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For those readers who were not present during this seminar:
This talk divides into two independent pieces of work:
slides 4-18 : spin dynamics in a time-independent field
slides 20-33 : Berry phase experiment (slow time-dependent field)

The only connection between these two parts is made (rather briefly) on slide 31,
it is not a central point of either piece of work

For those readers who were present during this seminar:
For pedagogical reasons, the two sections of the talk are
in the reverse order to the way | presented them in Trieste.

Techical stuff:
A brief summary of the technique we use is given on slides 15-17.

This includes a brief presentation of the analogy between the diagrams and terms

in a Lindblad-style Master equation. Note: This is an analogy not a mathematical equivalence,
in-other-words | do not know of a proof of the equivalence.

16th November 2004



Outline

Static Hamiltonian

@ Pictures of dynamics of dissipative spin-half
(spintenvironment " trace out environment)

® Choose “resonance-states”
= density matrices associated with resonances

(will be non-orthogonal)

(3] Analytic results : spin—-dynamics (weak dissipation: Master eq+diagrams)

Slow time-dependent Hamiltonian: Geometric phase
® Environ. modifies Berry phase (monopole + complex quadropole)

® Geometric dephasing (can be of either sign: dephasing/rephasing?)

Definitions / philosophy

Universe = =

Universe : Hamiltonian evolution == " system environment

System : dissipative evolution

System’s reduced density matrix : Psystem — Trenv[pyniy]

Define :

“SYSTEM”
“ENVIRONMENT”

controlled/measured degrees of freedom
all other degrees of freedom

post-selection = measurement
I 2 : .
No post-selection on environment



Models of system + environment

© Spin coupled to quantum environment
Huniv = Hsyst + Hinteraction + Henv

Hsyst = ——%B(f_),o’ Hinteraction = — Xn Cr:(aja + an)o

where ai, ar, create/annihilate nth environment mode

Example : spin-boson model Leggett et al (1986,87)
Environment = oscillators with smooth spectral distrib.

® Spin coupled to classical coloured noise
Hsyst = —%(B(t) + K(t)).c where <K(7)K(O)> = (-"Ef(f)

Equiv. to quantum for some quantities: 7', 7, , Lamb shift, etc
Caldeira-Leggett(1983), Whitney-Makhlin-Shnirman-Gefen (2004)

Naive expectation for dissipative spin dynamics

Density matrix, o(7),

i position in sphere at time ¢ B = z-axis

<0x> - <0y> , <OZ> give pequil

coordinate in x, y, z directions

_1( lH(oz) loz) +iloy) ) —'y-axis
4 (oz) + {0y} 1 — (g}

& Pure states are on sphere
¢ Mixed states are inside sphere
Expected spin behaviour
O thermalise along z-axis; T;
O decohere in x-y plane; T,



“True” dissipative dynamics: zero temperature

Spin precesses
about BLUE axis NOT the B-axis

% BLUE axis not || to B-axis
% BLUE axis doesn’t go through origin

“True” dissipative dynamics: large temperature

For high temperatures; typically 7, << T}

Timescale separation - dephase much faster than thermalise

draw pictures on blackboard



Eigenstates '» “Resonance-states”

ISOLATED SYST. OPEN SYST.
B i
ET “resonance-states”
1), 10) == 27 <] IresO), [resl)

EIGENSTATES of ISOLATED #x7 density matrix !B 72 eigenstates
* pure states * time-independent (superpositions precess)

Desired properties of “resonance-states” :

@ There should be 7 resonance-states
@ Each should deform smoothly onto an eigenstate when C—>0

Do Zurek’s pointer states satisfy @? Only when T,/T,—0.

A definition of a resonance?

What about the following definition??

A resonance is a pure state
which may decay but does not precess

% Spectrum tells us that resonances (usually) decays
% Precession is characteristic of superpositions

* Why pure state? Intuitive to sum pure states to get mixed states
(although opposite is also legitimate)

@ There are 7 resonance-states

® Each deforms smoothly onto
an eigenstate when C—0

/[
5

Coincides with pointer states when T/, — 0



Isolated spin 1/2 Non-isolated spin 1/2
dp/dt = —i[H, p] Psystem = Trenv[puniv.

(i) extreme Markov approx
t

nem—> 0 (quantum jumps)

(if) weak Markov approx
t << Tl ,TZ, IR

mem

Bloch-Redfield (1957)
Schoeller-Schon (1994) < diagrams

P11 X11 X12 Xis —Xaa)\ [r11
d|r2| _ | X321 Xo2 Xz X3 P12
dtl ra1 X311 X3 X3, Xazg P21
P22 -X11 —X12 —Xj, Xgg P22

nearly Lindblad form (1976)
Preserves: traced Hermiticityli positivityﬁ

Weak coupling to environment

Il Go to eigenbasis of 7

P11 X11 X12 Xis —Xaa\ [r11
Q p12 | _ | X3; X292 X35 X34 P12
df |po1 | 7| Xa1 X3 X3 Xz || et

P22 -X11 —X12 —Xj, Xgg p22

Matrix, X, is nearly diagonal : Red terms x |B|
Black terms o |B| X C?

