Workshop on Nuclear Data for Activation Analysis 7 – 18 March 2005 Miramare – Trieste, Italy

NUCLEAR DATA FOR NEUTRON ACTIVATION ANALYSIS: NEEDS, DETERMINATION, STATUS

Frans De Corte

Laboratory of Analytical Chemistry, Institute for Nuclear Sciences Ghent University Proeftuinstraat 86 B – 9000 Gent, Belgium E-mail: frans.decorte@UGent.be When considering the simple equation (in "relative standardization") for obtaining concentrations via reactor neutron activation analysis:

$$(\text{conc})_{a} = \frac{\left(N_{p} / t_{m} \text{SDCW}\right)_{a}}{\left(N_{p} / t_{m} \text{SDCw}\right)_{s}}$$

with:

a - analyte s - co-irradiated standard N_p - net peak area t_m - measuring time $S = 1-\exp(-\lambda t_{irr}); t_{irr}$ - irradiation time $D = \exp(\lambda t_d); t_d$ - decay time $C = [1-\exp(-\lambda t_m)]/\lambda t_m$

W – sample mass

w – mass of standard

WHY ARE NUCLEAR DATA (OTHER THAN THE HALF-LIFE) NEEDED ?

 $N_p = (N_p)_{meas}/COI$

 $COI(\underline{A}) = 1 - L(\underline{A})$ [L(_A) = probability for loss of <u>A</u>]

 $\begin{array}{ll} L (\underline{A}) &= \mbox{probability that } \underline{A} \mbox{ is followed by transition B} \\ &= a_{B} \mbox{ (branching ratio of B)} \end{array}$

x probability that gamma B is emitted = $1 / (1 + \alpha_{t,B}) [\alpha_t = \text{total IC coefficient}]$

x probability that gamma B gives a total or partial energy deposition in the detector $= \varepsilon_{t,B}$ [total detection efficiency]

 $= a_B \cdot \varepsilon_{t,B} / (1 + \alpha_{t,B})$

pre-irradiation:

feasibility of determination

Based on estimation of detectability of analyte peak in gamma-ray spectrum of irradiated matrix, via calculation, for analyte and matrix elements, of

$$\mathbf{N}_{p} = \frac{\mathbf{N}_{A} \mathbf{\theta} \gamma}{\mathbf{M}} \operatorname{wt}_{m} \operatorname{SDC} \left[\phi_{th} \sigma_{0} + \phi_{e} \mathbf{I}_{0} \right] \varepsilon_{p}$$

E.g. :

Can phosphorus be determined in semiconductor silicon ?

Can iodine be determined in milk powder ?

Can selenium be determined in human blood serum ?

Can uranium be determined in loess ?

Can lanthanum be determined in estuarine sediment?

NEED FOR NUCLEAR DATA IN NAA

post-irradiation:

interpretation of measured gamma-spectra

and identification of isotopes/elements

Example:

Peak at 676.0 ± 0.5 keV is found in gamma-spectrum

Search gives 2 possibilities: 675.9 keV of ¹⁹⁸Au, or 675.5 keV of ¹⁴³Ce

if ¹⁹⁸Au: peak at 411.8 keV should be seen

if ¹⁴³Ce: peak at 293.3 keV should be seen

check peak ratios: $(\gamma \epsilon_p)_{peak1} / (\gamma \epsilon_p)_{peak2}$

$$\begin{split} \hline \textbf{NEED FOR NUCLEAR DATA IN NAA} \\ \textbf{parametric standardization protocols:} \\ \textbf{ABSOLUTE STANDARDIZATION} \\ \hline \left(\textbf{conc} \right)_a &= \frac{M_a}{N_A \theta_a \gamma_a} - \frac{\left(N_p \ / \ Wt_m \ \textbf{SDC} \right)_a}{\left[G_{th,a} \phi_{th} \sigma_{0,a} + G_{e,a} \phi_e I_{0,a} (\alpha) \right] \varepsilon_{p,a}} \\ \hline \textbf{combined with co-irradiation of neutron flux monitor (m):} \\ \hline \left((\textbf{conc})_a = \frac{\left(N_p \ / \ Wt_m \ \textbf{SDC} \right)_a}{\left(N_p \ / \ wt_m \ \textbf{SDC} \right)_m} \frac{M_a \theta_m \gamma_m \sigma_{0,m}}{M_m \theta_a \gamma_a \sigma_{0,a}} \frac{\left[G_{th,a} f + G_{e,a} Q_{0,m} (\alpha) \right] \varepsilon_{p,m}}{\left[G_{th,a} f + G_{e,a} Q_{0,a} (\alpha) \right]} \frac{\varepsilon_{p,m}}{\varepsilon_{p,a}} \\ \hline \textbf{with} \quad f = \phi_{th} \ / \phi_e \\ Q_0(\alpha) = I_0 \ (\alpha) \ / \ \sigma_0 \end{split}$$

