Off-diagonal geometric phases

N. MANINI

Dipartimento di Fisica Università degli Studi di Milano

Via Celoria, 16
20133 Milano
Italy

Off-diagonal geometric phases

Nicola Manini - Università degli Studi di Milano, Italy
Fabio Pistolesi - CNRS, Grenoble, France

Phys. Rev. Lett. 85, 1585 (2000)
\longrightarrow Phys. Rev. Lett. 85, 3067 (2000) \longleftarrow
Phys. Rev. A 65, 052111 (2002)

OUTLINE

- Parallel transport \& geometric phases
- Off-diagonal phases
- Definition
- Generalizations
- Applications
- Further work
- Examples
- Experimental evidence
- Neutron spin interferometry
- Conical intersections in "quantum billiards"
- Conclusions

Parallel transport and geometric phase

A vector field $|\psi\rangle$ depending on a multidimensional parameter \vec{q}

$$
\text { ex.: } H_{\vec{q}}\left|\psi^{j}(\vec{q})\right\rangle=E^{j}(\vec{q})\left|\psi^{j}(\vec{q})\right\rangle
$$

$|\psi(\vec{q})\rangle$ is parallel-transported along a path $\vec{q}(\xi)$ if $\langle\psi(\vec{q}(\xi))| \frac{d}{d \xi}|\psi(\vec{q}(\xi))\rangle=0$ $|\psi(\vec{q})\rangle$ acquires a geometric phase factor $\left\langle\psi\left(\vec{q}_{\text {in }}\right) \mid \psi\left(\vec{q}_{\text {fin }}\right)\right\rangle /\left|\left\langle\psi\left(\vec{q}_{\text {in }}\right) \mid \psi\left(\vec{q}_{\text {fin }}\right)\right\rangle\right|$

Original formulation [Berry 1984]

The path $\vec{q}=\vec{q}(s)$ is time-parameterized and closes to an adiabatic loop.
The vectors involved are single-valued eigenstates of $H_{\vec{q}}\left|\psi_{\vec{q}}^{j}\right\rangle=E^{j}(q)\left|\psi_{\vec{q}}^{j}\right\rangle$.
The Berry phase associated to the loop is

$$
\phi_{j}=\int_{s_{\mathrm{in}}}^{s_{\mathrm{fin}}} i\left\langle\psi^{j}(\vec{q}) \mid \nabla_{\vec{q}} \psi^{j}(\vec{q})\right\rangle \cdot \dot{\vec{q}} d s=\int_{\Gamma} i\left\langle\psi^{j}(\vec{q}) \mid \nabla_{\vec{q}} \psi^{j}(\vec{q})\right\rangle \cdot d \vec{q}
$$

If $\left|\psi_{\vec{q}}^{j}\right\rangle$ is parallel transported then $\phi_{j}=0$, but then generally $\left|\psi_{\vec{q}}^{j}\right\rangle$ is not single valued, and the BP is precisely $\phi_{j}=\operatorname{Im} \log \left\langle\psi\left(\vec{q}_{\text {in }}\right) \mid \psi\left(\vec{q}_{\text {fin }}\right)\right\rangle$
The circuit integral of the 1-form (connection) can be recast into a surface integral of the 2-form (curvature) [Simon 1983]:

$$
\phi_{j}=-\operatorname{Im} \int_{S(\Gamma)}\left\langle\nabla_{\vec{q}} \psi^{j}(\vec{q})\right| \wedge\left|\nabla_{\vec{q}} \psi^{j}(\vec{q})\right\rangle \cdot d S=\int_{S(\Gamma)}-\operatorname{Im} \sum_{a<b}\left\langle\partial_{q_{a}} \psi^{j} \mid \partial_{q_{b}} \psi^{j}\right\rangle d q_{a} \wedge d q_{b}
$$

