Characterization of Neutron Beams

Zsolt Révay Institute of Isotopes, Budapest

Trieste, 2005

Reminder: neutron sources

- Neutron generators
 - $D(d,n)^{3}$ He 2.4 MeV neutrons
 - D(t,n)⁴He
 14 MeV neutrons
- Radioisotopic neutron sources
 - (α ,n) reactions
 - α -decay from ²³⁹Pu, ²⁴¹Am, ²¹⁰Po (~5MeV α -s) then ⁹Be(α ,n)¹²C, average n energy ~ 4—4.5 MeV
 - photoneutron sources
 - high-E $_{\gamma}$ sources, ²⁴Na (2.76 MeV), ¹²⁴Sb (2.09 MeV) then ⁹Be(γ ,n)2 ⁴He, few 100 keV n
 - spontaneous fission
 - 252 Cf, average $E_n \sim 2 \text{ MeV}$

Reminder: neutron sources (2)

- spallation sources
 few MeV n-s
- research reactors
 - few MeV n-s

Neutron capture crosssections

Neutron capture cross-sections (2)

neutron capture efficient below eV

To achieve high reaction rates, neutrons must be slowed down: elastic scattering on light nuclei = moderation

Reminder: moderators

- water (reactor moderator) (82 b, 18 collisions)
- heavy water (reactor moderator) (7.6 b, 25 coll.)
- graphite (reactor moderator) (4.8 b, 90 coll.)
- liquid hydrogen (cold source for beams)
- liquid deuterium (could source)

Reminder: research reactor

- 1 fast horizontal channel
- 2 thermal horiz. ch.
- 3 fast vertical channel
- 4 thermal vertical ch.
- 5 tangential channel
- 6 tangential channel with a cold source
- 7 neutron guides
- R reflector C core

Example (TRIGA reactor) simulated energy spectrum (by A. Trkov)

Neutron guides

continuation of a horizontal channel
 thermal and cold neutrons transported
 epithermal and fast neutron filtered out

neutron guides distort the neutron spectrum!!!

Goal

Reaction rate for every nuclide

Approximation

- different ranges accounted for separately
 - thermal (and cold)
 - epithermal
 - fast

Flux components

log E

Thermal (tangential) guide

Curved thermal guide

Curved cold guide

Fluxes in different energy ranges

fission neutrons, fast (~MeV)

$$\varphi(E) = \varphi_{\rm f} e^{-E} \cdot \sinh \sqrt{2E}$$

- transitional region, epithermal neutrons (eV—MeV) $\varphi(E) = \varphi_{\rm e} \frac{1}{E} \qquad \qquad \varphi(E) = \varphi_{\rm e} E^{-(1+\alpha)}$
- thermal neutrons (below ~eV)

$$\varphi(E) = \varphi_{t} E \cdot e^{-E/kT}$$

Parameters (fast component)

Parameters (epithermal component)

Parameters

- thermal range
 - thermal flux
 - (effective) temperature
- epithermal range
 - epithermal flux, $f = \Phi_{th} / \Phi_e (= \Phi_s / \Phi_e)$
 - $-\alpha$ factor (discrepancy from 1/*E* dependence)
- fast range
 - fast flux

Neutron capture induced by different components

- fast neutron negligible
 - disturbing reactions may occur: (n,p), (n,2n),...
- epithermal must be corrected for
- thermal preferable

Reaction rate:

$$R = \int_{0}^{\infty} \sigma(E) \, \varphi(E) \, dE =$$

$$= \int_{\text{thermal}} \sigma(E) \, \varphi(E) \, dE + \int_{\text{epithermal}} \sigma(E) \, \varphi(E) \, dE$$

Components used

- thermal (and cold)
 - flux
 - shape
 - Maxwellian / guided Maxwellian
 - temperature
- epithermal
 - flux
 - shape
 - 1/E
 - 1/E^(1+α)
- (fast disturbing reactions)

Thermal flux monitor

Temperature monitoring in thermal region

Epithermal flux monitor

(Thermal/epithermal (f) monitor)

Fast flux monitor

Determination of flux parameters (1)