$$\mathbf{I}_{0}(\alpha) = \left[\frac{\mathbf{I}_{0} - \mathbf{0.429\sigma}_{0}}{\left(\overline{\mathbf{E}}_{r}\right)^{\alpha}} + \frac{\mathbf{0.429\sigma}_{0}}{\left(\mathbf{E}_{Cd} = \mathbf{0.55eV}\right)^{\alpha}\left(2\alpha + 1\right)}\right] \cdot \mathbf{1eV}^{\alpha}$$

$$\mathbf{Q}_{0}(\alpha) = \left[\frac{\mathbf{Q}_{0} - 0.429}{\left(\overline{\mathbf{E}}_{r}\right)^{\alpha}} + \frac{0.429}{\left(\mathbf{E}_{Cd} = 0.55 \text{eV}\right)^{\alpha} \left(2\alpha + 1\right)}\right] \cdot 1 \text{eV}^{\alpha}$$

$$\mathbf{E}_{\mathbf{r}}$$
 = effective resonance energy

α from bare triple monitor method (implicit equation)

$$(\mathbf{a} - \mathbf{b}) \cdot \mathbf{Q}_{0,1}(\alpha) \frac{\mathbf{G}_{e,1}}{\mathbf{G}_{th,1}} - \mathbf{a} \cdot \mathbf{Q}_{0,2}(\alpha) \frac{\mathbf{G}_{e,2}}{\mathbf{G}_{th,2}} + \mathbf{b} \cdot \mathbf{Q}_{0,3}(\alpha) \frac{\mathbf{G}_{e,3}}{\mathbf{G}_{th,3}} = \mathbf{0}$$

$$\mathbf{a} = \left\{ \mathbf{1} - \frac{\mathbf{A}_{sp,2}}{\mathbf{A}_{sp,1}} \frac{\mathbf{k}_{0,Au}(1)}{\mathbf{k}_{0,Au}(2)} \frac{\mathbf{\varepsilon}_{p,1}}{\mathbf{\varepsilon}_{p,2}} \right\}^{-1}$$

$$\mathbf{b} = \left\{ \mathbf{1} - \frac{\mathbf{A}_{sp,3}}{\mathbf{A}_{sp,1}} \frac{\mathbf{k}_{0,Au}(1)}{\mathbf{k}_{0,Au}(3)} \frac{\mathbf{\varepsilon}_{p,1}}{\mathbf{\varepsilon}_{p,3}} \right\}^{-1}$$

$$\mathbf{Required:}$$

$$\mathbf{A}_{sp} = \frac{\mathbf{N}_{p} / \mathbf{t}_{m}}{\mathbf{SDCw}}$$

f from Cd-ratio method:

$$\mathbf{f} = \mathbf{Q}_{0}(\alpha) \cdot \left[\mathbf{F}_{Cd} \mathbf{R}_{Cd} - 1\right] \cdot \mathbf{G}_{e} / \mathbf{G}_{th}$$
$$\mathbf{R}_{Cd} = \mathbf{A}_{sp} / \left(\mathbf{A}_{sp}\right)_{Cd}$$
$$\begin{array}{c} \text{Required:} \\ \mathbf{Q}_{0}, \ \overline{\mathbf{E}}_{r} \ \text{and} \ \mathbf{F}_{Cd} \end{array}$$

NEED FOR NUCLEAR DATA IN NAA

parametric standardization protocols:

k₀-STANDARDIZATION

Experimental measurements of k₀-factors:

$$k_{0,m}(a) = \frac{\left(N_{p} / wt_{m}SDC\right)_{a}}{\left(N_{p} / wt_{m}SDC\right)_{m}} \frac{\left[G_{th,m}f + G_{e,m}Q_{0,m}(\alpha)\right]}{\left[G_{th,a}f + G_{e,a}Q_{0,a}(\alpha)\right]} \frac{\varepsilon_{p,m}}{\varepsilon_{p,a}}$$

Experimental measurements of k₀-factors:

		М	easured k _{0,Au} (1	uncertainty in ^o	%)	<u>ko,Au</u> recommended
Sample preparation	Isotope Eγ, keV	KFKI "V Cha	VWR-M" nnel:	INW "T Cha	HETIS" nnel:	(uncert.,%)
		MILA f = 35	CSÖPI f = 18	3 f = 25	15 f = 72	
<u>KFKI:</u> 1mg NaCl on Al-foil; pellet 6.4mm diam. x 0.2 mm	²⁴ Na	DT correct Spectr. anal	tion: pulser . : Hypermet	DT correc Spectr. an	etion: DTS al. : Seqal	
<u>INW:</u> Na ₂ CO ₃ powder in PE vial; 20mg (Ch.3); 50mg (Ch.15)	1368.6 2754.0	4.71E-2(2.2) 4.60E-2(1.6)	4.74E-2(2.4) 4.74E-2(1.6)	4.61E-2(2.5) 4.56E-2(1.8)	4.65E-2(1.8) 4.59E-2(0.5)	<u>4.68E-2</u> (0.6) <u>4.62E-2</u> (0.9)

Choice of comparator/monitor in k₀-NAA:

¹⁹⁷Au(n, γ)¹⁹⁸Au, E_{γ} = 411.8 keV \rightarrow tabulation of k_{0,Au}(a)

Simple conversion: $k_{0,m}(a) = k_{0,Au}(a) / k_{0,Au}(m)$

IRMM/Geel - INW/Gent co-operation:

NIM A, 1991: "Aluminium-gold reference material for the k₀-standardisation of neutron activation analysis"

IRMM-530 CRM Al-(0.100±0.002)%Au foil or wire

(accuracy-checked at KFKI; increases traceability)

			easureu K _{0,Au} (1		/0)	<u>k</u> _{0,Au} recommen
Sample preparation	Isotope Eγ, keV	KFKI "V Cha	VWR-M" nnel:	INW "T Cha	(uncert.,º	
		15/2 f = 30	17/2 f = 20	3 f = 25	15 f = 72	
<u>KFKI</u> : 20μg CsNO ₃ (in H ₂ O) on Al-foil; pellet 6.4mm diam. x 0.2 mm	¹³⁴ Cs	DT correction: pulser Spectr. anal. : Hypermet		DT correction: DTS Spectr. anal. : Seqal Intern. Compar.: ^{69m} Zn		
<u>INW:</u> CsCl (in H ₂ O) [+Zn (in HNO ₃] on W41; 0.7mg (Ch.3); 1.7mg (Ch.15); pellet 10 mm	604.7 795.8	4.81E-1(1.0) 4.21E-1(0.7)	4.75E-1(2.1) 4.18E-1(1.8)	4.93E-1(0.3) 4.26E-1(0.4)	4.53E-1(0.2) 3.93E-1(0.5)	<u>4.76E-1</u> (2 <u>4.15E-1</u> (2

Journal of Radioanalytical and Nuclear Chemistry, Articles, Vol. 179, No. 1 (1994) 93-103

THE USE OF A MODIFIED WESTCOTT-FORMALISM IN THE k_o -STANDARDIZATION OF NAA: THE STATE OF AFFAIRS

F. DE CORTE,** F. BELLEMANS,* P. DE NEVE,* A. SIMONITS**

*Institute for Nuclear Sciences, University of Gent, Proeftuinstraat 86, B-9000 Gent (Belgium) **KFKI Atomic Energy Research Institute, H-1525 Budapest 114, P.O. Box 49 (Hungary)

$$\left(\operatorname{conc}\right)_{a} = \frac{\left(\operatorname{N}_{p} / \operatorname{Wt}_{m} \operatorname{SDC}\right)_{a}}{\left(\operatorname{N}_{p} / \operatorname{wt}_{m} \operatorname{SDC}\right)_{m}} \frac{1}{\operatorname{k}_{0,m}(a)} \times \frac{\left[\operatorname{G}_{th,m} g_{m}(T_{n}) + \operatorname{G}_{r,m} \cdot r(\alpha) \sqrt{T_{n} / T_{0}} \cdot s_{0,m}(\alpha)\right]}{\left[\operatorname{G}_{th,a} g_{a}(T_{n}) + \operatorname{G}_{r,a} \cdot r(\alpha) \sqrt{T_{n} / T_{0}} \cdot s_{0,a}(\alpha)\right]} \frac{\varepsilon_{p,m}}{\varepsilon_{p,a}}$$

