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Parallel transport and geometric phase

A vector field |¢) depending on a multidimensional parameter ¢

w(q)>

ex.: Hq‘wj(ff)> = E9(q) ’¢3(®>

14)(q)) is parallel-transported along a path ¢(&) if (¢(q(&))] d%w(cj(g)» —0

[4(q)) acquires a geometric phase factor (¢(¢in)|%(gan)) /(¥ (Gin)| ¥ (Gfin))|



Original formulation |Berry 1984]

The path ¢ = ¢(s) is time-parameterized and closes to an adiabatic loop.

The vectors involved are single-valued eigenstates of Hg ¢é> = E7(q) |¢§>.

The Berry phase associated to the loop is

= W @IV (@) - s = i @1V @) - dg

r

If |¢fl;> is parallel transported then ¢; = 0, but then generally |¢g.> is not
single valued, and the BP is precisely ¢; = Imlog(1(qin)|%(q6n))

The circuit integral of the 1-form (connection) can be recast into a surface
integral of the 2-form (curvature) [Simon 1983]:

b = —Im | (VoW @I A Ve (@) - dS = /S

S(T)




Formulation in terms of Bargmann invariants
[Simon Mukunda 1993]

The continuous adiabatic evolution could be replaced by a discrete
sequence of nonorthogonal states.
The evolution |1;) — [Yr11) need not even be unitary.

The geometric phase factor associated to this sequence of n states is:

e'? =y = ((P1[3h2) (alths)-.. (n—1¥n)(Wbnlth1))

with ®(2) = z/|7]|

for complex z = 0.

Phase tracking algorithms




Extensions

The single-state |1)?) may be replaced by a degenerate n-dimensional

space: the “phase” relation becomes a whole unitary matrix in SU(n),

an element of a non abelian group [Wilczek Zee 1984].

The path I' need not be closed (Pancharathnam 1956).

the open-path phase can
be reduced to a closed-path
phase by closing it with
a geodesic [Samuel Bhan-
dari 1988] provided that

(¥(Gin)[¥(qhn)) 7 O




What about the relative phases of several vectors [11(q)), |¢2(q)),... in a

nondegenerate context? Anything measurable there?




Another generalization!?!

Take states |¢j” (q)) parallel-transported from ¢i, to ¢gn along path I': their

Berry-Pancharatnam phase factor are

% = = () (@) 9] (@) with (2) = 2/|2]

For n states, consider the parallel-evolution matrix
U, Ui,
Uij — <¢L|j| (%n)W}!(CIﬁn)% Uzyp Usg

the traditional Berry phase factor is just the diagonal element ~; = @(U ]Fj) :
This is all is there for cyclic evolutions (matrix U' is diagonal).

What about the information contents of the off-diagonal elements U fk?




Is the phase factor o}, = CID(UJ.Fk> = ((?ﬂ”( )|wk(qﬁn))> measurable?

NO!

It depends on arbitrary choices of the initial phases of two different

eigenstates |¢”(qm)> and ‘¢k<QIn)>

ajrk is not gauge-invariant — it is arbitrary, thus non-measurable.

Idea: combine two ¢’s in the product:

e = 0T oty = @ () (@) [l (@) ] (@) 1] (@) )

’erk is clearly gauge invariant.

MAIN FINDING: erk is a measurable geometric quantity!




(Geometric interpretation lin projective Hilbert space]

————— —~—-_ .
/,A G, %\J(Sz)
3

dashed curves
G = geodesics

v; = exp (—i Im ffsj dS (V11;| X \Vg%)) (diagonal)

Yin = exp (—7; Im [[y dS (V1t;] % yv2¢j>) (off-diagonal)

Like standard single-state open-path geometic phase is reduced to a loop
with the help of geodesics




More measurable phases, general expression

nHr T r T T
j1j2ds.gi — Pj1j2 9jaja Oji_171 P41

[ = 1: one-state “diagonal” phase
[ = 2: two-states off-diagonal as above o}, ,04,5,
[ > 2: more intricate phase relations among off-diagonal components
Notes:
e any cyclic permutation of the indexes j1j273...7; is immaterial

e if one index is repeated, the associated ’y(l) can be decomposed into a
product 7(1’) v(l_l/) — [ <n

e n? real numbers fix the unitary matrix U': only a finite number of v(!’s are

algebraically independent




Crucial example: Permutational case

> Bl ) (¥
Zj E; ’ij > <¢Pj ’
P = permutation of the n eigenstates

The only meaningful erk’s are the n phase factors ajr P,

For example:

P1:2; P2:3, P3:1

Only well-defined v: fygé = 019093031 = ell@1taztas)




geometric phase factors condition det U" =1  # of Re cases

Y1 v1 =1

Y1 Y2 Y1y2 =1
Y12 Y12 = —1
Y1 Y2 Y3 Y1y2ys =1
Y12 Y3 Y12 Y3

Y13 Y2 Y13 Y2

Y23 V1 Y23 V1

Y123 Y123 = 1

Y132 Y132 = 1
Y1 Y2 773 V4 Y1 Y2 Y¥3va =1
Y12 Y3 Y4 = —1

1
2
1
4
2
2
2
1
1
8
4

Y1234 = —1
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Application 2: two-state system (qubit)

U U1 Uqps e'P cos a e'X gin o
U1 Uss —e Xgina e % cosa
Thus:
Y2 = ®(U1oUs1) = —sgn(sin®a)eXe ™ = —1

“trivial” case, like diagonal phase of single state



Application 3: H(¢g) — —H(

A special permutational case:

(

Exact because of symmetry (ex. spin systems, ¢ = B)

Approximate in perturbative expansion H(§) = ¢- H") 4 ... when for 7= 0

n states are degenerate (ex. quantum billiards...)




