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1. Introduction

The two standard formalisms for describing the superstring are the Ramond-Neveu-

Schwarz (RNS) and Green-Schwarz (GS) formalisms. Although the RNS formalism has a

beautiful N=l worldsheet supersymmetry, its lack of manifest target-space supersymmetry

is responsible for several awkward features of the formalism. For example, amplitudes

involving more than four external fermions are difficult to compute in a Lorentz-covariant

manner because of picture-changing and bosonization complications [1]. Furthermore, it is

not known how to use the RNS formalism to describe the superstring in Ramond-Ramond

backgrounds.

On the other hand, target-space supersymmetry is manifest in the GS formalism, but

the worldsheet symmetries are not manifest. A lack of understanding of these worldsheet

symmetries has so far prevented quantization except in light-cone gauge. Although light-

cone gauge is useful for determining the physical spectrum, it is clumsy for computing

scattering amplitudes because of the lack of manifest Lorentz covariance and the need to

introduce interaction-point operators and contact terms. For these reasons, only four-point

tree and one-loop amplitudes have been explicitly computed using the GS formalism [2].

Furthermore, the necessity of choosing light-cone gauge means that quantization is only

possible in those backgrounds which allow a light-cone gauge choice.

As will be discussed in these lecture notes, a new formalism for the superstring was

proposed recently [3] which combines the advantages of the RNS and GS formalisms with-

out including their disadvantages. In this new approach, the worldsheet action is quadratic

in a flat background so quantization is as easy as in the RNS formalism. And since D=10

super-Poincare covariance is manifest in this formalism, there is no problem with comput-

ing spacetime-supersymmetric N-point tree amplitudes or with quantizing the superstring

in Ramond-Ramond backgrounds.

There are three new ingredients in this formalism as compared with the standard GS

formalism. The first new ingredient is fermionic canonical momenta da for the 9a variables.

These canonical momenta were first introduced by Siegel [4] and allow the GS action to

be written in quadratic form after including appropriate constraints. The second new

ingredient is the bosonic "pure spinor" AQ which plays the role of a ghost variable. And

the third new ingredient is the nilpotent BRST operator Q — J Xada whose cohomology

is used to define physical states. But before entering into more details about this new

formalism, it will be useful to say a few words about where it came from.
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In 1989, in an attempt to better understand the worldsheet symmetries of the GS

superstring, Sorokin, Tkach, Volkov and Zheltukhin [5] replaced the worldline kappa sym-

metry of the Brink-Schwarz superparticle with worldline supersymmetry. The bosonic

worldline superpartner for 6a was called Aa, and worldline supersymmetry of the action

implied that Aa satisfied the twistor-like relation

A7
mA = xm + \e-imQ. (1.1)

Li

This twistor-like approach was then generalized by several authors to the classical heterotic

superstring with from one to eight worldsheet supersymmetries [6] [7] [8] and it was argued

in [9] that quantization of the version with two worldsheet supersymmetries leads to a

critical N=2 superconformal field theory. For two worldsheet supersymmetries, 6a has two

superpartners, Aa and Xa, which satisfy the relations

A7
mA = A7

mA = 0, A7
mA = dxm + -07

m<90. (1.2)

In ten dimensions, a complex Weyl spinor AQ satisfying A7
mA = 0 is called a pure spinor

and, as was shown by Howe [10] [11] in 1991, is useful for describing the on-shell constraints

of super-Yang-Mills and supergravity.2

Unfortunately, direct quantization of the N—2 worldsheet superconformal field theory

requires solving the constraints of (1.2) and breaking the manifest SO(9,1) Lorentz invari-

ance down to U(4) [9] [15]. In later papers, this U(4) formalism was related to other critical

N=2 superconformal field theories called "hybrid" formalisms with manifest SO(3,l)xU(3)

[16], SO(5,l)xU(2) [17], SO(l,l)xU(4) [18], or (after Wick-rotation) U(5) [19] subgroups

of the Lorentz group. Together with Cumrun Vafa [20] [17], it was shown that all of these

formalisms are related by a field redefinition to an N=l —» N=2 embedding of the standard

RNS formalism where, after twisting the worldsheet N=2, the RNS BRST current and b

ghost are mapped to the fermionic N=2 superconformal generators.