• 1 $\rightarrow \Phi_e$: for closely Maxwellian

- "foil activation" \rightarrow thermal equivalent neutron flux
 - irradiation with beam:
 - ¹⁹⁷Au(n, γ), or prompt gamma emission (e.g. Ti)
 - for long irradiation in reactor:
 - ¹⁹⁷Au (**98 barn !!!,** 2.69 day) [burn-up of ¹⁹⁸Au (26 000b)!!!]
 - ⁵⁹Co (20 b, 5.27 year)
 - ¹⁰⁹Ag (4.7 b, 250 day)
 - for short irradiation in reactor:
 - ⁶⁸Zn (0.08 b, 14 h)
 - ⁵⁵Mn (**13 b !!!**, 2.6 h)
 - ⁹⁸Mo (0.2 b, 66 h)

Determination of flux parameters (2)

- $2 \rightarrow \Phi_s, \Phi_e$ or Φ_s, f : for closely ideal reactor spectrum (Maxwellian+1/E)
 - "cadmium ratio" method (foil bare + in Cd):
 - for long irradiation in reactor:
 - ¹⁹⁷Au (**98 + 1550barn !!!**, 2.69 day) [burn-up !!!]
 - ⁵⁹Co (20 + 39 b, 5.27 year)
 - ¹⁰⁹Ag (4.7 + 73 b, 250 day)
 - ⁵⁸Fe (1.3 b, 45 day)
 - for short irradiation in reactor:
 - ⁹⁸Mo (0.2 + 3.8 b, 66 h)

Determination of flux parameters (3)

- $\mathbf{3} \rightarrow \Phi_{s}, \Phi_{e}, \alpha$ or Φ_{s}, f, α : for non-ideal n-spectrum (Maxwellian+1/E^{1+ α})
 - thermal flux Fe, or Au
 - -f and α ¹⁹⁷Au, ⁹⁶Zr, ⁹⁴Zr (see later)
Determination of flux parameters (4-5)

• 4 \rightarrow + *T* : temperature, for non-ideal n-spectrum (Maxwellian(*T*)+1/E^{1+ α})

¹⁷⁶Lu/¹⁷⁵Lu or ¹⁷⁶Lu/¹⁹⁷Au (2.6+2090 b, 6.7 day)

- 5 \rightarrow + Φ_f : for fast flux
 - ¹⁰³Rh(n,n')^{103m}Rh (0.15 MeV, 720 mbarn)
 - ¹¹⁵In(n,n')^{115m}In (0.6 MeV, 188 mb)
 - ⁵⁸Ni(n,p)⁵⁸Co (1 MeV, 113 mb)
 - ²⁷Al(n,p)²⁷Mg (1.9 MeV, 3.5 mb)
 - ⁵⁶Fe(n,p)⁵⁶Mn (3.7 MeV, 1 mb)
 - ⁵⁸Ni(n,2n)⁵⁷Ni (13 MeV, 13 mb)

Reminder: activation

- reaction rate per atom: $R = \Phi \sigma$
- number reactions in *t* seconds:

$$N = n R t = \frac{m}{M} N_A R t$$

- number of emitted gammas (of a given E): $N_{\gamma} = N P_{\gamma}$
- peak area: $a = \varepsilon N_{\gamma}$
- in case of radioactive decay: A = a S D C
- specific count rate: $A_{sp} = A / (m t)$
- m mass, M atomic weight, N_A Avogadro number
- P_{γ} emission probability
- ϵ counting efficiency
- S D C saturation, decay and counting factors

Reminder: S D C factors

 $S = 1 - e^{-\lambda t_{act}}$ $D = e^{-\lambda t_d}$ $C = \frac{1 - e^{-\lambda t_c}}{\lambda t_c}$

Conventions

reaction rate from

- thermal and
- epithermal neutrons
- Westcott (1955)
 - discrepancy from 1/v-law
- Høgdahl (1962) most popular
 - Cadmium filter method

Westcott convention

• for perfect 1/v isotopes (no resonances):

 $R = \Phi_0 \sigma_0$

for non-1/v isotopes in the thermal region

$$R = \Phi_0 \sigma_0 g(T)$$

where g(T) is the Westcott g factor, describing the non-1/v behavior of the nuclide

Westcott convention (2)

• for non-1/v isotopes in the epithermal region:

$$R = \Phi_0 \sigma_0 \left(g(T) + r \, s(T) \right)$$

where R is the reaction rate / atom r is the ratio of the epithermal neutrons s(T) shows the non-1/v behavior in the epithermal region

Used for ...

