

the **abdus salam** international centre for theoretical physics 40 anniversary 2004

SMR.1587 - 10

SCHOOL AND WORKSHOP ON QUANTUM ENTANGLEMENT, DECOHERENCE, INFORMATION, AND GEOMETRICAL PHASES IN COMPLEX SYSTEMS (1 November - 12 November 2004)

Off-diagonal geometric phases

N. MANINI

Dipartimento di Fisica Università degli Studi di Milano Via Celoria, 16 20133 Milano Italy

These are preliminary lecture notes, intended only for distribution to participants

OUTLINE

- Parallel transport & geometric phases
- Off-diagonal phases
 - Definition
 - Generalizations
 - Applications
 - Further work
 - Examples
- Experimental evidence
 - Neutron spin interferometry
 - Conical intersections in "quantum billiards"
- Conclusions

 $|\psi(\vec{q})\rangle$ is parallel-transported along a path $\vec{q}(\xi)$ if $\langle\psi(\vec{q}(\xi))|\frac{d}{d\xi}|\psi(\vec{q}(\xi))\rangle = 0$ $|\psi(\vec{q})\rangle$ acquires a geometric phase factor $\langle\psi(\vec{q}_{\rm in})|\psi(\vec{q}_{\rm fin})\rangle / |\langle\psi(\vec{q}_{\rm in})|\psi(\vec{q}_{\rm fin})\rangle|$

Original formulation [Berry 1984]

The path $\vec{q} = \vec{q}(s)$ is time-parameterized and closes to an adiabatic loop. The vectors involved are *single-valued* eigenstates of $H_{\vec{q}} \left| \psi_{\vec{q}}^j \right\rangle = E^j(q) \left| \psi_{\vec{q}}^j \right\rangle$. The Berry phase associated to the loop is

$$\phi_j = \int_{s_{\rm in}}^{s_{\rm fin}} i \langle \psi^j(\vec{q}) | \nabla_{\vec{q}} \, \psi^j(\vec{q}) \rangle \cdot \dot{\vec{q}} \, ds = \int_{\Gamma} i \langle \psi^j(\vec{q}) | \nabla_{\vec{q}} \, \psi^j(\vec{q}) \rangle \cdot d\vec{q}$$

If $|\psi_{\vec{q}}^{j}\rangle$ is parallel transported then $\phi_{j} = 0$, but then generally $|\psi_{\vec{q}}^{j}\rangle$ is not single valued, and the BP is precisely $\phi_{j} = \text{Im} \log \langle \psi(\vec{q}_{\text{in}}) | \psi(\vec{q}_{\text{fin}}) \rangle$

The circuit integral of the 1-form (connection) can be recast into a surface integral of the 2-form (curvature) [Simon 1983]:

$$\phi_j = -\mathrm{Im} \int_{S(\Gamma)} \langle \nabla_{\vec{q}} \psi^j(\vec{q}) | \wedge | \nabla_{\vec{q}} \psi^j(\vec{q}) \rangle \cdot dS = \int_{S(\Gamma)} -\mathrm{Im} \sum_{a < b} \langle \partial_{q_a} \psi^j | \partial_{q_b} \psi^j \rangle dq_a \wedge dq_b$$

Formulation in terms of Bargmann invariants [Simon Mukunda 1993]

The continuous adiabatic evolution could be replaced by a discrete sequence of nonorthogonal states.

The evolution $|\psi_k\rangle \longrightarrow |\psi_{k+1}\rangle$ need not even be unitary.