$$\left[(\operatorname{conc})_{a} = \frac{\left(N_{p} / Wt_{m} SDC \right)_{a}}{\left(N_{p} / Wt_{m} SDC \right)_{m}} \frac{1}{k_{0,m} (a)} x \\ \frac{\left[G_{th,m} g_{m} \left(T_{n} \right) + G_{r,m} \cdot r(\alpha) \sqrt{T_{n} / T_{0}} \cdot s_{0,m} (\alpha) \right]}{\left[G_{th,a} g_{a} \left(T_{n} \right) + G_{r,a} \cdot r(\alpha) \sqrt{T_{n} / T_{0}} \cdot s_{0,a} (\alpha) \right]} \frac{\varepsilon_{p,m}}{\varepsilon_{p,a}} \right]$$

 $g(T_n)$ modified spectral index $r(\alpha)\sqrt{T_n/T_0}$ modified spectral index $s_0(\alpha) = s_0 (\overline{E}_r)^{-\alpha}$.1eV $^{\alpha}$ measure for epith./thermal cross section $s_0 = 2Q_0 / \sqrt{\pi} - 0.484$ for 1/v cross sections (Westcott g = 1)

Westcott g-factor; T_n – neutron temperature

RIJKSUNIVERSITEIT GENT

Faculteit van de Wetenschappen

Instituut voor Nucleaire Wetenschappen Laboratorium voor Analytische Scheikunde

Bestuurders : Prof. emer. J. HOSTE (tot 1986)

THE ko-STANDARDIZATION METHOD

A MOVE TO THE OPTIMIZATION OF NEUTRON ACTIVATION ANALYSIS

FRANS DE CORTE

Detailed info on k₀-NAA

In English

Nederlandse samenvatting - Résumé en français

Proefschrift voorgelegd tot het verkrijgen van de graad van Geaggregeerde voor het Hoger Onderwijs - 1987

General info on k₀-NAA

Journal of Radioanalytical and Nuclear Chemistry, Vol. 248, No. 1 (2001) 13-20

ACTIVATION ANALYSIS TECHNIQUES

The standardization of standardless NAA

F. De Corte*

Laboratory of Analytical Chemistry, Institute for Nuclear Sciences (INW), Gent University, Proefluinstraat 86, B-9000 Gent, Belgium

(Received December 13, 2000)

This review describes how the original 'standardless' (absolute and single-comparator) NAA-calibration methods, introduced in the mid-1960s, were stepwise upgraded with respect to their accuracy and manageability, leading to the launching of the k_0 -method in the mid 1970s. Next, an account is given of the achievements in the continuous development of the k_0 -standardization of NAA up to the present. Topics highlighted are: the k_0 -data library, the development of dedicated calibration procedures, extensions and limitations, computerization and quality control/assurance. Finally, a short outline is given of the international dissemination of the k_0 -methodology.

NEED FOR	NUCLEAR DATA IN NAA
corrections: reaction interfere	nces
P in Si: 2 nd order interference:	${}^{31}P(n,\gamma){}^{32}P$ ${}^{30}Si(n,\gamma){}^{31}Si(\beta){}^{31}P(n,\gamma){}^{32}P$
Na in presence of Al:	23 Na(n, γ) ²⁴ Na
Threshold interference	$^{27}Al(n,\alpha)^{24}Na$
La in estuarine sediment:	$^{139}La(n,\gamma)^{140}La$
fission reaction interference:	$^{235}U(n,f)^{140}Ba(\beta^{-})^{140}La$
correction essentially requ	ires cross section/resonance integral data

NEED FOR NUCLEAR DATA IN NAA

corrections:

neutron self-shielding

Bromine (~75%) in flame retardant: possibility of thermal and epithermal neutron self-shielding

thermal shielding correction: contains $<< exp(-\sigma_{abs}N)>>$ terms $\sigma_{abs} = \Sigma(\theta_i \sigma_{0,i})/100$ – elemental absorption cross section; N - nuclei.cm⁻³

epithermal shielding correction: more complex calculation, based on resonance parameters

correction essentially requires cross section/resonance data

correction essentially requires gamma-absorption coefficients

Nuclear Science Software

PHOTKOEF

A PC program (running under 32-bit WINDOWS Operating Systems), for the calculation of X-ray and gamma ray coefficients, shielding, dose deposition, and detector response. This is the only fast PC program (based on semi-empirical and patents-applied-for algorithms) which calculates dose buildup in absorbers and behind shields, dose deposition in internal substances (organs, mechanical components) including the effects of secondary (degraded) radiation, and dose enhancement due to electron transport at interfaces of dissimilar substances in multilayered objects. Licenses are available for personal use and for use in classrooms. Volume discounts and discounts to dealers and distributors are available.