Finally, in [3], it was proposed that these hybrid formalisms are equivalent to a man-

ifestly SO(9,1) super-Poincare covariant formalism using a BRST operator Q = J Xada

constructed from the worldsheet variables [xm,6a,da, Xa,wa] where da is the conjugate

momentum to 6a, wa is the conjugate momentum to Xa, and AQ is a pure spinor satisfying

A7
mA = 0. As will be shown later, AQ and wa each contain 11 independent components so

Pure spinors were originally studied by Cartan [12]. They have also been used for denning

grand unified models [13] and for constructing super-Yang-Mills auxiliary fields [14].



the covariant formalism contains 32 bosons and 32 fermions. Since the hybrid formalisms

all contain 12 bosons and 12 fermions (which are related by a field redefinition to the RNS

variables [xm,ipm,b, c, (3,7]), the proposal is based on the conjecture that, in addition to

obeying the usual physical state conditions, states in the cohomology of Q = J Xada are

independent of the extra 20 bosons and 20 fermions.

This conjecture was suggested by the U(5) version [19] of the hybrid formalism whose

variables are [xm,9a,9+,da,d+, X+,w+] where a = 1 to 5. If Xa = X+ is interpreted as

choosing a U(5) direction in SO(10), the extra 20 bosons can be understood as parame-

terizing the SO(10)/U(5) coset space. In this sense, the projective part of the pure spinor

variable plays the role of an SO(10)/U(5) harmonic variable, similar to the attempts of

[21] to covariantly quantize the superstring.

After the proposal was made in [3], there have been various consistency checks of

its validity. These include a proof that the cohomology of Q = J Xada reproduces the

superstring spectrum [22] and the construction of an explicit map from states in the coho-

mology of Q to physical states in the RNS formalism [23]. Also, the pure spinor description

has been generalized to curved backgrounds and it has been shown that BRST invariance

implies the correct low-energy equations of motion for the background fields [24] [25]. Fur-

thermore, it has recently been shown (at least at the classical level) that the pure spinor

description can be obtained by directly gauge-fixing the original N=2 worldsheet supersym-

metric description [7] [9] of (1.2) without passing through the hybrid or RNS descriptions

[26].

Although on-shell states in the pure spinor description can be related to on-shell

states in the RNS description [23], there is no such relation for off-shell states. Note

that the super-Poincare algebra closes for both on-shell and off-shell states in the pure

spinor description. But in the RNS descriptions, the super-Poincare algebra closes up

to picture-changing [27], which is only defined for on-shell states. Since there is no off-

shell map between the descriptions, it is tricky to guess the correct rules for computing

scattering amplitudes. Nevertheless, a manifestly super-Poincare covariant prescription

was given for tree amplitudes using the pure spinor description and was shown in [28] [23]

to coincide with the RNS prescription. However, it is still unknown how to compute

manifestly super-Poincare covariant loop amplitudes using the pure spinor description. It

is possible that recent generalizations of the pure spinor approach which explicitly introduce

[b, c] reparameterization ghosts may be useful for defining a loop amplitude prescription

[29] [30].



In section 2 of these notes, covariant quantization of the superparticle using pure

spinors will be reviewed and a previously unpublished proof will be given for equivalence

with the Brink-Schwarz superparticle. In section 3, the pure spinor approach will be

generalized to the superstring and it will be shown how to construct massless and massive

vertex operators and compute tree amplitudes in a manifestly super-Poincare covariant

manner. In section 4, the open and closed superstring will be described in a curved

background and it will be shown how to obtain the low-energy supersymmetric Born-

Infeld and supergravity equations of motion for the background fields from the condition

of BRST invariance. It will also be shown how this approach can be used to quantize the

superstring in an AdS$ x S5 background (or its plane wave limit) with Ramond-Ramond

flux.3

2. Covariant Quantization of the Superparticle

Before discussing the pure spinor description, it will be useful to review the stan-

dard description of the superparticle and the superspace equations for ten-dimensional

super-Yang-Mills. It will then be shown that just as D=3 Chern-Simons theory can be

obtained from BRST quantization of a particle action, D=10 super-Yang-Mills theory can

be obtained from BRST quantization of a superparticle action involving pure spinors.