Formulation in terms of Bargmann invariants

[Simon Mukunda 1993]
The continuous adiabatic evolution could be replaced by a discrete sequence of nonorthogonal states.
The evolution $\left|\psi_{k}\right\rangle \longrightarrow\left|\psi_{k+1}\right\rangle$ need not even be unitary.
The geometric phase factor associated to this sequence of n states is:

$$
e^{i \phi}=\gamma=\Phi\left(\left\langle\psi_{1} \mid \psi_{2}\right\rangle\left\langle\psi_{2} \mid \psi_{3}\right\rangle \ldots\left\langle\psi_{n-1} \mid \psi_{n}\right\rangle\left\langle\psi_{n} \mid \psi_{1}\right\rangle\right)
$$

with $\Phi(z)=z /|z|$
for complex $z \neq 0$.

e $\psi n>$
Phase tracking algorithms

Extensions

- The single-state $\left|\psi^{j}\right\rangle$ may be replaced by a degenerate n-dimensional space: the "phase" relation becomes a whole unitary matrix in $\mathrm{SU}(n)$, an element of a non abelian group [Wilczek Zee 1984].
- The path Γ need not be closed (Pancharathnam 1956).

the open-path phase can be reduced to a closed-path phase by closing it with a geodesic [Samuel Bhandari 1988] provided that $\left\langle\psi\left(\vec{q}_{\text {in }}\right) \mid \psi\left(\vec{q}_{\text {fin }}\right)\right\rangle \neq 0$

What about the relative phases of several vectors $\left|\psi_{1}(\vec{q})\right\rangle,\left|\psi_{2}(\vec{q})\right\rangle, \ldots$ in a nondegenerate context? Anything measurable there?

Another generalization!?!

Take states $\left|\psi_{j}^{\|}(\vec{q})\right\rangle$ parallel-transported from $\vec{q}_{\text {in }}$ to $\vec{q}_{\text {fin }}$ along path Γ : their Berry-Pancharatnam phase factor are

$$
e^{i \phi_{j}^{\Gamma}}=\gamma_{j}^{\Gamma} \equiv \Phi\left(\left\langle\psi_{j}^{\|}\left(\vec{q}_{\text {in }}\right) \mid \psi_{j}^{\|}\left(\vec{q}_{\mathrm{fin}}\right)\right\rangle\right) \quad \text { with } \Phi(z)=z /|z|
$$

For n states, consider the parallel-evolution matrix

$$
U_{j k}^{\Gamma}=\left\langle\psi_{j}^{\|}\left(\vec{q}_{\mathrm{in}}\right) \mid \psi_{k}^{\|}\left(\vec{q}_{\mathrm{fin}}\right)\right\rangle, \quad\left(\begin{array}{ccc}
U_{11}^{\Gamma} & U_{12}^{\Gamma} & \cdots \\
U_{21}^{\Gamma} & U_{22}^{\Gamma} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

the traditional Berry phase factor is just the diagonal element $\gamma_{j}^{\Gamma} \equiv \Phi\left(U_{j j}^{\Gamma}\right)$.
This is all is there for cyclic evolutions (matrix U^{Γ} is diagonal).
What about the information contents of the off-diagonal elements $U_{j k}^{\Gamma}$?

Is the phase factor $\sigma_{j k}^{\Gamma} \equiv \Phi\left(U_{j k}^{\Gamma}\right)=\Phi\left(\left\langle\psi_{j}^{\|}\left(\vec{q}_{\text {in }}\right) \mid \psi_{k}^{\|}\left(\vec{q}_{\text {fin }}\right)\right\rangle\right)$ measurable? NO!

It depends on arbitrary choices of the initial phases of two different eigenstates $\left|\psi_{j}^{\|}\left(\vec{q}_{\text {in }}\right)\right\rangle$ and $\left|\psi_{k}^{\|}\left(\vec{q}_{\text {in }}\right)\right\rangle$.
$\sigma_{j k}^{\Gamma}$ is not gauge-invariant \longrightarrow it is arbitrary, thus non-measurable.