The geometric phase factor associated to this sequence of n states is:

$$e^{i\phi} = \gamma = \Phi(\langle \psi_1 | \psi_2 \rangle \langle \psi_2 | \psi_3 \rangle \dots \langle \psi_{n-1} | \psi_n \rangle \langle \psi_n | \psi_1 \rangle)$$

Extensions

- The single-state |ψ^j⟩ may be replaced by a degenerate n-dimensional space: the "phase" relation becomes a whole unitary matrix in SU(n), an element of a non abelian group [Wilczek Zee 1984].
- The path Γ need not be closed (Pancharathnam 1956).

the open-path phase can be reduced to a closed-path phase by closing it with a geodesic [Samuel Bhandari 1988] provided that $\langle \psi(\vec{q}_{\rm in}) | \psi(\vec{q}_{\rm fin}) \rangle \neq 0$ What about the relative phases of several vectors $|\psi_1(\vec{q})\rangle$, $|\psi_2(\vec{q})\rangle$,... in a nondegenerate context? Anything measurable there?

Another generalization!?!

Take states $|\psi_j^{\parallel}(\vec{q})\rangle$ parallel-transported from \vec{q}_{in} to \vec{q}_{fin} along path Γ : their Berry-Pancharatnam phase factor are

$$e^{i\phi_j^{\Gamma}} = \gamma_j^{\Gamma} \equiv \Phi\left(\langle \psi_j^{\parallel}(\vec{q}_{\rm in}) | \psi_j^{\parallel}(\vec{q}_{\rm fin}) \rangle\right) \qquad \text{with } \Phi(z) = z/|z|$$

For n states, consider the parallel-evolution matrix

$$U_{jk}^{\Gamma} = \langle \psi_{j}^{\parallel}(\vec{q}_{\rm in}) | \psi_{k}^{\parallel}(\vec{q}_{\rm fin}) \rangle, \qquad \begin{pmatrix} U_{11}^{\Gamma} & U_{12}^{\Gamma} & \dots \\ U_{21}^{\Gamma} & U_{22}^{\Gamma} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

the traditional Berry phase factor is just the diagonal element $\gamma_j^{\Gamma} \equiv \Phi(U_{jj}^{\Gamma})$. This is all is there for cyclic evolutions (matrix U^{Γ} is diagonal). What about the information contents of the off-diagonal elements U_{jk}^{Γ} ?

Is the phase factor
$$\sigma_{jk}^{\Gamma} \equiv \Phi\left(U_{jk}^{\Gamma}\right) = \Phi\left(\langle \psi_{j}^{\parallel}(\vec{q}_{\mathrm{in}}) | \psi_{k}^{\parallel}(\vec{q}_{\mathrm{fin}}) \rangle\right)$$
 measurable?
NO!

It depends on arbitrary choices of the initial phases of two different eigenstates $|\psi_j^{\parallel}(\vec{q}_{\rm in})\rangle$ and $|\psi_k^{\parallel}(\vec{q}_{\rm in})\rangle$.

 σ_{ik}^{Γ} is not gauge-invariant \longrightarrow it is arbitrary, thus non-measurable.

Idea: combine two σ 's in the product:

$$\gamma_{jk}^{\Gamma} = \sigma_{jk}^{\Gamma} \ \sigma_{kj}^{\Gamma} = \Phi\left(\langle \psi_j^{\parallel}(\vec{q}_{\rm in}) | \psi_k^{\parallel}(\vec{q}_{\rm fin}) \rangle \langle \psi_k^{\parallel}(\vec{q}_{\rm in}) | \psi_j^{\parallel}(\vec{q}_{\rm fin}) \rangle\right)$$

 γ_{jk}^{Γ} is clearly gauge invariant.

MAIN FINDING:

 γ_{ik}^{Γ} is a measurable geometric quantity!

More measurable phases, general expression

$$\gamma_{j_1 j_2 j_3 \dots j_l}^{(l)\,\Gamma} = \sigma_{j_1 j_2}^{\Gamma} \,\sigma_{j_2 j_3}^{\Gamma} \,\cdots \,\sigma_{j_{l-1} j_l}^{\Gamma} \,\sigma_{j_l j_1}^{\Gamma}$$

- l = 1: one-state "diagonal" phase
- l = 2: two-states off-diagonal as above $\sigma_{j_1 j_2} \sigma_{j_2 j_1}$

l > 2: more intricate phase relations among off-diagonal components Notes:

- any cyclic permutation of the indexes $j_1 j_2 j_3 \dots j_l$ is immaterial
- if one index is repeated, the associated $\gamma^{(l)}$ can be decomposed into a product $\gamma^{(l')} \gamma^{(l-l')} \longrightarrow l \leq n$
- n^2 real numbers fix the unitary matrix U^{Γ} : only a finite number of $\gamma^{(l)}$'s are algebraically independent

Crucial example: Permutational case

P =permutation of the n eigenstates

The only meaningful σ_{jk}^{Γ} 's are the *n* phase factors $\sigma_{jP_j}^{\Gamma}$. For example:

$$P_1 = 2; \ P_2 = 3; \ P_3 = 1 \qquad \longrightarrow \qquad U^{\Gamma} = \begin{pmatrix} 0 & e^{i\alpha_1} & 0 \\ 0 & 0 & e^{i\alpha_2} \\ e^{i\alpha_3} & 0 & 0 \end{pmatrix}$$

Only well-defined $\gamma^{(l)}$: $\gamma_{123}^{(3)} = \sigma_{12}\sigma_{23}\sigma_{31} = e^{i(\alpha_1 + \alpha_2 + \alpha_3)}$

n	P	geometric phase factors	condition $\det U^{\Gamma} = 1$	# of Re cases
1	1	γ_1	$\gamma_1 = 1$	1
2	1 2	$\gamma_1 \gamma_2$	$\gamma_1 \gamma_2 = 1$	2
	2 1	γ_{12}	$\gamma_{12} = -1$	1
3	123	$\gamma_1 \gamma_2 \gamma_3$	$\gamma_1 \gamma_2 \gamma_3 = 1$	4
	2 1 3	$\gamma_{12} \gamma_3$	$\gamma_{12}\gamma_3=-1$	2
	$3\ 2\ 1$	$\gamma_{13} \gamma_2$	$\gamma_{13} \gamma_2 = -1$	2
	1 3 2	$\gamma_{23} \gamma_1$	$\gamma_{23}\gamma_1=-1$	2
	$2 \ 3 \ 1$	γ_{123}	$\gamma_{123} = 1$	1
	312	γ_{132}	$\gamma_{132} = 1$	1
4	1234	$\gamma_1 \ \gamma_2 \ \gamma_3 \ \gamma_4$	$\gamma_1 \gamma_2 \gamma_3 \gamma_4 = 1$	8
	$2\ 1\ 3\ 4$	$\gamma_{12} \ \gamma_3 \ \gamma_4$	$\gamma_{12}\gamma_3\gamma_4=-1$	4
	2341	γ_{1234}	$\gamma_{1234} = -1$	1

Application 2: two-state system (qubit)

$$U = \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} = \begin{pmatrix} e^{i\beta} \cos \alpha & e^{i\chi} \sin \alpha \\ -e^{-i\chi} \sin \alpha & e^{-i\beta} \cos \alpha \end{pmatrix}$$

Thus:

$$\gamma_{1} = \Phi(U_{11}) = \operatorname{sgn}(\cos \alpha) e^{i\beta} \qquad \gamma_{2} = \Phi(U_{22}) = \operatorname{sgn}(\cos \alpha) e^{-i\beta}$$
$$\gamma_{12} = \Phi(U_{12}U_{21}) = -\operatorname{sgn}(\sin^{2} \alpha) e^{i\chi} e^{-i\chi} = -1$$

"trivial" case, like diagonal phase of single state

Application 3:
$$H(\vec{q}_2) \longrightarrow -H(\vec{q}_1)$$

A special permutational case:

$$U = \begin{pmatrix} 0 & 0 & 0 & 0 & e^{i\alpha_1} \\ 0 & 0 & 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & e^{i\alpha_3} & 0 & 0 \\ 0 & e^{i\alpha_4} & 0 & 0 & 0 \\ e^{i\alpha_5} & 0 & 0 & 0 & 0 \end{pmatrix}$$

Exact because of symmetry (ex. spin systems, $\vec{q} = \vec{B}$)