Comparison with nonabelian phases

Nonabelian
lw(g,,)>
lW(d;,)>

n vectors remain degenerate along the
evolution. The states can recombine
within the n-dimensional subspace. Fol-
lowing a different path IV from ¢ to
gan one obtains a different mix of the
final states ¢an: a completely different
Ujic = () (@in) 14 (@n)) could be real-

ized (invariance group SU(n)).

Abedlian
W(d;)>

W (G)>"

r

nondegenerate evolution. The fi-

nal states \w,ﬂ((jﬁn» are fixed up to

a phase for any path Ileading to
Jin — U"' is essentially fixed, ex-
cept for some phase information cap-
tured by the diagonal and off-diagonal

r

phases ;, isjs..j,-  lnvariance group:

U(1)xU(1)xU((1)xU(1)x... .




Further theoretical work

e Relation with Bargmann invariants [Mukunda et al., PRA 2001]:
)T in n in n in n :
The structure of 7§1?7'2j3...jz = O ((PIP [Yir) (Rpm).. (Pi[4I")) is that
of a Bargmann invariant!

All off-diag phases can be expressed in terms of the 4-vertex invariants

N — <¢;n|¢11;in><¢;€n|¢l§in><¢;€n|¢§in><¢;n|¢§in> + the diagonal phases.

Only j < k < n needed — = (n—1)(n — 2) independent off-diag phases.

Generalization to mixed states [Filipp Sioqvist PRL 2003] Define an
density matrix p~ as orthogonal as possible to p. The corresponding

off-diagonal phase factor is v,,. = ® {Tr(U”\/ﬁ Ully ,OL)}

and similar definition for y(l)




EXPERIMENTAL EVIDENCE 1 — neutron spin

2-state system: the off-diagonal phase factor v;5 = '™ = —1 is trivial.

Interferometry: split a beam and insert a controlled phase y, recombine the

beam [¢)) = X |¢1) + |111), producing an intensity:
I = {lY) = Wrlobr) + Wrr|¥ir) + 2[(Yr|vrr)| cos(x — )

The offset of the oscillation measures the phase ¢ in e*® = ®({17||¢r1))

Start with a pure spinor state

0 = (20— evotve — compare with ) = (7 )

Trick: take |17) = |0~ )Y~ |U~Ywt) and |¢r7) = [~ )@~ | U [T,

with U=a-rotation along Z.
Result: I = 2sin”(#)sin®(a/2)[1 + cos(x — 7)]

The oft-diagonal phase of v152 = m should appear as complete anti-phase of

the recombined intensity I, independent of a-rotation.



The setup for neutron interferometry

" OB, Guide Ficlay - Helmholtz Coil
Magnetic ~
Prism

" Phase Shifter() H-Detector

Lath-11 Spin Rotator II |

y

Spin Rotator I
(o)

Skew-Symmetric /

Neutron Interferometer

O-Detector
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Parallel transport in quantum billard: follow nodal structure
adiabatically along the distortion path, and keep phase real.
Open-path result: at 0 = w, 1, «+—— 13, state 2 changes sign.
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Laplace operator in (u,v) coordinates

A B O,
V2= 4+ — V2=(0,,0,) +D
B C D

where A, B, C', D are complicate functions of u, v, a, b, Aa, Ab

[see D.E. Manolopoulos and M.S. Child, Phys. Rev. Lett. 82, 2223 (1999)]




Approximate treatment:

degenerate perturbation theory in ¢ = (Aa, Ab) = q(cos0,sinf):

H(q) = —Laplacian = H® + ¢ HY (0) + ¢ H®(0) + . ..

unperturbed basis: V(ng,ny) (U, V) = \/% sin(*2*) sin(

Interesting case: degenerate multiplets
example: if a/b = /3 “geometrical degeneracies” appear, for

(nz,ny) = (2,4), (5,3), and (7,1) :
H©® - const =5272/3
HY . 33 x3 matrix =cosf F +sind F’

2 @) (| H Dy ) (3| HD 1))
H (ilH |w;,>+k§’273 e




Perturbation theory

for the path 6 =0 — 7
observed v = —1, while 1%¢ order gives vo = 1

observed 13 = 1, while 1% order gives 13 = —1
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1
0/

eigenvalues of first-order term H (M (6): almost degeneracies in 4 directions




First order fails completely in green region in figure

2

y direction: r
0.05

0

deformation in
—0.05

O=3m /g\

| | | | | | | |
—0.05 0 0.05
deformation in x direction: r,




General observations on quantum billard experiments

e Satellite degeneracies (degeneracies within the range of validity of
perturbation theory, involving minor components on states outside the

multiplet) do often appear

e Whenever in a degenerate multiplet one state is near some states [so

that second-order coupling is large] for which selection rule

(—=1)m=tne = (—1)™+" = 1 makes first-order coupling vanish, and at

the same time it is far from all remaining states [so that AE() is

small], one is likely to find satellite degeneracies.

e Wide scope: Laplacian




SUMMARY
Off-diagonal geometric phases: [PRL 85, 3067 (2000)]

e only appear in open-path evolution
complete the set of phase infos of diagonal phases

in the case of permutations are the only available info

seen in neutron-spin interferometry [PRA 65, 052111 (2002)]
— trick of forward-backward evolution

— trivial case: y19 = —1

seen in  “quantum billiards” [PRL 85, 1585 (2000)]

— discovered previously overlooked satellite degeneracies

— through higher-order expansion + exact numerical solution

to be seen & used in quantum computers

http://www.mi.infm.it/manini