Idea: combine two σ 's in the product:
$\gamma_{j k}^{\Gamma}=\sigma_{j k}^{\Gamma} \sigma_{k j}^{\Gamma}=\Phi\left(\left\langle\psi_{j}^{\|}\left(\vec{q}_{\text {in }}\right) \mid \psi_{k}^{\|}\left(\vec{q}_{\text {fin }}\right)\right\rangle\left\langle\psi_{k}^{\|}\left(\vec{q}_{\text {in }}\right) \mid \psi_{j}^{\|}\left(\vec{q}_{\text {fin }}\right)\right\rangle\right)$
$\gamma_{j k}^{\Gamma}$ is clearly gauge invariant.

Geometric interpretation [in projective Hilbert space]

Like standard single-state open-path geometic phase is reduced to a loop with the help of geodesics

More measurable phases, general expression

$$
\gamma_{j_{1} j_{2} j_{3} \ldots j_{l}}^{(l)}=\sigma_{j_{1} j_{2}}^{\Gamma} \sigma_{j_{2} j_{3}}^{\Gamma} \cdots \sigma_{j_{l-1} j_{l}}^{\Gamma} \sigma_{j_{l j} j_{1}}^{\Gamma}
$$

$l=1$: one-state "diagonal" phase
$l=2$: two-states off-diagonal as above $\sigma_{j_{1} j_{2}} \sigma_{j_{2} j_{1}}$
$l>2$: more intricate phase relations among off-diagonal components
Notes:

- any cyclic permutation of the indexes $j_{1} j_{2} j_{3} \ldots j_{l}$ is immaterial
- if one index is repeated, the associated $\gamma^{(l)}$ can be decomposed into a product $\gamma^{\left(l^{\prime}\right)} \gamma^{\left(l-l^{\prime}\right)} \quad \longrightarrow \quad l \leq n$
- n^{2} real numbers fix the unitary matrix U^{Γ} : only a finite number of $\gamma^{(l)}$'s are algebraically independent

Crucial example: Permutational case

$$
\left\{\begin{array}{l}
H\left(\vec{q}_{1}^{P}\right)=\sum_{j} E_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \\
H\left(\vec{q}_{2}^{P}\right)=\sum_{j} E_{j}^{\prime}\left|\psi_{P_{j}}\right\rangle\left\langle\psi_{P_{j}}\right|
\end{array}\right.
$$

$$
P=\text { permutation of the } n \text { eigenstates }
$$

The only meaningful $\sigma_{j k}^{\Gamma}$'s are the n phase factors $\sigma_{j P_{j}}^{\Gamma}$.
For example:

$$
P_{1}=2 ; P_{2}=3 ; P_{3}=1 \quad \longrightarrow \quad U^{\Gamma}=\left(\begin{array}{ccc}
0 & e^{i \alpha_{1}} & 0 \\
0 & 0 & e^{i \alpha_{2}} \\
e^{i \alpha_{3}} & 0 & 0
\end{array}\right)
$$

Only well-defined $\gamma^{(l)}$:

$$
\gamma_{123}^{(3)}=\sigma_{12} \sigma_{23} \sigma_{31}=e^{i\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)}
$$

n	P	geometric phase factors	condition $\operatorname{det} U^{\Gamma}=1$	\# of Re cases
1	1	γ_{1}	$\gamma_{1}=1$	1
2	12	$\gamma_{1} \gamma_{2}$	$\gamma_{1} \gamma_{2}=1$	2
	21	γ_{12}	$\gamma_{12}=-1$	1
3	123	$\gamma_{1} \gamma_{2} \gamma_{3}$	$\gamma_{1} \gamma_{2} \gamma_{3}=1$	4
	213	$\gamma_{12} \gamma_{3}$	$\gamma_{12} \gamma_{3}=-1$	2
	321	$\gamma_{13} \gamma_{2}$	$\gamma_{13} \gamma_{2}=-1$	2
	132	$\gamma_{23} \gamma_{1}$	$\gamma_{23} \gamma_{1}=-1$	2
	231	γ_{123}	$\gamma_{123}=1$	1
	312	γ_{132}	$\gamma_{132}=1$	1
4	1234	$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}$	$\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{4}=1$	8
	2134	$\gamma_{12} \gamma_{3} \gamma_{4}$	$\gamma_{12} \gamma_{3} \gamma_{4}=-1$	4
	2341	γ_{1234}	$\gamma_{1234}=-1$	1