PKjunior

A junior version of PHOTKOEF. Calculates, plots and prints photon interaction coefficients only. Licenses are available for personal use. Discounts are given to universities, to organizations using this program for promotional purposes, and to dealers and distributors, if at least fifty programs are ordered.

www.aicsoftware.net/201.html Edited on 13 October 2003 - E-mail to the *Webmaster*

	AIC SOFTWARE, Inc. P.O. Box 544 Grafton, MA 01519 - USA Tel: 508-839-6779, Fax: 508-839-4853 photcoef@aol.com	
	A Company dealing with Intellectual Property in the field of Nuclear Science Software Services Technology	
http://wwv	v.kehler.net/aicsoftware/	
	PHOTKOEF PKjunior Nucleonics-Online Applied Nuclear Science Data www.aicsoftware.net Edited on 15 October 2003 - E-mail to the Webmaster	

Sources of Nuclear Data

Atomic Weights and Isotopic Abundances

Pure Appl. Chem., Vol. 75, No. 8, pp. 1107–1122, 2003. © 2003 IUPAC

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

INORGANIC CHEMISTRY DIVISION COMMISSION ON ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES*

ATOMIC WEIGHTS OF THE ELEMENTS 2001

(IUPAC Technical Report)

Prepared for publication by R. D. LOSS

Department of Applied Physics, Curtin University of Technology, Perth, Western Australia

http://www.chem.qmul.ac.uk/iupac/AtWt/

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

INORGANIC CHEMISTRY DIVISION COMMISSION ON ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES*

SUBCOMMITTEE FOR ISOTOPIC ABUNDANCE MEASUREMENTS**

ISOTOPIC COMPOSITIONS OF THE ELEMENTS 1997

Prepared for publication by K.J.R. ROSMAN¹ AND P.D.P. TAYLOR²

http://www.iupac.org/reports/1998/7001rosman/iso.pdf

ALSO: M AND θ

FROM OTHER DATA COMPILATIONS

Sources of Nuclear Data: General

Activation and Decay

http://www-nds.iaea.or.at/

Welcome to the IAEA Nuclear Data Centre

Nuclear Data Services

http://www-nds.iaea.or.at/

Major Databases

- CINDA neutron reaction data bibliography
- ENDF evaluated nuclear reaction cross section libraries
- ENSDF evaluated nuclear structure and decay data
- EXFOR experimental nuclear reaction data (with graphics)
- NSR Nuclear Science References
- NuDat 2.0 selected evaluated nuclear data

Nuclear Databases and Files

General

Masses 2003 - atomic mass evaluation data file Q-values, Thresholds - atomic masses, Q-values and threshold energies Thermal neutron capture gamma rays - by target and by energy Wallet cards - ground and metastable state properties

LBNL Isotopes Project - LUNDS Universitet Nuclear Data Dissemination Home Page

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

Isotopes Project Lund Nuclear Data WWW Service

Table of Isotopes	lsotope Explorer	Database Downloads	Table of Radioactive Isotopes	References	Education
Astrophysics	High Spin	Neutron Capture Gamma	Fission	Atomic Masses	Systematics
Atomic Data	Elemental Data	Interaction with Matter	Nuclear Moments	Sites of Interest]

http://ie.lbl.gov/toi.html

Sources of Nuclear Data: General

Activation

http://www.chartofthenuclides.com/ The Sixteenth Edition Is Now Available!

FAQ RELATED LINKS CONTACT US

ORDER

Continuing a half-century tradition, Knolls Atomic Power Laboratory (operated by Lockheed Martin) has published the 16th edition of its classic. "Chart of the Nuclides." Available in both Wallchart and Textbook versions, this document presents the key nuclear properties of every known stable and radioactive form of each element

Evaluated nuclear data is given for about 3100 known nuclides and 580 known isomers in a format similar to a periodic table. The nuclides are arranged with atomic number Z (number of protons) along the vertical axis and neutron number N along the horizontal axis. For each nuclide the half-life, atomic mass, decay modes, relative abundances, nuclear cross-section, and other nuclear properties are detailed. Color coding is used to emphasize halflives and neutron absorption properties.