- thermal beams

 -characterization
 -activation
- reactor channels
 - –for the correction of non 1/v nuclides

Høgdahl convention

- uses cadmium to separate the thermal and the epithermal component
 - standard Cd shielding:
 - 1 mm thick
 - cylindrical
 - height/diameter = 2
 - sample in the middle
 - epithermal n-spectrum follows 1/E

Cadmium cut-off

Transmission through 1 mm Cd

in some cases (e.g. Au and W) the transmission of epithermal neutrons through Cd must be corrected for:

 $R_e F_{Cd}$

Høgdahl convention (2) $R = \Phi_s \sigma_0 + \Phi_e I_0 = \Phi_s \sigma_0 (1 + Q_0 / f)$ $\Phi_{\rm s}$ flux below $E_{\rm Cd}$ $f = \Phi_s / \Phi_e$ $\Phi_{\rm e}$ flux above $E_{\rm Cd}$ σ_0 thermal cross-section I_0 resonance integral (above E_{Cd})

 $E_{\rm Cd} = 0.55 \, {\rm eV}$

 $Q_0 = I_0 / \sigma_0$

Høgdahl convention (3) for non-ideal case

$$R = \Phi_{\rm s} \,\sigma_0 + \Phi_{\rm e} \,I_0(\alpha) = \Phi_{\rm s} \,\sigma_0 \,(1 + f \,Q_0)$$

 I_0 modified resonance integral for 1/E^{1+ α} neutron spectrum (above E_{Cd})

Used for ...

- reactor channels

 –characterization
 –INAA
 - k_0 method

Reminder: *k*₀

$$k_{0} = \frac{A_{sp} - (A_{sp})_{Cd}}{A_{sp}^{*} - (A_{sp}^{*})_{Cd}} \frac{\varepsilon}{\varepsilon} = \frac{A_{sp}}{A_{sp}^{*}} \frac{f + Q_{0}^{*}}{f + Q_{0}} \frac{\varepsilon}{\varepsilon} =$$
$$= \frac{M^{*} \theta P_{\gamma} \sigma_{0}}{M \theta^{*} P_{\gamma}^{*} \sigma_{0}^{*}}$$

Determination of thermal flux in case of no epithermal component

- ¹⁹⁷Au (θ =1) is a 1/v nuclide in the thermal region,
 - thermal cross-section: $\sigma_0 = 98.65 \pm 0.09$ barn
 - emission probability of 411 keV: $P\gamma = 0.9556$
- if the thickness is < 25µm, then the absorption is <
 1%.

$$\frac{A_{\text{Au}}}{\varepsilon} = \frac{m}{M} N_A \cdot \Phi_0 \cdot \theta P_{\gamma} \sigma_0 \cdot t_c \ S \ D \ C$$

A – peak area, ε – counting efficiency, m – mass, N_A=6.022×10²³, t_c – counting time, S D C – saturation, decay and counting factors.

Determination of epithermal + thermal fluxes

- ¹⁹⁷Au has a large resonance at 4.91 eV
 - resonance integral: $I_0 = 1550\pm 28$ barn
- two foils
- bare Au (same as previous) A_{Au}
- Au in 1-mm thick Cd foil must be thinner A_{Au(Cd)}

$$\frac{A_{\text{Au(Cd)}}}{\mathcal{E}} = \frac{m}{M} N_A \cdot \Phi_e \cdot I_0 P_{\gamma} \cdot t_c \ S \ D \ C$$

$$\frac{A_{\text{Au}}}{\varepsilon} = \frac{m}{M} N_A \cdot (\Phi_s \sigma_0 + \Phi_e I_0) P_{\gamma} \cdot t_c \ S \ D \ C$$

Self-shielding

 in case of self-shielding flux values must be corrected for:

 $G_{th} \Phi_s \qquad G_e \Phi_e$

• beam ↔ isotropic neutron field

Activation of Au

Activation of Au (2) Au foil with and without Cd

logarithmic f = 1000 linear

When Cd cannot be used...

Cd melts at 321°C

- when the channel is too hot

Cd suppresses the flux in its vicinity

→ "bare multimonitor" methods must be used

Determination of *f* with bare multimonitor method

• $R = \Phi_{\rm s} \,\sigma_0 \,(1 + Q_0 / f)$ for nuclides 1 and 2 $f = \frac{R_1 \sigma_{0,2} - R_2 \sigma_{0,1}}{Q_{0,1} \, R_2 \sigma_{0,1} - Q_{0,2} \, R_1 \sigma_{0,2}}$

$$\left(f = \frac{G_{e,1} \frac{k_{0,1}}{k_{0,2}} \frac{\varepsilon_1}{\varepsilon_2} Q_{0,1} - G_{e,2} \frac{A_{sp,1}}{A_{sp,2}} Q_{0,2}}{G_{th,2} \frac{A_{sp,1}}{A_{sp,2}} - G_{th,1} \frac{k_{0,1}}{k_{0,2}} \frac{\varepsilon_1}{\varepsilon_2}}{\varepsilon_2} \right)$$

If epithermal flux is not ideal...