2.1. Review of standard superparticle description

The standard Brink-Schwarz action for the ten-dimensional superparticle is [31]

S = J dr(UmPm + ePmPm) (2.1)

where

n m = xm - Uaj™p0P, (2.2)

Pm is the canonical momentum for xm, and e is the Lagrange multiplier which enforces the

mass-shell condition. The gamma matrices 7 ^ and 7 ^ are 16 x 16 symmetric matrices

which satisfy 7^7"^ /?7 = 2rjmn52l- In the Weyl representation, 7 ^ and 7 ^ are the

off-diagonal blocks of the 32 x 32 Tm matrices. Throughout these notes, the conventions

3 Some material in this review, such as massive vertex operators and supersymmetric Born-

Infeld, were not included in the ICTP lectures. Also, the lecture on quantization of the d= l l

superparticle and supermembrane was not included in this review since it involves work in progress.



for factors of i and 2 will be chosen such that the supersymmetry algebra is {qa,q/3} =

la/3°m — lrmlaf3-

The action of (2.1) is spacetime-supersymmetric under

56a = ea, xm = ^ 7 m e , SPm = 5e = 0,

and is also invariant under the local K, transformations [32]

59a = Pm(lmK)a, 5xm = -hjm58, SPm = 0, 5e = 6f3KP. (2.3)

The canonical momentum to 8a, which will be called pa, satisfies

Pa = 6L/59a = ~ r ( 7 m ( / ) a i

so canonical quantization requires that physical states are annihilated by the fermionic

Dirac constraints defined by

da=pa + \Pm{lme)a. (2.4)

Since {pa,d^} = —i5^, these constraints satisfy the Poisson brackets

-iPm'y%), (2.5)

and since PmPm = 0 is also a constraint, eight of the sixteen Dirac constraints are first-class

and eight are second-class. One can easily check that the eight first-class Dirac constraints

generate the K transformations of (2.3), however, there is no simple way to covariantly

separate out the second-class constraints.

Nevertheless, one can easily quantize the superparticle in a non-Lorentz covariant

manner and obtain the physical spectrum. Assuming non-zero P+, the local fermionic

^-transformations can be used to gauge-fix ("y+6)a — 0 where 7 ± = -TS(7° ± 79). In this

"semi-light-cone" gauge, the action of (2.1) simplifies to the quadratic action

S = JdT(xmPm + ^P+(h~0) + ePmPm) (2.6)

= J dr(xmPm + ^SaSa + ePmPm), (2.7)

where Sa = VP+('j~9)a and a = 1 to 8 is an 50(8) chiral spinor index.



Canonical quantization of (2.7) implies that {Sa, 5&} = i8ab- So Sa acts like a 'spinor'

version of 50(8) Pauli matrices a3, which are normalized to satisfy

where j and b are 50(8) vector and antichiral spinor indices. One can therefore define

the quantum-mechanical wavefunction W(x) to carry either an 50(8) vector index, *Bj(x),

or an 5O(8) antichiral spinor index, ^ ( x ) , and the anticommutation relations of Sa are

reproduced by defining

Sa*j(x) = *?*h(x), SaVh(x) = oii*j(x). (2.8)

Furthermore, the constraint PmPm implies the linearized equations of motion dmdm^fj =

dmdmVb = 0.

So the physical states of the superparticle are described by a massless 5O(8) vec-

tor ^Sj(x) and a massless 5O(8) antichiral spinor *&a(x) which are the physical states of

D=10 super-Yang-Mills theory. However, this description of super-Yang-Mills theory only

manifestly preserves an 50(8) subgroup of the super-Poincare group, and one would like a

more covariant method for quantizing the theory. Covariant quantization can be extremely

useful if one wants to compute more than just the physical spectrum in a flat background.