Chart of the Nuclides

& Isotopes

The updated (2003) chart includes approximately 300 new nuclides and 100 new isomers not found in the 15th (1996) edition. There has been at least one change in more than 95% of the squares on the chart.

The Chart of the Nuclides and Isotopes is available as a 36" x 60" single sheet (known as a Wallcharf) or a bound 88-page soft-cover book (known as a Textbook). The Wallchart comes with a 48-page booklet of explanatory information. The explanatory information includes:

- A short history of the development of the periodic table.
- Detailed descriptions of the types of information given on the Chart
- A discussion of trends in stability and instability of nuclides on the Chart

Neutron Cross Sections

Volume 1

NEUTRON RESONANCE PARAMETERS AND THERMAL CROSS SECTIONS

Part A

Z = 1 - 60

S. F. MUGHABGHAB

M. DIVADEENAM

N. E. HOLDEN

National Nuclear Data Center Brookhaven National Laboratory Upton, New York

A Subsidiary of Harcourt Brace Jovanovich, Publishers

New York London Paris San Diego San Francisco São Paulo Sidney Tokyo Toronto

Neutron Cross Sections

Volume 1

NEUTRON RESONANCE PARAMETERS AND THERMAL CROSS SECTIONS

Part B Z = 61 - 100

S. F. MUGHABGHAB

National Nuclear Data Center Brookhaven National Laboratory Upton, New York

(Harcourt Brace Jovanovich, Publishers)

Orlando San Diego New York London Toronto Montreal Sydney Tokyo

THERMAL CROSS SECTIONS

$$\sigma_{\gamma} = 0.072 \pm 0.004 \text{ b} [13.8 \text{ hr} {}^{69}\text{Zn}^{m}] [9/2+]$$

 $\sigma_{\gamma} = 1.0 \pm 0.1 \text{ b} [56 \text{ min} {}^{69}\text{Zn}^{t}] [1/2-]$
 $\sigma_{s} = 5.4 \pm 0.3 \text{ b}$
 $\sigma_{\alpha} < 0.020 \text{ mb}$
 $b_{coh} = 6.7 \pm 0.2 \text{ fm}$
RESONANCE PROPERTIES
 $<\Gamma_{\gamma 0}>= 0.32 \pm 0.04 \text{ eV}$
 $C\Gamma_{\gamma 1}>= 0.17 \pm 0.02 \text{ eV}$
 $D_{0} = 5.77 \pm 0.73 \text{ keV}$
 $D_{1} = 1.29 \pm 0.09 \text{ keV}$
 $S_{0} = 2.2 \pm 0.3$
 $S_{1} = 0.39 \pm 0.03$
 $I_{\gamma} = 3.1 \pm 0.2 \text{ b}$
Mughabghab et al., 1981
(BNL)

CRC Handbook of Chemistry and Physics

NEUTRON SCATTERING AND ABSORPTION PROPERTIES^{*} (Revised 1996)

Norman E. Holden Reactor Division Brookhaven National Laboratory Upton, New York 11973

		NEUTRON SCAT	TERING AND ABSOR	PTION PROPERTIES (cor	1tinued) (* -	Extrapolated Value)
Elem.	Natural	Half-life	Thermal Neut.	Resonance	Coh. Scat.	σ(30KEV)
or	Abundance		Cross Section	Integral	Length	Maxw. Avg.
Isot.	(%)		(barns)	(barns)	(fm)	(barns)
¹¹⁴ Cd	28.73(42)		(0.04+0.29)	16.(7)	7.5(1)	0.16(3)
¹¹⁶ Cd	7.49(18)		(26.+52.)mb	1.2	6.3(1)	0.09(1)
49 In			197.(4)	$3.3(2)x10^{3}$	4.07(2)	
¹¹³ In	4.29(5)	4.4x10 ¹⁴ y	(3.1+5.0+3.9)	(220.+90)	5.39(6)	0.79(7)
¹¹⁵ In	95.71(5)		(88.+73.+44.)	(1.5+1.2+0.7)x10 ³	4.01(2)	0.74(7)
₅₀ Sn			0.61(3)	8.(2)	6.225(2)	

Mughabghab, 2003

Table I. (continued)