Application 1: Approximate permutational case

$$
\begin{aligned}
& U^{\Gamma} \simeq \\
& \left(\begin{array}{cccc}
\epsilon_{11} & \epsilon_{12} & \epsilon_{13} & e^{i \alpha_{1}} \\
\epsilon_{21} & \epsilon_{22} & e^{i \alpha_{2}} & \epsilon_{24} \\
\epsilon_{31} & e^{i \alpha_{3}} & \epsilon_{32} & \epsilon_{34} \\
e^{i \alpha_{4}} & \epsilon_{41} & \epsilon_{42} & \epsilon_{44}
\end{array}\right)
\end{aligned}
$$

Application 2: two-state system (qubit)

$$
U=\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)=\left(\begin{array}{cc}
e^{i \beta} \cos \alpha & e^{i \chi} \sin \alpha \\
-e^{-i \chi} \sin \alpha & e^{-i \beta} \cos \alpha
\end{array}\right)
$$

Thus:

$$
\begin{gathered}
\gamma_{1}=\Phi\left(U_{11}\right)=\operatorname{sgn}(\cos \alpha) e^{i \beta} \quad \gamma_{2}=\Phi\left(U_{22}\right)=\operatorname{sgn}(\cos \alpha) e^{-i \beta} \\
\gamma_{12}=\Phi\left(U_{12} U_{21}\right)=-\operatorname{sgn}\left(\sin ^{2} \alpha\right) e^{i \chi} e^{-i \chi}=-1
\end{gathered}
$$

> "trivial" case, like diagonal phase of single state

Application 3: $H\left(\overrightarrow{q_{2}}\right) \longrightarrow-H\left(\overrightarrow{q_{1}}\right)$

A special permutational case:

$$
U=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & e^{i \alpha_{1}} \\
0 & 0 & 0 & e^{i \alpha_{2}} & 0 \\
0 & 0 & e^{i \alpha_{3}} & 0 & 0 \\
0 & e^{i \alpha_{4}} & 0 & 0 & 0 \\
e^{i \alpha_{5}} & 0 & 0 & 0 & 0
\end{array}\right)
$$

Exact because of symmetry (ex. spin systems, $\vec{q}=\vec{B}$)
Approximate in perturbative expansion $H(\vec{q})=\vec{q} \cdot H^{(1)}+\ldots$ when for $\vec{q}=0$ n states are degenerate (ex. quantum billiards...)

n vectors remain degenerate along the evolution. The states can recombine within the n-dimensional subspace. Following a different path Γ^{\prime} from $\vec{q}_{\text {in }}$ to \vec{q}_{fin} one obtains a different mix of the final states \vec{q}_{fin} : a completely different $U_{j k}^{\Gamma}=\left\langle\psi_{j}^{\|}\left(\vec{q}_{\text {in }}\right) \mid \psi_{k}^{\|}\left(\vec{q}_{\text {fin }}\right)\right\rangle$ could be realized (invariance group $\operatorname{SU}(n)$).

nondegenerate evolution. The final states $\left|\psi_{k}^{\|}\left(\vec{q}_{\text {fin }}\right)\right\rangle$ are fixed up to a phase for any path leading to $\vec{q}_{\mathrm{fin}} \longrightarrow U^{\Gamma}$ is essentially fixed, except for some phase information captured by the diagonal and off-diagonal phases $\gamma_{j_{1} j_{2} j_{3} \ldots j_{l}}^{(l) \Gamma}$. Invariance group: $\mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1) \times \mathrm{U}(1) \times \ldots$.

