Alternative methods for flux parameter determination

Possibilities

Nuclear data for Activation Analysis

Menno BLAAUW

March 16, 2005

1

Overview

- Once again the adapted Høgdahl convention
- The trouble with the standard methods
- Possible alternatives
 - Homemade mixtures
 - Available materials
 - The Delft Sao Paulo option
- Conclusions

TUDelft

Principles of the k₀ method

First conventional approach: adapted Høgdahl

$$R = \sigma_0 \Phi_s + I_0 (\alpha) \Phi_e$$
$$= \sigma_0 \Phi_s \left(1 + \frac{Q_0 (\alpha)}{f} \right)$$

Principles of the k₀-IAEA software

Conventional approach: Blaauw + Westcott +threshold

$$R = \sigma_0 g(T) \Phi_t + I_0^* (\alpha) \Phi_e + \sigma_{fast} \Phi_{fast}$$

$$= \sigma_0 \Phi_t \left(g(T) + \frac{Q_0^* (\alpha)}{f^*} \right) + \sigma_{fast} \Phi_{fast}$$

March 16, 2005 4

Single-comparator standardization with detector flexibility and irradiation facility flexibility: The k₀ method

- Neutron capture cross section curve summarized in five parameters: σ_0 , Q_0 , E_r , σ_{fast} and g(T)
- Neutron spectrum also summarized in four parameters Φ_s , f, α , fast flux and T

The trouble with the standard methods

- Cd-cover-method takes two samples of identical, complex composition that's one too many.
- Bare triple-comparator method can only yield three parameters, we need five
- Adding Lu and e.g. Ni to the standard combination of Zr-Au seems a good option
- But foils and wires in one capsule are hard to count together (efficiency, decay, shielding)
- 97Zr appear to be too extreme in its behavior, and not representative for the other high-Q nuclides

Possible alternatives

- Existing materials
 - available alloys that happen to be suitable
 - reference materials
 - SMELS
- Homemade mixtures
 - ground and mixed powders
 - solutions of suitable composition, pipetted on filter paper

An existing alloy

Element	Concentration	Uncertainty
Mn	4100	41
Ni	809300	8093
Mo	151600	1516
[,]	27600	276
Au	2900	29

NIST Montana soil

Element	Concentration	Uncertainty	
Na	11400	148	
Mg	10500	200	
Al	65300	457	
Si	304400	943	
S	420	5	
K	24500	392	
Ca	28800	403	
Sc	9	2.25	
Ti	3060	116	
٧	81.6	1.5	
Cr	47	118	
Mn	638	14	
Fe	28900	289	
Co	10	2.5	

Element	Concentration	Uncertainty	
Ni	20.6	0.55	
Cu	114	1	
Zn	350.4	2.4	
Ga	15	3.75	
As	105	4	
Se	1.52	0.07	
Br	5	1.25	
Rb	110	27.5	
Sr	245.3	0.34	
Y	25	6.25	
Zr	230	57.5	
Mo	1.6	0.4	
Ag	4.63	0.19	
Cd	41.7	0.13	

Element	Concentration	Uncertainty
In	1.1	0.275
Sb	19.4	0.89
I	3	0.75
Cs	6.1	1.5
Ba	726	18.9
La	40	10
Ce	69	17.3
Nd	31	7.8
Sm	5.9	1.5
Eu	1.1	0.28
Dy	5.6	1.4
Но	1	0.25
Υъ	2.7	0.68
Hí	7.3	1.8

Element	Concentration	Uncertainty
W	3	0.75
Au	0.03	0.0075
Hg	6.25	0.094
Pb	1162	15
Th	14	3.5
U	2.6	0.65

March 16, 2005

TUDelft

g

Home-made ground and mixed powders

- Too risky because of segregation
- To be tried only by experienced, trained, professional reference-material makers
- Don't even think of trying this at home!

Home-made solutions pipetted on filter paper

Delft - Sao Paolo example

