretation [in projective Hilbert space]

Γ
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dashed curves
G = geodesics

γj = exp
(
−i Im

∫∫
Sj
dS 〈∇1ψj | × |∇2ψj〉

)
(diagonal)

γjk = exp
(
−i Im

∫∫
Sjk
dS 〈∇1ψj | × |∇2ψj〉

)
(off-diagonal)

Like standard single-state open-path geometic phase is reduced to a loop
with the help of geodesics



More measurable phases, general expression

γ
(l) Γ
j1j2j3...jl

= σΓ
j1j2 σ

Γ
j2j3 · · · σΓ

jl−1jl
σΓ

jlj1

l = 1: one-state “diagonal” phase

l = 2: two-states off-diagonal as above σj1j2σj2j1

l > 2: more intricate phase relations among off-diagonal components

Notes:

• any cyclic permutation of the indexes j1j2j3...jl is immaterial

• if one index is repeated, the associated γ(l) can be decomposed into a

product γ(l′) γ(l−l′) −→ l ≤ n

• n2 real numbers fix the unitary matrix UΓ: only a finite number of γ(l)’s are

algebraically independent



Crucial example: Permutational case

⎧⎨
⎩

H(�qP
1 ) =

∑
j Ej |ψj〉〈ψj |

H(�qP
2 ) =

∑
j E

′
j |ψPj

〉〈ψPj
|

P = permutation of the n eigenstates

The only meaningful σΓ
jk’s are the n phase factors σΓ

j Pj
.

For example:

P1 = 2; P2 = 3; P3 = 1 −→ UΓ =

⎛
⎜⎜⎝

0 eiα1 0

0 0 eiα2

eiα3 0 0

⎞
⎟⎟⎠

Only well-defined γ(l): γ
(3)
123 = σ12σ23σ31 = ei(α1+α2+α3)



n P geometric phase factors condition det UΓ = 1 # of Re cases

1 1 γ1 γ1 = 1 1

2 1 2 γ1 γ2 γ1 γ2 = 1 2

2 1 γ12 γ12 = −1 1

3 1 2 3 γ1 γ2 γ3 γ1 γ2 γ3 = 1 4

2 1 3 γ12 γ3 γ12 γ3 = −1 2

3 2 1 γ13 γ2 γ13 γ2 = −1 2

1 3 2 γ23 γ1 γ23 γ1 = −1 2

2 3 1 γ123 γ123 = 1 1

3 1 2 γ132 γ132 = 1 1

4 1 2 3 4 γ1 γ2 γ3 γ4 γ1 γ2 γ3 γ4 = 1 8

2 1 3 4 γ12 γ3 γ4 γ12 γ3 γ4 = −1 4

..............

2 3 4 1 γ1234 γ1234 = −1 1

..............



Application 1: Approximate permutational case

evolution parameter s

1

3

4

2 3
1

4

3

3

2 4 1

2

4

2

1

UΓ�⎛
⎜⎜⎝
ε11 ε12 ε13 eiα1

ε21 ε22 eiα2 ε24

ε31 eiα3 ε32 ε34

eiα4 ε41 ε42 ε44

⎞
⎟⎟⎠



Application 2: two-state system (qubit)

U =

⎛
⎝ U11 U12

U21 U22

⎞
⎠ =

⎛
⎝ eiβ cosα eiχ sinα

−e−iχ sinα e−iβ cosα

⎞
⎠

Thus:

γ1 = Φ(U11) = sgn(cosα) eiβ γ2 = Φ(U22) = sgn(cosα) e−iβ

γ12 = Φ(U12U21) = −sgn
(
sin2 α

)
eiχe−iχ = −1

“trivial” case, like diagonal phase of single state



Application 3: H(�q2) −→ −H(�q1)

A special permutational case:

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 eiα1

0 0 0 eiα2 0

0 0 eiα3 0 0

0 eiα4 0 0 0

eiα5 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Exact because of symmetry (ex. spin systems, �q = �B)

Approximate in perturbative expansion H(�q) = �q ·H (1) + . . . when for �q = 0
n states are degenerate (ex. quantum billiards...)



Comparison with nonabelian phases

’

Abelian

’

’

’

Nonabelian

inq|ψ(    )>
qfin|ψ(    )>

inq|ψ(    )>
qfin|ψ(    )>

Γ
qfin|ψ(    )>

Γ

Γ
qfin|ψ(    )>

Γ

n vectors remain degenerate along the

evolution. The states can recombine

within the n-dimensional subspace. Fol-

lowing a different path Γ′ from �qin to

�qfin one obtains a different mix of the

final states �qfin: a completely different

UΓ
jk = 〈ψ‖

j (�qin)|ψ‖
k(�qfin)〉 could be real-

ized (invariance group SU(n)).

nondegenerate evolution. The fi-

nal states |ψ‖
k(�qfin)〉 are fixed up to

a phase for any path leading to

�qfin −→ UΓ is essentially fixed, ex-

cept for some phase information cap-

tured by the diagonal and off-diagonal

phases γ
(l) Γ
j1j2j3...jl

. Invariance group:

U(1)×U(1)×U(1)×U(1)×... .