For example, non-covariant methods are clumsy for computing scattering amplitudes or

for generalizing to curved backgrounds.

As will be shown in the following subsection, a manifestly super-Poincare covariant

description of on-shell super-Yang-Mills is possible using N—1 D=10 superspace. This

covariant description will later be obtained from quantization of a superparticle action

involving pure spinors.

2.2. Superspace description of super-Yang-Mills theory

Although on-shell super-Yang-Mills theory can be described by the 5O(8) wavefunc-

tions ^Sj(x) and ^d(x) of (2.8) satisfying the linearized equations of motion dmdmi$!j =

dmdm^a = 0, there are more covariant descriptions of the theory. Of course, there is a

Poincare-covariant description using an 50(9,1) vector field am(x) and an 50(9,1) spinor

field xa (x) transforming in the adjoint representation of the gauge group which satisfy the

equations of motion

dmfmn + igK, fmn] = 0, i£p{dmXP + WWm, / ] ) = 0, (2.9)
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and gauge invariance

Sam = dms + ig[am,s], Sxa = ig[xa,s], Sfmn = ig[fmn,s], (2.10)

where fmn = d[man] + ig[am, an] is the Yang-Mills field strength and g is the super-Yang-

Mills coupling constant. However, there is also a super-Poincare covariant description

using an 50(9,1) spinor wavefunction Aa(x,9) defined in D=10 superspace. As will be

explained below, on-shell super-Yang-Mills theory can be described by a spinor superfield

Aa(x, 0) transforming in the adjoint representation which satisfies the superspace equation

of motion[33]

^ a A p + igAaAp) = 0 (2.11)

for any five-form direction mnpqr, with the gauge invariance

6Aa = DaA + ig[Aa,A] (2.12)

where A(x,6) is any scalar superfield and

is the supersymmetric derivative.

One can also define field strengths constructed from Aa by

±^(DaB
m - dmAa +ig[Aa,B

m\), (2.13)

Fmn = d[mBn] + ig[Bm, Bn] = ^(jmn)aP(DpWa + ig{Ap, W"})

which transform under the gauge transformation of (2.12) as

SBm = dmA + ig[Bm,A], 5Wa = ig[Wa, A], 6Fmn = ig[Fmn, A]. (2.14)

To show that Aa(x,9) describes on-shell super-Yang-Mills theory, it will be useful

to first note that in ten dimensions any symmetric bispinor /Q/g can be decomposed in

terms of a vector and a five-form as fap = J^gfm + 'Y™pPqrfmnpqr a nd any antisymmetric

bispinor /Q/3 can be decomposed in terms of a three-form as fap = %^QVfmnP- Since

{.DQ, Dp} = "i™pdm, one can check that 5Aa = DaA+ig[Aa, A] is indeed a gauge invariance

of (2.11).
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Using A(x,6) = ha(x)9a + jap(x)6a913, one can gauge away {Aa(x))\e=o and the

three-form part of (DaAp(x))\e=o. Furthermore, equation (2.11) implies that the five-

form part of (DaAj3(x))|e=o vanishes. So the lowest non-vanishing component of Aa(x, 6)

in this gauge is the vector component (DjmA(x))\e=o which will be defined as 8am(x).

Continuing this type of argument to higher order in 0a, one finds that there exists a gauge

choice such that

Aa(x,9) = \(jm6)aam(x) + ^(9^mnPe)(lmnp)al3x
P(x) + ... (2.15)

where am(x) and x^(x) are SO(9,1) vector and spinor fields satisfying (2.9) and where

the component fields in ... are functions of spacetime derivatives of am(x) and x^(x)-

Furthermore, this gauge choice leaves the residual gauge transformations of (2.10) where

s(x) = (A(x))\e=o- Also, one can check that the 6 = 0 components of the superfields Bm,

Wa and Fmn of (2.13) are am, \ a a n d fmn respectively. So the equations of motion and

gauge invariances of (2.11) and (2.12) correctly describe on-shell super-Yang-Mills theory.

