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OUTLINE
A brief introduction to Berry phase

*Berry phase and fault tolerant Quantum
Computation

Classical noise in the evolution of spin %2
Dynamic vs. geometric decoherence
Quantum Noise in the evolution of a spin %2

*Berry phase and squeezed quantum noise



THE BERRY PHASE

e a Hamiltonian H depending on a set of control parameters R

H(R(t)) /#>= E(R(t)) /#> R(T) = R(0)

the control parameters are changed adiabatically and cyclically

A non degenerate energy eigenstate at the end of the cyclic
evolution differs from the initial one by a phase factor

/Y (T) >=exy10} exp1)} |#(0) >

«Dynamic phase &=/" E(t)dt

Geometric (Berry) phase y



BERRY CONNECTION

=

y=Joc AdR A(R), =i <n(R())| Ck | n(R(1)>

N

BERRY PHASE

*The Berry connection is the analogue of the vector
potential in the A-B effect

oIt depends on the geometry of the trajectory in
parameter space, e.g. it is zero for a closed loop
enclosing zero area



*The Berry connection is a function only of
the eigenstates dependence on the control
parameters but it is independent from the
energy spectrum.

*The Berry phase keeps a memory of the
path followed in parameter space

*The dynamic phase keeps a memory on
how fast the path is followed



AN EXAMPLE: A SPIN Y2 IN A MAGNETIC FIELD
H= %Bo

| 1 >g=¢€'¥?2cosd2 |t >, +e'¥?sind2 | 1>,

Eigenstates | _ |
| | >g=¢€¥?sind2 |1 >, -€¥cosd2 || >,

Independent %Aer =Ap, =1< 142/06| 15>=0

from |B] A, = A, =1< 15|d10p| 15>=%2cosO

Foo, = —Fu. = 0,As - OgA,=2 SN0



AN EXAMPLE: PRECESSION
AROUND A PARALLEL

A
A B precesses at an angle &
around the zaxis with angular
velocity Q
>

y
The Berry phase is

independent from Q =27/T

v = —y = -2 £ % sinfdglf= rmcoss



The Berry phase is equal to %2 the solid angle
subtended by B at the degeneracy

Path followed
by B
)

[’, ISolid angle

Mumt

X sphere




CONDITIONAL PHASE SHIFT

H=+Y%B,0,+%B.o,+ ABo,0,

Conditional A
solid angle
e
Spin 2 X
(control) ? l
y

Ber="72B+ ABo,

J. Jones, V. Vedral, A.K. Ekert,
C.Castagnoli, NATURE, 403, 869 (2000).

G. Falci, R. Fazio, G.M. Palma, J. Siewert, Spin 2
V.Vedral, NATURE,407, 355, (2000). (target)




GEOMETRIC QUANTUM PHASE GATE

The phase shift on the “target” spin (qubit) depends
on the value of the “control” spin (qubit).

Can be used to implement a quantum conditional
phase gate (a universal two-qubit gate)

_ RN
Cdniz Q 0 0
T 0 g2 0 0
Wy /2
” 0 0 @ o_
0 0 0 eini2,

With a suitable choice of path in parameter
space it is possible to fix y,



FAULT TOLERANT QUANTUM COMPUTATION

Geometric quantum computation is believed to be
Intrinsically more robust against random errors

4z . .
As the geometric phase is
proportional to the overall
area traced on the unit
sphere i.e. to a global
property of the path in
Y  parameter space, errors
with zero time average
should not introduce errors




OBJECTION

-Dynamic phase &=/, E(t)dt

*The dynamical phase is
proportional to the area
of E(t) vs. t

Dynamic phase
fluctuations are known to
> Introduce decoherence

t
Do fluctuations play a different role in
geometric and in dynamic phases?



THE NOISE MODEL

G.DeChiara G.M.Palma, Phys.Rev.Lett, 91,

t- 090404 (2003 ) also quant-ph/0303155
H=-%Byo
B = BK K
Control Fluctuating
field field

A spin ¥ interacting with a classical magnetic field
with a small fluctuating component to model
fluctuations in the control parameters



NOISE PROPERTIES

K<<B

*K IS assumed to be a Ornstein —Uhlenbeck
process with zero average and variance . ltis
therefore:

eGGaussian
Markovian

«Stationary



FIRST ORDER CORRECTIONS

First order correction the connection

AfO) LA[E) +3I100A[6) o6
=% (1 —-co9, +06sinG,)

First order correction the line element

op=@dt [7 (¢ +op)dt
First order correction to the Berry phase
Y = /OT(AJQO) + 0AY (@t o) dt

Oy, + 21T 7 A, dt + A[6,) /7 dpdt

Oy, +2mT /)7 sing,09 dt + A £6,) OfT)

For a
precession
around the z
axis ¢ ,=2mw'T

The connection
fluctuates

The path does$
not close




APPROXIMATE EXPRESSIONS

cos(@, +06) [/cosf, —aofsing,
=B,/B + K,/B -—B'K B;/B3

y=y, + 2T /)7 (KJ/B —BK B,/B3)dt

¥=

The Berry phase can be evaluated in
terms of the Cartesian component of
K, each of which is a Gaussian random
process with its own (generally
different) variance.