Diagonalise X:
O diagonalise 4 corner elements exactly
® diagonalise rest to order C?




ependence of the X;s

measuring it
erse starts in product state, [Yuniv) = |0syst ) [7env)

under time-independent Hamiltonian
l

‘mem

TO

!
! >

SHORT LONG

time dyn. time dynamics

short times: environment “remembers” f =
all elements of X;; are time-dependent

product
state

long times: environment has “forgotten” f = 0
all elements of X;; are time-ind

For time-dependent ﬂ-[syst(t) both regim

alues/vectors of X = Y Xpif !

0 0 Xoo = i(B+6B)-T5"!
0 0 Xaq = -T7"
e 0

Thermalising and dephasing times; 7,7,
Lamb shift of energy gap; OB

e A e AV
X11‘|iX:44 . Xn'lixfm

B —B-1x3, 1 (2B)~1X%, B 1X3,
_B;Xiil (2B) X3, 1 —B;1X34
X11+Xaa L 2 Rn:ﬁju

Two pure states which do not precess —>
resO) = |1) + B~1X3, ||} —

Iresl) = B71X%,|1) +| 1)

Any classical mixture of these two states do




icalities of Master eqn

neqgn: ——4 = >+ + ;r’le—lz):l
0 t 0 t 0o r t

0

xact Master equation for spin’s density matrix
Schoeller-Schon(1994)

a-p%_','(t) e _l [Hsyst) p(t) + / dTZ1} 1 7’(T)p;‘f}"(t = T)
Sum of irredicible “self—energy” diagrams
> APPROXIMATIONS : systematic weak-coupling and Markov

Bloch-Redfield (1957

é? t }’(T) —o+.—.+-— N —o
+ Assume environ. memory time, /..o, << T,

«<1/B

...but not ¢
& no rotating wave approx

memory

educible diagrams

(@l + @n)

it couples to blue axis

= C%trenv[z(7)z(0)penv] G4(7)54(0)psyst
= C?(2(1)(0)) 56(7)59(0)psyst

S = CPtrenv[#(0)penvi(r)] 54(0)psystdg(T)
— 02(55(7)53(0)) 5’9(0)ﬁsyst59("")
0= C2(@(0)2(r)) 5o(T)psyste(0)
0'7
L L
T — C (93(0)3?(7)) Psvst"ﬂ(o)gﬁ(”')

Heisenberg picture: o,(7) = e'BmZEf 0)e

n» diagrams are ‘H;ys



Microscopic calc. for quantum & classical

Everything written in terms of
S+ (2) = Fourier trans. [ ( t()z(0) = z(0)x(¢)} }

- et irdQ2 2cos?¥ sinZ#
,\22 = iB - 2 2 +(Q) [Q-}- 0+ + Q-1 +:O_}
Y -l -l [ _S_Z i (Q)Sn” cosf+41 - ((}' (Q) + g (Q) S\EHFHCC&.
31 = "5/ on Q+i0t o+ - Q-B+i0F
. . iordQ2r7 sind(cosf—1) sin @ cos &
,\34 = é /2— ’75 (Q) Q+i0t + (S-}-(Q) - S (Q))anﬁ o+
X11 =
. 01g
.\'12 f— \\ ’,.; == I\-\T -
X3 = - L = Z-n(an + a”)

it couples to blue axis

If Hsyst = —%B(t).cr (i.e. classical noise) Iy S (£2) =0

Conclusion for resonances

Dynamics with QUANTUM environ.
Coupling term does not commute with H_ - ‘B

Dynamics with CLASSICAL environ. “E
\ 3

Coupling term commutes with H__ -v

Suggested definition for resonance-states:

Pure states that may decay but do not precess

Resonance-states are the BLUE dots:
% smoothly deform to eigenstates as C—0
* defined for any 7,/T)



or (isolated) spin-half

ng B-field: |w| < |B|

P(I1) — 1) ~ (B <

i.e. Adiabatic evolution t~ 2 / |Ld|
AN

instantancous
eigenstates

O = (I’Dynamic + "I}Berry‘ +O[(Bt) 1]

“I)Dynamic - % |B|t

PRerry = %(enclosed solid angle)

= % (flux of monopole thru loo



Berry phase in qubit systems?

Potential solid-state realisation LV
SC
Berry phase in Superconducting 1] [island| 5
nanocircuit(qubit) Falci et al (2000)
7:( = EC (’.Fl — Tl-v)2 — E_] (B) COS {é — O:B} GB
SC bulk
-+

Consider only lowest 2 charge-states of island

=1 & |l)=|n+1)

R Ejcos (ap)
Reduced Hamiltonian: 7{ — | E;sin(ap) |- &
EC (1 - ’rlv)

Environment? & charge fluctuations couple via o,
& current fluctuations couple via O, ,Oy

Berry phase with dephasing?