One would now like to obtain this super-Poincare covariant description of super-Yang-

Mills theory by quantizing the superparticle. Since the super-Yang-Mills spectrum con-

tains a massless vector, one expects the covariant superparticle constraints to generate the

spacetime gauge invariances of this vector. Note that these constraints are not present in

the gauge-fixed action of (2.7) since \Pj describes only the transverse degrees of freedom

of the 50(9,1) vector. Before describing the covariant constraints which generate the

gauge invariances of this vector, it will be useful to first review the worldline action for

Chern-Simons theory which also has constraints related to spacetime gauge invariances.

2.3. Worldline description of Chern-Simons theory

Since the gauge invariance of a massless vector field is SA^ = d^A, one might guess

that the worldline action for such a field should contain the constraints PM. Although

these constraints are too strong for describing Yang-Mills theory, they are just right for

describing D=3 Chern-Simons theory where the field-strength of A^ vanishes on-shell.

As was shown in [34], Chern-Simons theory can be described using the worldline

action4

S= fdrix^P^ + FP,,) (2.16)

4 Although [34] discusses only a worldsheet action for Chern-Simons string theory, the methods

easily generalize to a worldline action.



where \i = 0 to 2 and ZM are Lagrange multipliers for the constraints. Since the constraints

are first-class, the action can be quantized using the BRST method. After gauging l^ =

— \PiXi the gauge-fixed action is

S = f dr(x^PM - i p ^ P M + c"6M) (2.17)

with the BRST operator

Q = cMPM (2.18)

where (c^ ,^ ) are fermionic Fadeev-Popov ghosts and anti-ghosts.

To show that the cohomology of the BRST operator describes Chern-Simons theory,

note that the most general wavefunction constructed from a ground state annihilated by

W is

*(c,x) = C(x) + cTA^x) + %-elLVpecvA*P{x) + -e^pd1? cpC*{x) (2.19)
A 0

where the expansion in &• terminates since cM is fermionic. One can check that

V \ * a { x ) . (2.20)

So Qty = 0 implies that A^ix) satisfies the equations of motion d^A^ = 0 which is the

linearized equation of motion of the Chern-Simons field. Furthermore, if one defines the

gauge parameter fl(c,x) = iA(x) — cMw^(x) + ..., the gauge transformation 5^ = Qtt

implies dA^ = d^A which is the linearized gauge transformation of the Chern-Simons field.

If one defines physical fields in BRST quantization to carry ghost-number one, one

finds that the spacetime ghosts carry ghost-number zero, the antifields carry ghost number

two, and the antighosts carry ghost-number three. From the equations of motion and gauge

invariances Qty = 0 and <5$ = QQ,, one learns that the gauge invariances of the antifields

are related to the equations of motion of the fields, and the equations of motion of the

ghosts are related to the gauge invariances of the fields. For example, from Qty = 0 and

fity = QQ, for the Chern-Simons wavefunction of (2.19), one learns that A*p satisfies the

equation of motion daA*a = 0 with the gauge invariance 5A*a = ea'J''/dflwv, which are

the linearized equations of motion and gauge invariance of the Chern-Simons antifield.

And the remaining fields, C(x) and C*{x), describe the spacetime ghost and antighost of

Chern-Simons theory.
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These equations of motion and gauge invariances can be obtained from the Batalin-

Vilkovisky version [35] of the abelian Chern-Simons spacetime action

S= I (fx^e^A^Ap + iA^dpC), (2.21)

where, in addition to the usual Chern-Simons action for A^, there is a term coupling the

antifield A*11 to the gauge variation of A^. The action of (2.21) can be written compactly

in terms of the wavefunction \I/ of (2.19) as

= 1 f (2.22)

where ( ) is normalized such that {c^cwcp) = it

Up to now, only abelian Chern-Simons theory has been discussed, but it is easy to

generalize to the non-abelian case. For example, the Batalin-Vilkovisky version of the

non-abelian Chern-Simons action is

S = Tr [ d\{e^p{^A^duAp + ^A^AvAp) (2.23)