Approximate in perturbative expansion $H(\vec{q}) = \vec{q} \cdot H^{(1)} + \dots$ when for $\vec{q} = 0$ *n* states are degenerate (ex. quantum billiards...)

n vectors remain *degenerate* along the evolution. The states can recombine within the n-dimensional subspace. Following a different path Γ' from \vec{q}_{in} to \vec{q}_{fin} one obtains a different mix of the final states \vec{q}_{fin} : a completely different $U_{jk}^{\Gamma} = \langle \psi_{j}^{\parallel}(\vec{q}_{in}) | \psi_{k}^{\parallel}(\vec{q}_{fin}) \rangle$ could be realized (invariance group SU(n)).

nondegenerate evolution. The final states $|\psi_k^{\parallel}(\vec{q}_{\rm fin})\rangle$ are fixed up to a phase for any path leading to $\vec{q}_{\text{fin}} \longrightarrow U^{\Gamma}$ is essentially fixed, except for some phase information captured by the diagonal and off-diagonal phases $\gamma_{j_1 j_2 j_3 \dots j_l}^{(l) \Gamma}$. Invariance group: $U(1) \times U(1) \times U(1) \times U(1) \times ...$

Further theoretical work

- Relation with Bargmann invariants [Mukunda *et al.*, PRA 2001]: The structure of $\gamma_{j_1 j_2 j_3 \dots j_l}^{(l) \Gamma} = \Phi(\langle \psi_{j_1}^{\text{in}} | \psi_{j_2}^{\text{fn}} \rangle \langle \psi_{j_2}^{\text{in}} | \psi_{j_3}^{\text{fn}} \rangle \dots \langle \psi_{j_l}^{\text{in}} | \psi_{j_1}^{\text{fn}} \rangle)$ is that of a Bargmann invariant! All off-diag phases can be expressed in terms of the 4-vertex invariants $\Delta_{jk} = \langle \psi_j^{\text{in}} | \psi_k^{\text{fn}} \rangle \langle \psi_k^{\text{in}} | \psi_k^{\text{fn}} \rangle \langle \psi_j^{\text{in}} | \psi_j^{\text{fn}} \rangle + \text{the diagonal phases.}$
 - Only j < k < n needed $\longrightarrow \frac{1}{2}(n-1)(n-2)$ independent off-diag phases.
- Generalization to mixed states [Filipp Siöqvist PRL 2003] Define an density matrix ρ^{\perp} as orthogonal as possible to ρ . The corresponding off-diagonal phase factor is $\gamma_{\rho\rho^{\perp}} = \Phi \left[\operatorname{Tr}(U^{\parallel}\sqrt{\rho} \ U^{\parallel}\sqrt{\rho^{\perp}}) \right]$ and similar definition for $\gamma^{(l)}$

EXPERIMENTAL EVIDENCE 1 – neutron spin

2-state system: the off-diagonal phase factor $\gamma_{12} \equiv e^{i\pi} = -1$ is trivial.

Interferometry: split a beam and insert a controlled phase χ , recombine the beam $|\psi\rangle = e^{i\chi} |\psi_I\rangle + |\psi_{II}\rangle$, producing an intensity:

$$I = \langle \psi | \psi \rangle = \langle \psi_I | \psi_I \rangle + \langle \psi_{II} | \psi_{II} \rangle + 2 |\langle \psi_I | \psi_{II} \rangle| \cos(\chi - \phi)$$

The offset of the oscillation measures the phase ϕ in $e^{i\phi} = \Phi(\langle \psi_I || \psi_{II} \rangle)$

Start with a pure spinor state

 $|\psi^{+}\rangle = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix} \rightarrow U \text{-evolve} \rightarrow \text{compare with } |\psi^{-}\rangle = \begin{pmatrix} -\sin(\theta/2) \\ \cos(\theta/2) \end{pmatrix}$ Trick: take $|\psi_{I}\rangle = |\psi^{-}\rangle\langle\psi^{-}| U^{-1}|\psi^{+}\rangle$ and $|\psi_{II}\rangle = |\psi^{-}\rangle\langle\psi^{-}| U|\psi^{+}\rangle$, with $U = \alpha$ -rotation along \hat{z} .