Further theoretical work

- Relation with Bargmann invariants [Mukunda et al., PRA 2001]:

The structure of $\gamma_{j_{1} j_{2} j_{3} \ldots j_{l}}^{(l) \Gamma}=\Phi\left(\left\langle\psi_{j_{1}}^{\mathrm{in}} \mid \psi_{j_{2}}^{\mathrm{fin}}\right\rangle\left\langle\psi_{j_{2}}^{\mathrm{in}} \mid \psi_{j_{3}}^{\mathrm{fin}}\right\rangle \ldots\left\langle\psi_{j_{l}}^{\mathrm{in}} \mid \psi_{j_{1}}^{\mathrm{fin}}\right\rangle\right)$ is that of a Bargmann invariant!
All off-diag phases can be expressed in terms of the 4 -vertex invariants $\Delta_{j k}=\left\langle\psi_{j}^{\mathrm{in}} \mid \psi_{k}^{\mathrm{fin}}\right\rangle\left\langle\psi_{k}^{\mathrm{in}} \mid \psi_{k}^{\mathrm{fin}}\right\rangle\left\langle\psi_{k}^{\mathrm{in}} \mid \psi_{j}^{\mathrm{fin}}\right\rangle\left\langle\psi_{j}^{\mathrm{in}} \mid \psi_{j}^{\mathrm{fin}}\right\rangle+$ the diagonal phases. Only $j<k<n$ needed $\longrightarrow \frac{1}{2}(n-1)(n-2)$ independent off-diag phases.

- Generalization to mixed states [Filipp Siöqvist PRL 2003] Define an density matrix ρ^{\perp} as orthogonal as possible to ρ. The corresponding off-diagonal phase factor is $\gamma_{\rho \rho^{\perp}}=\Phi\left[\operatorname{Tr}\left(U^{\|} \sqrt{\rho} U^{\|} \sqrt{\rho^{\perp}}\right)\right]$ and similar definition for $\gamma^{(l)}$

EXPERIMENTAL EVIDENCE 1 - neutron spin

2-state system: the off-diagonal phase factor $\gamma_{12} \equiv e^{i \pi}=-1$ is trivial.
Interferometry: split a beam and insert a controlled phase χ, recombine the beam $|\psi\rangle=e^{i \chi}\left|\psi_{I}\right\rangle+\left|\psi_{I I}\right\rangle$, producing an intensity:

$$
I=\langle\psi \mid \psi\rangle=\left\langle\psi_{I} \mid \psi_{I}\right\rangle+\left\langle\psi_{I I} \mid \psi_{I I}\right\rangle+2\left|\left\langle\psi_{I} \mid \psi_{I I}\right\rangle\right| \cos (\chi-\phi)
$$

The offset of the oscillation measures the phase ϕ in $e^{i \phi}=\Phi\left(\left\langle\psi_{I} \| \psi_{I I}\right\rangle\right)$
Start with a pure spinor state $\left|\psi^{+}\right\rangle=\binom{\cos (\theta / 2)}{\sin (\theta / 2)} \rightarrow U$-evolve \rightarrow compare with $\left|\psi^{-}\right\rangle=\binom{-\sin (\theta / 2)}{\cos (\theta / 2)}$
Trick: take $\left|\psi_{I}\right\rangle=\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right| U^{-1}\left|\psi^{+}\right\rangle$and $\left|\psi_{I I}\right\rangle=\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right| U\left|\psi^{+}\right\rangle$, with $U=\alpha$-rotation along \hat{z}.
Result: $I=2 \sin ^{2}(\theta) \sin ^{2}(\alpha / 2)[1+\cos (\chi-\pi)]$
The off-diagonal phase of $\gamma_{12}=\pi$ should appear as complete anti-phase of the recombined intensity I, independent of α-rotation.

The setup for neutron interferometry

(sl!un*qIe) Kı!suə̨uI

(sl!un *qIP) Kı!

(Sliun *qre) Kı!suəŋuI

EXPERIMENTAL EVIDENCE 2 - quantum billiard

2D deformable rectangular microwave cavity

Parallel transport in quantum billard: follow nodal structure adiabatically along the distortion path, and keep phase real. Open-path result: at $\theta=\pi, \psi_{1} \longleftrightarrow \psi_{3}$, state 2 changes sign.

$$
\begin{aligned}
& \stackrel{\theta=0}{\pi} \rightarrow \stackrel{2 \pi}{\square} \rightarrow \mathrm{DND}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \rightarrow \rightarrow \text { WHOH } \rightarrow \text { ? }
\end{aligned}
$$