+iA*»(dfiC + ig[Ap, C]) - gCCC*),

which can be written compactly as

S = Tr [ d3x(-^Qy + ^ * W ) (2.24)
J 2 3

where g is the Chern-Simons coupling constant and the fields in \I/ of (2.19) now carry

Lie algebra indices. Note that the non-linear equations of motion and gauge invariances

associated with this action are

Q$ + 5 * # = 0, 5<& = Qn + g[tt,y]. (2.25)

Using intuition learned from this worldline description of Chern-Simons theory, it will now

be shown how to quantize the super particle in a similar manner.

10



2.4- Pure spinor description of the superparticle

In the case of Chern-Simons theory, the gauge transformation 8 Ay, = d^A was gener-

ated by the constraints PM. So for the superparticle, the gauge transformation 8Aa = Dak

suggests using the constraints da. However, the constraints da are not all first-class, so

Q = Xada (2.26)

would not be a nilpotent operator for generic Aa. But since (2.5) implies that Q2 =

(Xada)
2 = —|AQA/37^3Pm, Q is nilpotent if Xa satisfies the pure spinor condition

Aa7^A/3 = 0 ( 2 2 7 )

for m = 0 to 9. Note that Aa must be complex in order to have solutions to (2.27).

However, its complex conjugate Aa never appears in the formalism so one is free to define

Aa to be a hermitian operator. Defining (Aa)^ = Aa does not lead to any inconsistencies

since Aa carries ghost number and therefore does not have any c-number eigenvalues. In

other words, AQ(A^)^ = AaA^ takes states of ghost-number g to states of ghost-number

g + 2. So Aa(Aa)t has no c-number eigenvalues and there is therefore no reason that it

should be positive-definite.

The pure spinor condition of (2.27) appears strange since bosonic ghosts in the BRST

formalism are normally unconstrained and come from gauge-fixing fermionic Lagrange mul-

tipliers. However, as will now be argued, the BRST operator and pure spinor constraint of

(2.26) and (2.27) can be derived by starting with the Brink-Schwarz superparticle in semi-

light-cone gauge, adding additional fermionic degrees of freedom and gauge invariances,

and then gauge-fixing in a non-standard manner.

The action of (2.7) for the Brink-Schwarz superparticle in semi-light-cone gauge is

dr(xmPm + ±SaSa + ePmPm) (2.28)

where m = 0 to 9, a = 1 to 16, and a = 1 to 8. Suppose one now introduces a new set

of (pa, 6
a) variables which are unrelated to Sa and defines da = pa + \Pm{lmQ)oi- Using

{da, dp} = -iPmj™^ and {Sa, Sb} = iSab, one can check that

4 = da + (7ml+S)aP
m(P+)--2 (2.29)

11



describes first-class constraints which close to {da,dp} = — jp+PmP™''!^- ^° (2-28) is

equivalent to

S = J dr(xmPm + 9apa + ^SaSa + ePmPm + fada) (2.30)

where fa are fermionic Lagrange multipliers. Since da are first-class, they could be used

to gauge 9a = 0 which would return (2.30) to the original action of (2.28).

Using the usual BRST method, the action of (2.30) can be gauge-fixed to

S= [ dT(xmPm - \pmPm + 0apa + ^SaSa + db + X Wa) (2.31)
J Z Z

together with the BRST operator

Q = Xada + cPmPm + i^T&(A7+A) (2.32)

where Xa is an unconstrained bosonic spinor variable which comes from gauge-fixing fa =