Result:
$$I = 2\sin^2(\theta)\sin^2(\alpha/2)[1 + \cos(\chi - \pi)]$$

The off-diagonal phase of $\gamma_{12} = \pi$ should appear as complete anti-phase of the recombined intensity I, independent of α -rotation.

EXPERIMENTAL EVIDENCE 2 – quantum billiard

2D deformable rectangular microwave cavity

Parallel transport in quantum billard: follow nodal structure adiabatically along the distortion path, and keep phase real. Open-path result: at $\theta = \pi$, $\psi_1 \leftrightarrow \psi_3$, state 2 changes sign.

Laplace operator in (u, v) coordinates

$$\nabla^2 = \partial_x^2 + \partial_y^2 \longrightarrow \nabla^2 = \overline{(\partial_u, \partial_v)} \begin{pmatrix} A & B \\ B & C \end{pmatrix} \begin{pmatrix} \partial_u \\ \partial_v \end{pmatrix} + D$$

where A, B, C, D are complicate functions of $u, v, a, b, \Delta a, \Delta b$

[see D.E. Manolopoulos and M.S. Child, Phys. Rev. Lett. 82, 2223 (1999)]

Approximate treatment:

degenerate perturbation theory in $\vec{q} = (\Delta a, \Delta b) = q(\cos \theta, \sin \theta)$:

$$H(\vec{q}) = -\text{Laplacian} = H^{(0)} + q H^{(1)}(\theta) + q^2 H^{(2)}(\theta) + \dots$$

unperturbed basis:

$$\psi_{(n_x,n_y)}(u,v) = \frac{2}{\sqrt{ab}}\sin(\frac{n_x u}{a})\sin(\frac{n_y v}{b})$$

Interesting case: degenerate multiplets example: if $a/b = \sqrt{3}$ "geometrical degeneracies" appear, for $(n_x, n_y) = (2, 4), (5, 3), \text{ and } (7, 1) :$

$$H^{(0)} \rightarrow \text{const} = 52\pi^2/3$$

$$H^{(1)} \rightarrow \text{a } 3 \times 3 \text{ matrix} = \cos\theta F + \sin\theta F'$$

$$H^{(2)} \rightarrow \langle \psi_i | H^{(2)} | \psi_j \rangle + \sum_{k \neq 1,2,3} \frac{\langle \psi_i | H^{(1)} | \psi_k \rangle \langle \psi_k | H^{(1)} | \psi_j \rangle}{E_i - E_k}$$

eigenvalues of first-order term $H^{(1)}(\theta)$: almost degeneracies in 4 directions

General observations on quantum billard experiments

- Satellite degeneracies (degeneracies within the range of validity of perturbation theory, involving minor components on states outside the multiplet) do often appear
- Whenever in a degenerate multiplet one state is *near* some states [so that second-order coupling is large] for which selection rule $(-1)^{n_x+n'_x} = (-1)^{n_y+n'_y} = 1$ makes first-order coupling vanish, and at the same time it is far from all remaining states [so that $\Delta E^{(1)}$ is small], one is likely to find satellite degeneracies.
- Wide scope: Laplacian

SUMMARY

Off-diagonal geometric phases: [PRL 85, 3067 (2000)]

- only appear in open-path evolution
- complete the set of phase infos of diagonal phases
- in the case of permutations are the only available info
- seen in neutron-spin interferometry [PRA 65, 052111 (2002)]
 - trick of forward-backward evolution
 - trivial case: $\gamma_{12} \equiv -1$
- seen in "quantum billiards" [PRL 85, 1585 (2000)]
 - discovered previously overlooked *satellite* degeneracies
 - through higher-order expansion + exact numerical solution
- to be seen & used in quantum computers [??? ??, ???? (????)] http://www.mi.infm.it/manini