Further theoretical work

• Relation with Bargmann invariants [Mukunda et al., PRA 2001]:
The structure of γ(l) Γ

j1j2j3...jl
= Φ

(〈ψin
j1
|ψfin

j2
〉〈ψin

j2
|ψfin

j3
〉... 〈ψin

jl
|ψfin

j1
〉) is that

of a Bargmann invariant!
All off-diag phases can be expressed in terms of the 4-vertex invariants
∆jk = 〈ψin

j |ψfin
k 〉〈ψin

k |ψfin
k 〉〈ψin

k |ψfin
j 〉〈ψin

j |ψfin
j 〉 + the diagonal phases.

Only j < k < n needed −→ 1
2 (n− 1)(n− 2) independent off-diag phases.

• Generalization to mixed states [Filipp Siöqvist PRL 2003] Define an
density matrix ρ⊥ as orthogonal as possible to ρ. The corresponding
off-diagonal phase factor is γρρ⊥ = Φ

[
Tr(U‖√ρ U‖√ρ⊥)

]
and similar definition for γ(l)



EXPERIMENTAL EVIDENCE 1 – neutron spin
2-state system: the off-diagonal phase factor γ12 ≡ eiπ = −1 is trivial.

Interferometry: split a beam and insert a controlled phase χ, recombine the
beam |ψ〉 = eiχ |ψI〉 + |ψII〉, producing an intensity:

I = 〈ψ|ψ〉 = 〈ψI |ψI〉 + 〈ψII |ψII〉 + 2|〈ψI |ψII〉| cos(χ− φ)

The offset of the oscillation measures the phase φ in eiφ = Φ(〈ψI ||ψII〉)
Start with a pure spinor state

|ψ+〉 =
(

cos(θ/2)
sin(θ/2)

)
→ U -evolve → compare with |ψ−〉 =

(− sin(θ/2)
cos(θ/2)

)

Trick: take |ψI〉 = |ψ−〉〈ψ−|U−1|ψ+〉 and |ψII〉 = |ψ−〉〈ψ−|U |ψ+〉,
with U=α-rotation along ẑ.

Result: I = 2 sin2(θ) sin2(α/2)[1 + cos(χ− π)]

The off-diagonal phase of γ12 = π should appear as complete anti-phase of
the recombined intensity I, independent of α-rotation.



The setup for neutron interferometry







EXPERIMENTAL EVIDENCE 2 – quantum billiard

2D deformable rectangular microwave cavity
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Parallel transport in quantum billard: follow nodal structure
adiabatically along the distortion path, and keep phase real.
Open-path result: at θ = π, ψ1 ←→ ψ3, state 2 changes sign.



Coordinate transformation for the deformed domain
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Laplace operator in (u, v) coordinates

∇2 = ∂2
x + ∂2

y −→ ∇2 = (∂u, ∂v)

⎛
⎝ A B

B C

⎞
⎠

⎛
⎝ ∂u

∂v

⎞
⎠ +D

where A, B, C, D are complicate functions of u, v, a, b, ∆a, ∆b

[see D.E. Manolopoulos and M.S. Child, Phys. Rev. Lett. 82, 2223 (1999)]



Approximate treatment:

degenerate perturbation theory in �q = (∆a,∆b) = q(cos θ, sin θ):

H(�q) = −Laplacian = H(0) + q H(1)(θ) + q2H(2)(θ) + . . .

unperturbed basis: ψ(nx,ny)(u, v) = 2√
ab

sin(nxu
a ) sin(nyv

b )

Interesting case: degenerate multiplets
example: if a/b =

√
3 “geometrical degeneracies” appear, for

(nx, ny) = (2, 4), (5, 3), and (7, 1) :

H(0) → const = 52π2/3

H(1) → a 3 × 3 matrix = cos θ F + sin θ F ′

H(2) → 〈ψi|H(2)|ψj〉 +
∑

k �=1,2,3

〈ψi|H(1)|ψk〉〈ψk|H(1)|ψj〉
Ei −Ek

...
...



Perturbation theory vs. Observed

0 1 2
θ/π

−1

0

1

U
22

(θ
)

1
st
 order

2
nd

 order

exp

exp

for the path θ = 0 −→ π

observed γ2 = −1, while 1st order gives γ2 = 1
observed γ13 = 1, while 1st order gives γ13 = −1



Why?

eigenvalues of first-order term H (1)(θ): almost degeneracies in 4 directions



First order fails completely in green region in figure



General observations on quantum billard experiments

• Satellite degeneracies (degeneracies within the range of validity of
perturbation theory, involving minor components on states outside the
multiplet) do often appear

• Whenever in a degenerate multiplet one state is near some states [so
that second-order coupling is large] for which selection rule
(−1)nx+n′

x = (−1)ny+n′
y = 1 makes first-order coupling vanish, and at

the same time it is far from all remaining states [so that ∆E(1) is
small], one is likely to find satellite degeneracies.

• Wide scope: Laplacian



SUMMARY

Off-diagonal geometric phases: [PRL 85, 3067 (2000)]

• only appear in open-path evolution

• complete the set of phase infos of diagonal phases

• in the case of permutations are the only available info

• seen in neutron-spin interferometry [PRA 65, 052111 (2002)]

– trick of forward-backward evolution

– trivial case: γ12 ≡ −1

• seen in “quantum billiards” [PRL 85, 1585 (2000)]

– discovered previously overlooked satellite degeneracies

– through higher-order expansion + exact numerical solution

• to be seen & used in quantum computers [??? ??, ???? (????)]
http://www.mi.infm.it/manini