It can be shown that the non cyclic corrections do
not contribute.



ENERGY FLUCTUATIONS

The fluctuating field K introduces also fluctuations
In the energy eigenvalues

H=-% B+ K)o
Tofirstorder E=# 1/2 (B +B-K/ B)

5=0, +/,7BK /B dt
=0, +/,7 E(t)dt



DECOHERENCE

|¥>,=a|t > +b|i> @ has a probability distribution P(¢)
|#>7=evat > +e?b[i>

In our case the joint probability distribution for the
dynamic + geometric phase Iis gaussian

a2 ab*eZ exp{-2c%
a*b 2 exp{-202 |b|?

p=/1¥(@><¥(@dp =

\

Phase fluctuations generate decoherence



RESULTS

The variance grows linearly with time

In the adiabatic limit the variance is due to the
dynamic contribution

The effect of noise is different in the geometric and
In dynamic phases

YO y, + 21T JyT A, dt

503, + ;T E()dt



A MODEL OF QUANTUM NOISE:
THE SPIN-BOSON HAMILTONIAN

H = %B(t)o + 2, g, (a+a) o+ 2 .waa

*The spin is weakly coupled to a quantum
environment modeled as a bath of harmonic
oscillators

*The direction of the magnetic field B changes
adiabatically in time



THE MOVING FRAME

H = 5 E.(t)|n ><n{ U= 2,|no><n{

The time evolution of the state i/ >= U Jiy>
IS generated by

H =UHUT- iUgU" =

:Zn E.(D)[no><no| - i Zn,m [No ><mo| <nyf 0¢ [m>



THE ADIABATIC HAMILTONIAN

Adiabatic approximation: assume that
transitions are negligible <n¢| ot |my> =0

Hag =24 (En(t) -1 <nd 0 [ne>) [no ><n
At the end of a cyclic evolution of period T

In(t)> = exp i}, (Ex(t) -i<nd & [ne)In(0)>
= exp{io}exp{iyf|n(0)>



THE DECAY CONSTANTS
yi= M2 |g*A @)

yi= 12 9dPo(w — )



THE ADIABATIC SPIN BOSON HAMILTONIAN
G.DeChiara, A.Lozinski & G.M.Palma quant-ph/0410183

For a slowly precessing field at an angle &,
choosing as z axis the direction of B

Haa = Y2 0, + 2y 9@"i3
+ 2, gy (@h+ay) (cost gy + sind g,)

w, = B + Q2cosg(0)

The quantum noise acts both in the “parallel”
and in the “orthogonal” direction of B



THE LAMB SHIFT

A =S P/ (@, - @) +P/ (@, + ) ]
D24 P/ (B =) +P/(B+a) } +
- QeOBZ, G P/ (@ = @) ? +P/ (@ + ) Y

The Lamb shift is due to virtual transitions due to
the g, term In the interaction Hamiltonian

[W>= | 1>, |vac> + [1>,5,cos8g |L> V/ (@, + &)
W, >=]1>,vac> + [1>,5, cosfg |L> V/ (@, - &)



The overall phase difference between the
parallel and antiparallel energy eigenstates

Dr =@y + D
@ = [B +c0F0 5, 9 2(P/ (@, — ) +P/ (e, + ) )] T
D, =2rrcosff 1 -
- QcoF05 |gJ2(P/ (), — @) 2 +P/ (), + ) 2)]

During a virtual transition the state acquires an
opposite geometric phase

*The Berry phase is diminished by the probability
of a virtual transition



DISSIPATION INDUCED BERRY PHASE

A change In perspective: is it possible to generate a
Berry phase by measn of a dissipative dynamics

ap= “1)(RR + RRpo—- R oR)



BROADBAND SQUEEZED VACUUM

vag, = U|vac>

Squeezed states are generated in
nonlinear optical media by a
strong pump field of frequency 2w,

U= exp  {na'(2w,-6a'(2w,*¢) - na2a)y—€a(2w,+€)}

S WptHE

sideband modes around w, are
paiwise entangled

<a'(a)a(w)> = sinh 1, (a~)>
<af(w)a' («,)>=sinhr, coshr €?

02y~ W~ W)
nw:rwem



THE EQUILIBRIUM STATE

| %, = (coshy,, /sinh2y, 1> +(sinhv,,/sinh2;,)| 1>



CONCLUSIONS

G.M.Palma and P.L. Knight Phys. Rev.A 39, 1962, (1989)
A.K.Ekert, G.M.Palma, S.M.Barnett and P.L.Knight,
Phys.Rev.A 39, 6026, (1989)