Isotope	Abundance (%) ^a	Capture Cross Section (b) ^b	Capture Cross Section (b) ^c	Westcott g-factor	Resonance Integral (b)
Cu-00		3.78 ± 0.02	3.78 ± 0.02		4.1 ± 0.1
Cu-63	69.174	4.52 ± 0.02	4.50 ± 0.02	1.0002	4.97 ± 0.08
Cu-65	30.826	2.17 ± 0.03	2.17 ± 0.03	1.0002	2.19 ± 0.07
Zn-00		1.11 ± 0.02	1.11 ± 0.02		
Zn-64	48.63	1.1 ± 0.1	0.76 ± 0.02		1.45 ± 0.06
Zn-66	27.90	0.62 ± 0.06	0.85 ± 0.20		1.8 ± 0.3
Zn-67	4.10	9.5 ± 1.4	6.8 ± 0.8		25 ± 3
Zn-68	18.75	0.072 ± 0.004	0.072 ± 0.004		3.4 ± 0.03
Zn-70	0.62	0.091 ± 0.005	0.091 ± 0.005		0.86 ± 0.06

Jef Report 14, 1994

	DELO		1445	THE	RMAL CROSS SE	CT. (B)	
NUCLIDE	KEAC	HON FILE	MAT	2200 M/S	MAXW.AVG.	RES.INTEG.	
44-Ru- 96	Inel.	JEF-2.2 ENDF/B-VI JENDL-3.2	4425 4425 4425				
	n,2 n	JENDL-3.2	4425				
	n,g	JEF-2.2 ENDF/B-VI JENDL-3.2	4425 4425 4425	0.2489 0.7633 0.2902	0.2207 1.482 0.2572	12.22 12.29 6.867	
	n,p	JEF-2.2 JENDL-3.2	4425 4425			0.1039-04	

Nuclear Wallet Cards

Nuclear Wallet Cards present properties for ground and isomeric states of all known nuclides. Properties given are:

- Spin and parity assignments
- Nuclear mass excesses
- Half-life, isotopic abundances
- Decay modes

Appendices contain properties of elements, fundamental constants and other userful information. Nuclear Wallet Cards booklet is published by the National Nuclear Data Center and its electronic (current) version is periodically updated by Dr. Jagdish K. Tuli. Nuclear Wallet Cards are distributed as a booklet as well as in PDA-adaptable Palm Pilot format, ASCII version is available upon request. A web-based version of Nuclear Wallet Cards provides search capabilities on ground and isomeric states level properties. For additional nuclear properties see NuDat 2.0.

http://www.nndc.bnl.gov/wallet/index.html

Nuclear Wallet Cards Search

Search parameters:	
Nucleus:197AU, Reaction Type:ANY, 0 <= Cross Section <= 10E+6, 0 <= Reaction Int. <= 10E+6	

Results:

Nucleus	E(level) (MeV)	Jπ	∆(MeV)	T _{1/2}	Abundance	Decay Modes	Reaction type	Product State	σ(b)		Resonance Integral (b)
¹⁹⁷ 79Au	0.0000	3/2+	-31.1570	STABLE		5	Capture Scattering		98.65 7.84	9 13	1.55E+3 3

Tables of nuclear data will be produced for the specified type of nuclear data and the nuclides specified by the user. A brief description may be found in the <u>Abstract</u> and a full desciption including examples may be found in the document <u>"The NuDat Program for Nuclear Data on the Web"</u>.

Data Base Last Updated On January 15, 2003

Type of Nuclear Data

LEVELS	Adopted levels from ENSDF
GAMMAS	Adopted gammas rays from ENSDF
LEVELS AND GAMMAS	Adopted levels and gamma rays from ENSDF
WALLET CARDS	Ground and Metastable State Properties
DECAY RADIATIONS	ENSDF decay data processed by RADLIST
NEUTRON DATA	Thermal Data and Resonance Integrals from BNL325

Updated by: TWB (May 17, 2002).

	Integral Retrieval Parameters	
Mass Numbe	er: 197	
Element:	Au	
Half-Life:		
Reaction:	C	
Sigma:		
Resonance I	nt:	
Table Format:	Narrow	
Submit	Clear Form	
\sim	Levels Wallet Decay Neutron DATA	
	Levels Gammas & Condo Padiations Data Services	

This program and the accompanying data base has been produced by the National Nuclear Data Center located at the Brookhaven National Laboratory Upton, N.Y., USA, with funding from the U.S. Department of Energy. Neither the BNL nor the USDOE make any warranty or assume any legal responsibility for the contents of the data base.