• f will be different calculated for different nuclide pairs

Introduction of α helps in most cases

$$\varphi(E) = \varphi_{\rm e} E^{-(1+\alpha)}$$

- $\alpha < 0$: H₂O moderated reactors, close to core, poorly moderated channels
- $-\alpha$ > 0: in graphite and D₂O reactors

when the nuclide has one (significant) resonance at E_r

$Q_0 \rightarrow Q_0(\alpha)$ (2)

when the nuclide has several resonances

$$Q_0(\alpha) = \frac{Q_0 - 0.429}{\overline{E}_r^{\alpha}} + \frac{0.429}{(2\alpha + 1) \ 0.55^{\alpha}}$$

 \overline{E}_r effective resonance energy can be determined in different channels having different α -s

Determination of α

determination of *f* from two pairs (at least 3 nuclides)

$$f = \frac{R_1 \sigma_{0,2} - R_2 \sigma_{0,1}}{Q_{0,1}(\alpha) R_2 \sigma_{0,1} - Q_{0,2}(\alpha) R_1 \sigma_{0,2}}$$

• iterate α until $f_1 = f_2$.

Data needed

- k_0 or $\sigma_{\gamma} = \sigma_0 P_{\gamma} \theta$
- Q₀
- *E*_{*r*}
 - can be found e.g. at http://iriaxp.iri.tudelft.nl/~rc/fmr/k0www3/mainframes3.htm
 - (F_{Cd} -s are also given here)
- determine α and f
- calculate $Q_0(\alpha)$

Neutron beams

- horizontal channels
- neutron guides
- low epithermal flux
- thermal flux and temperature may be important
- especially important in PGAA

Wescott g factor

depends on temperature

$$g(T) = \frac{\int_{0}^{\infty} \sigma(v) v p_T(v) dv}{\sigma_0 v_0} = \int_{0}^{\infty} \delta_0(v) p_T(v) dv$$

- $\delta_0(v)$ irregularity factor
- $p_T(v)$ neutron spectrum

Discrepancy from 1/v law

low-E resonances

non-1/v nuclides

• INAA (radioactive after activation)

- ¹⁰³Rh (g = 1.023)
- ^{113,115}In (1.012, 1.019)
- ^{175,176}Lu (0.976,1.752)
- ¹⁹³lr (1.017)
- ²³⁵U (0.985)

PGAA (not radioactive after activation)

- ¹¹³Cd (*g* = 1.337)
- ¹⁴⁹Sm (1.718)
- ^{155,157}Gd (0.843, 0.852)
- ¹⁶⁷Er (1.069)
- ¹⁸⁰Ta (1.358)
- ¹⁸⁷Re (0.982)
- ¹⁸⁷Os (0.983)

Neutron mirrors (in guides)

total reflection

critical wavelength ~ λ , 1/v, 1/ $E^{0,5}$

- natural Ni: $\theta_c / \lambda = 0.099 ^{\circ}/ ^{A}$
- ⁵⁸Ni: $\theta_c / \lambda = 0.117 ^{\circ} / \text{Å}$
- supermirror: $\theta_c / \lambda = m \times 0.099 ^{\circ}/ Å$,

m = 1.5, 2, 3, ...

Wavelength spectrum of guided beams

spectrum of guided beam = Maxwellian × λ^2

guiding cools the beam

Westcott g factors of ¹¹³Cd

Chopper measurements at Budapest cold and thermal beams

slit size 0.5 mm
frequency of chopper 50 Hz
diameter of chopper 16 cm
baseline 43 cm / 120 cm
time resolution 10 μs
detector 7 bar ³He counter

Neutron spectra of cold and thermal beams as measured with TOF (43 cm)

Greater distance

better resolution

The effect of graphite filter

Cut-off of different filters

Cut-off wavelengths

Material	Cut-off wave-	Thickness for at-
	length (Å)	tenuation by a factor
		10 (cm)
Be	4.00	
BeO	4.67	15
C (graphite)	6.69	7
Al	4.67	60
Fe	4.04	3
Cu	4.16	6
Pb	5.7	15