Coordinate transformation for the deformed domain

$$
x=u\left(1+v \frac{\Delta a}{a b}\right)
$$

$$
y=v\left(1+u \frac{\Delta b}{a b}\right)
$$

rectangular domain for u and v

$$
0 \leq u \leq a \quad 0 \leq v<\leq b
$$

Laplace operator in (u, v) coordinates

$$
\nabla^{2}=\partial_{x}^{2}+\partial_{y}^{2} \quad \longrightarrow \quad \nabla^{2}=\overline{\left(\partial_{u}, \partial_{v}\right)}\left(\begin{array}{cc}
A & B \\
B & C
\end{array}\right)\binom{\partial_{u}}{\partial_{v}}+D
$$

where A, B, C, D are complicate functions of $u, v, a, b, \Delta a, \Delta b$
[see D.E. Manolopoulos and M.S. Child, Phys. Rev. Lett. 82, 2223 (1999)]

Approximate treatment:

degenerate perturbation theory in $\vec{q}=(\Delta a, \Delta b)=q(\cos \theta, \sin \theta)$:

$$
H(\vec{q})=- \text { Laplacian }=H^{(0)}+q H^{(1)}(\theta)+q^{2} H^{(2)}(\theta)+\ldots
$$

unperturbed basis:

$$
\psi_{\left(n_{x}, n_{y}\right)}(u, v)=\frac{2}{\sqrt{a b}} \sin \left(\frac{n_{x} u}{a}\right) \sin \left(\frac{n_{y} v}{b}\right)
$$

Interesting case: degenerate multiplets
example: if $a / b=\sqrt{3}$ "geometrical degeneracies" appear, for $\left(n_{x}, n_{y}\right)=(2,4),(5,3)$, and $(7,1):$

$$
\begin{aligned}
& H^{(0)} \rightarrow \text { const }=52 \pi^{2} / 3 \\
& H^{(1)} \rightarrow \text { a } 3 \times 3 \text { matrix }=\cos \theta F+\sin \theta F^{\prime} \\
& H^{(2)} \rightarrow\left\langle\psi_{i}\right| H^{(2)}\left|\psi_{j}\right\rangle+\sum_{k \neq 1,2,3} \frac{\left\langle\psi_{i}\right| H^{(1)}\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right| H^{(1)}\left|\psi_{j}\right\rangle}{E_{i}-E_{k}}
\end{aligned}
$$

Perturbation theory
vs.
Observed

for the path $\theta=0 \longrightarrow \pi$
observed $\gamma_{2}=-1$,
observed $\gamma_{13}=1$,
while $1^{\text {st }}$ order gives $\gamma_{2}=1$ while $1^{\text {st }}$ order gives $\gamma_{13}=-1$

Why?

eigenvalues of first-order term $H^{(1)}(\theta)$: almost degeneracies in 4 directions

First order fails completely in green region in figure

General observations on quantum billard experiments

- Satellite degeneracies (degeneracies within the range of validity of perturbation theory, involving minor components on states outside the multiplet) do often appear
- Whenever in a degenerate multiplet one state is near some states [so that second-order coupling is large] for which selection rule $(-1)^{n_{x}+n_{x}^{\prime}}=(-1)^{n_{y}+n_{y}^{\prime}}=1$ makes first-order coupling vanish, and at the same time it is far from all remaining states [so that $\Delta E^{(1)}$ is small], one is likely to find satellite degeneracies.
- Wide scope: Laplacian

SUMMARY

Off-diagonal geometric phases: [PRL 85, 3067 (2000)]

- only appear in open-path evolution
- complete the set of phase infos of diagonal phases
- in the case of permutations are the only available info
- seen in neutron-spin interferometry [PRA 65, 052111 (2002)]
- trick of forward-backward evolution
- trivial case: $\gamma_{12} \equiv-1$
- seen in "quantum billiards" [PRL 85, 1585 (2000)]
- discovered previously overlooked satellite degeneracies
- through higher-order expansion + exact numerical solution
- to be seen \& used in quantum computers [??? ??, ???? (????)]
http://www.mi.infm.it/manini