Generated at the IAEA NDS by NUDAT Wed Feb 9 13:11:59 2005

I	_	Status of th	e relev	ant nuc	lear dat	Ta a of the	able 1 analytically into	eresting nuc	lides and monitors
	Target nuclide	g(T _n , ^o C) ²⁹	w'	F _{Cd}	ĒŗeV	s _o	Formed nuclide (Activation- decay type) ²⁷	Haif life T	Notes
	¹⁰³ Rh	1.025 (20) 1.044 (100)	-	-	1.45	7.26*	¹⁰⁴ Rh (IV/a)	42.3 s	k _o in Ref. ²⁸ via HØGDAHL convention; * : from Ref. ⁶
	115 _{In}	1.020 (20) 1.036 (100)		0.93	1.56	18.5*	116m _{In} (IV/b)	54.15 min	k _o 's in Ref. ²⁸ via HØGDAHL convention; * : calc. from Q ₀
	¹⁵¹ Eu	0.901 (20) 0.831 (100)	-		0.448	1.20*	152m _{Eu} (I)	9.32 h	k _o 's in Ref. ⁸ via
						1.25*	152 _{Eu} (I)	13.51 a	* : from Ref. ³¹
	¹⁶⁴ Dy ((0.988 (20) 0.978 (100)		1	224	-0.20*	^{165m} Dy (I)	1.258 min	ko's in Ref. ²⁸ via
	F. De Corte et al: JRNC, 179 (1994) 93 -103					-0.27*	¹⁶⁵ Dy (IV/b)	2.334 h	* : caic. from Q ₀

Pure Appl. Chem., Vol. 71, No. 12, pp. 2309–2315, 1999. Printed in Great Britain. © 1999 IUPAC

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON RADIOCHEMISTRY AND NUCLEAR TECHNIQUES*

TEMPERATURE DEPENDENCE OF THE WESTCOTT g-FACTOR FOR NEUTRON REACTIONS IN ACTIVATION ANALYSIS

(Technical Report)

Prepared for publication by NORMAN E. HOLDEN

Reactor Division, Brookhaven National Laboratory (BNL), Upton, New York, 11973, USA

Table 2 V	Westcott g-fact	tors for neutro	on capture rea	Holden, PAC 1999				
T(°C)	$E_{n}(eV)$	¹⁵¹ Eu	¹⁵² Eu	¹⁵³ Eu	¹⁵⁴ Eu	¹⁵⁵ Eu	¹⁵⁵ Gd	¹⁵⁷ Gd
0	0.0236	0.9225	0.9469	0.9799	1.1839	1.0462	0.8586	0.8642
20	0.0253	0.9014	0.9272	0.9741	1.2278	1.0573	0.8443	0.8521
40	0.0270	0.8817	0.9083	0.9685	1.2736	1.0688	0.8296	0.8393
60	0.0287	0.8634	0.8902	0.9630	1.3212	1.0807	0.8147	0.8259
80	0.0305	0.8464	0.8729	0.9576	1.3701	1.0929	0.7996	0.8122
100	0.0322	0.8307	0.8562	0.9523	1.4201	1.1057	0.7845	0.7983
120	0.0339	0.8164	0.8402	0.9471	1.4707	1.1189	0.7695	0.7843
140	0.0356	0.8033	0.8248	0.9421	1.5218	1.1326	0.7547	0.7703
160	0.0374	0.7915	0.8099	0.9372	1.5730	1.1470	0.7400	0.7563
180	0.0391	0.7810	0.7956	0.9323	1.6239	1.1620	0.7256	0.7425
200	0.0408	0.7717	0.7819	0.9276	1.6744	1.1778	0.7115	0.7288
220	0.0425	0.7637	0.7686	0.9230	1.7243	1.1945	0.6976	0.7154
240	0.0443	0.7569	0.7557	0.9185	1.7732	1.2122	0.6841	0.7022
260	0.0460	0.7514	0.7434	0.9141	1.8211	1.2310	0.6708	0.6892
280	0.0477	0.7471	0.7314	0.9097	1.8678	1.2511	0.6579	0.6765
300	0.0494	0.7440	0.7198	0.9055	1.9131	1.2726	0.6453	0.6640
320	0.0512	0.7421	0.7086	0.9014	1.9570	1.2957	0.6331	0.6519
340	0.0529	0.7414	0.6977	0.8973	1.9994	1.3206	0.6211	0.6400
360	0.0546	0.7419	0.6872	0.8933	2.0402	1.3474	0.6095	0.6284
380	0.0563	0.7435	0.6770	0.8894	2.0793	1.3764	0.5982	0.6170
400	0.0580	0.7463	0.6671	0.8856	2.1169	1.4078	0.5872	0.6060