Environment induces level-broadening 55/
2| ¢
=> No Gap L
P(IT) = [1)) =1 &t —oc <
No Adiabaticity = No Berry phase — 2y

BUT : All real expts are non-isolated, density of states

yet Berry phase is observed Whitney-Gefen, PRL (2003)

Berry phase is observable whenever
adiabatic time << dephasing time

h/Egap < T)

i.e. require small matrix elements for transitions not a true gap



Env.-induced modification of the Berry phase

get phase as ¢ along path of B(f) = use Stokes’ theorum

=> surface int. (I)Berry = de- b+ éb)

monopole “quadrupole”
pseudo-field b pseudo—fgld 6b
nBZ T Z
\gwaﬂ ﬁﬁﬂ”
) <
> %3
l\l‘.%—" By -ﬁ’)ﬂ—-g Angular = Y,,(6,p)
//d/ \H / \J Radial = B4
\ (non-zero curl)

Amplitude of monopole = 1/2

Amplitude of “quadrupole” = C2? x complex function (env. spectrum)

Berry phase as derivative of gap

fD dt'w

For NON-isolate spin: 3 _, [B + 6B + irg}

For isolate spin:

(I)Berry jﬁdup dd B

where 0B =
I's =

Lamb shift of energy level

I,=T,1

dephasing rate

Pretty result: (I)BEI“I}-' —

d_[B + 6B +ily]

Revisit this later

¢ Berry phase is complex if spin 7, is B-dependent
o Real (“phase”) part is modified if Lamb shift is B-dependent




Geometric dephasing

Imaginary part of Berry phase = dephasing

Im[®Pgerry] = f{: dt’ w. 3};’3

Can be either sign; depends of direction of winding

()]

- d‘-
; iB : w,> 0 : geometric dephasing (positive)

=> increase total dephasing
V‘B :) 0w, < 0 : geometric REPHASING (negative)
= REDUCES total dephasing

...but it is only a small modification of total dephasing

How do we get these results?

¢ Toy problem : Noisy classical field
see slides of Y. Gefen (seminar last Friday)

Whitney-Gefen, Proc. Moriond (2001)
Whitney-Makhlin-Shnirman-Gefen, Proc. NATO-ARW (2004)

¢ Fully quantum problem :
coupling many environ. modes, trace them out
Use rotating frame trick 7
guantum
Whitney-Gefen, PRL (2003) @ eae'zytéa’ny

Whitney-Makhlin-Shnirman-Gefen,

to be published (2004) ) system  environment
A - /|




Noisy classical field

Toy problem : Gaussian white-noise Whitney-Gefen (2001)
H = -1 [B(:)+K()).0 ngoo o
where <K(T}K(U)>K = CQ(S(T) s

B(?)

Adiabatic evolution during one-time step
<exp {i\B + K|dt + i0¢ cos Q(BJFK)} >
K
(kg = [dK(...)exp[—K?3§t/C?]
((‘:Us 9(B +K) >=> Modification of real (phase) geometric term

cross-terms in completed squ.
=> Imaginary part of geometric term
=> geometric dephasing

Phase in rotating frame = Berry phase
Berry (1987)
=> Rotating frame — rotates with B-field :

Hamiltonian = time-independent

Lab-frame Rotating-frame (0()
B.()=B,+®{) ’
coupling to [-dependent
oscillators coupling to
oscillators
0@) in rot. frame

Pseudo-forces/fields = Berry phase

Solve time-independent problem in rotating frame

= solution of time-dependent problem in Lab frame



ding diff. eqn. for Berry phase

g : Berry phase as differential of gap;

PBerry = § dp 357 [B + 0B + 1T

1“2=T2'1
Equation is easily understood by going to rotating frame
r Rotating ]
Lab-frame e Lab-frame Rot_af:u:rie
B Brof .
TR PG B B B :
: 0)
Lamb shift, 08

dephasing rate, I, Functions of rotating frame gap x

=> Taylor expand in ®
=> both have w-terms

épendence for open paths?

......

<l Ambiguity in choice of x &y axes
B(1) => gauge-dependence
of Berry phase for open paths

y

X X & y axes somewhere in this plane

Dephasing affects magnitude of off-diag. elements of density matrix

Off-diag. matrix element = (o‘m> + i<0y>

Magnitude = \/(Jm>2 + (Jy>2

Independent of choice of x &y axes = gauge-in



t given by resonance-states

ates enclose different solid-angle to B-field
z/

é B

|q'm0}
|%1)’é

= Correction to solid angle is quadrupole-like
same angular dependence = sin2?6 cos6

but wrong function of Environment spectrum

Extra solid-angle « F(B, {€) }) (function
but extra Berry phase « F' + a dF/dB

tropy is required

ropic coupling to environment

pic = z-axis coupling + y-axis coupling + x-axis coupling

All three couplings equal
» all three “quadrupoles” have equal st

“Quadrupoles” sum to ZERO
= Berry phase unmodified by environme
=» No geometric dephasing



mmary of Berry phase

e observable for weak-dissipation; BT, >>1

i.e. small matrix elements for spin-flip

erry phase modified by anisotropic environment

m monopole + complex quadrupole
TBZ B;

A
) ‘
't

® Geometric dephasing: increases/decreases d
% Well-defined (gauge-independe