0. To relate Q with Q — Xada, it will first be argued that the cohomology of Q is

equivalent to the cohomology of Q' = X'ada in a Hilbert space without (6, c) ghosts and

where X'a is constrained to satisfy A'7+A' = 0 (but is not constrained to satisfy X'ji X — 0

or X'j~X' = 0). To show that Q' has the same cohomology as Q, consider a state V

annihilated by Q' up to terms proportional to A'7+A', i.e. Q'V = (A;7+A')W for some

W. Then {Q'f = -J^f(X'j+X')PmPm implies that Q'W = -j£+PmPmV. Using this

information, one can check that V = V + 4iP+cW is annihilated by Q. Furthermore, if V

is BRST-trivial up to terms involving A'7+A', i.e. V = Q'n +(X'^+X')Y for some Y, then

V+4iP+cW = Q(tt-4iP+cY), so V is also BRST-trivial. So any state in the cohomology

of Q' is in the cohomology of Q, and reversing the previous arguments, one can show that

any state in the cohomology of Q is in the cohomology of Q'.

Finally, it will be shown that the cohomology of Q' = X'ada is equivalent to the

cohomology of Q = Xada where Aa is a pure spinor and the Hilbert space is independent

of Sa- Since (7+A')a is a null SO(8) antichiral spinor, it is preserved up to a phase by

some U(4) subgroup of SO(8). Under this U(4) subgroup, the chiral SO(8) spinor (7~A')a

splits into a 4 and 4 representation which will be called (7~A'),a and (7~A')^ for A, A = 1

to 4. Similarly, the chiral SO(8) spinors (/y+d)a and Sa split into the representations

[('j+d)A, {l+d)A\ a n d [SA,SA]- Note that the 4 and 4 representations are defined with

respect to the null spinor (7+A')a such that cr^a(7+A')o is zero for j = 1 to 8, and
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')a is non-zero. After performing a similarity transformation which shifts

+ (P+)~2 ('y+d)_A) one finds that Q' transforms as

So Q' = Xada + (7^A ' ) J 45AV-P + where Aa is a pure spinor defined by

[(7+A)a, (7-A)A, (7"A)A] = [(7+A')d, ( 7 - A ' ) A , 0]. (2.34)

Using the standard quartet argument, the cohomology of Q' = Q + ('J~X')A-SAVP+ is

equivalent to the cohomology of Q = Xada in the Hilbert space independent of (7~A')y5,

SA, and its conjugate momenta ( 7 + U / ) A and S^- So the Brink-Schwarz superparticle

action has been shown to be equivalent to the action

S = j dT(xmPm - ^PmPm + 6apa + Xawa) (2.35)

together with the BRST operator Q = Xada where A7
mA = 0.

Although the above derivation of the pure spinor description from the Brink-Schwarz

superparticle was not manifestly Lorentz covariant, the final result of (2.35) is manifestly

covariant. As will be shown in the next subsection, quantization using this description

provides a manifestly super-Poincare covariant description of D=10 super-Yang-Mills the-

ory.

2.5. Covariant quantization of the D=10 superparticle

The most general super-Poincare covariant wavefunction that can be constructed from

(xm,ea,Xa) is

*{x,9, A) = C(x,e)+XaAa(x,9)+(X1
mnp'}rX)A*mnpqr(x,9)+XaX'3X^C*a/3l(x,e)+... (2.36)

where ... includes superfields with more than three powers of Aa. Note that the names

for the superfields appearing in (2.36) have been chosen to coincide with the names for

the Chern-Simons fields in (2.19). As in Chern-Simons, the ghost-number zero superfield

C contains the spacetime ghost, the ghost-number one superfield Aa contains the super-

Yang-Mills fields, the ghost-number two superfield A*mnvqr contains the super-Yang-Mills

13



antifields, and the ghost-number three superfield C*/37 contains the spacetime antighost.

All superfields in ... with ghost-number greater than three will have trivial cohomology.

For example, Q^> = -i\aDaC - iXaX/3DaA/3 + •••, so QV = 0 implies that Aa(x,9)

satisfies the equation of motion \a\@DaAp = 0. But since XaX@ is proportional to

(XjmnpqrX)^npqr, this implies that DjmnpqrA = 0, which is the linearized version of

the super-Yang-Mills equation of motion of (2.11). Furthermore, if one defines the gauge

parameter Q, = ih + Xaua + ..., the gauge transformation 5^ = QQ, implies 5Aa = DaK

which is the linearized super-Yang-Mills gauge transformation of (2.12).

So as described in (2.15), Aa(x, 9) contains the on-shell super-Yang-Mills gluon and

gluino, am(x) and xa(x)i which satisfy the linearized equations of motion and gauge in-

variances

dmd[rnan] = ^dmX
p = 0, 5am = dms.

And since gauge invariances of antifields correspond to equations of motion of fields, one

expects to have antifields a*m(x) and Xa(x) m the cohomology of Q which satisfy the

linearized equations of motion and gauge invariances

3ma*m = 0, 5a*m = dn(d
nsm-dmsn), 5X*a = l^dmKP (2.37)

where sm and KP are gauge parameters. Indeed, these antifields a*m and %* appear in

components of the ghost-number +2 superfield A*mnvqr of (2.36). Using Qty = 0 and

6^ = QQ, A*mnpqr satisfies the linearized equation of motion Xa{X^mnpqrX)DaA*mnpqr = 0

with the linearized gauge invariance 5A*mnpqr = ^npqrDau)P. Expanding ua and A*mnpqr

in components, one learns that A*mnpqr can be gauged to the form

]rX*(x) + {e1[mnp9){9lqr]s9)a*s {x) + ... (2.38)

where x*a
 a n d «*s satisfy the equations of motion and residual gauge invariances of (2.37),

and ... involves terms higher order in 9a which depend on derivatives of x*a
 a n d a*s•

In addition to these fields and antifields, one also expects to find the Yang-Mills ghost

c(x) and antighost c*(x) in the cohomology of Q. The ghost c(x) is found in the 9 = 0

component of the ghost-number zero superfield, C(x,9) = c(x) + ..., and the antighost

c*(x) is found in the (9)5 component of the ghost-number +3 superfield, (7*^(2;, #) =

... + c*{x){^m9)a{^fn9)p{^v9)1{9^mnp9) + .... It was proven in [36] that the above states

are the only states in the cohomology of Q and therefore, although \I> of (2.36) contains
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superfields of arbitrarily high ghost number, only super fields with ghost-number between

zero and three contain states in the cohomology of Q.

The linearized equations of motion and gauge invariances Q^f = 0 and 5^ = QD, are

easily generalized to the non-linear equations of motion and gauge invariances

Qtf + 0#tf = O, 5V = Qn + g[V,n] (2.39)

where \P and Q. transform in the adjoint representation of the gauge group. For the

superfield Aa(x,9), (2.39) implies the super-Yang-Mills equations of motion and gauge

transformations of (2.11) and (2.12). Furthermore, the equation of motion and gauge

transformation of (2.39) can be obtained from the spacetime action5

S = Tr f dlox(l-^Q^ + I***) (2.40)
J 2 o

using the normalization definition that

((A7
m0)(A7n0)(A7

p0X07mnP0)> = I- (2-41)

Although (2.41) may seem strange, it resembles the normalization of (2.22) in that (\I/) =

c*(x) where c*(x) is the spacetime antighost. After expressing (2.40) in terms of component

fields and integrating out auxiliary fields, it should be possible to show that (2.40) reduces

to the standard Batalin-Vilovisky action for super-Yang-Mills,

S = Tr Jdwx{\fmnr
n + xal™p(dmXP + ig[am,X13}) (2-42)

+ia*m(dmc + ig[am,c]) - gx*a{xa,c} - gccc*).

Because the action of (2.40) only involves integration over five #'s, it is not manifestly

spacetime supersymmetric. This is not surprising since it is not known how to construct a

manifestly supersymmetric action for D=10 super-Yang-Mills. Nevertheless, the equations

of motion coming from this action have the same physical content as the manifestly space-

time supersymmetric equations of motion Qty + gtyty = 0. This is because all components

in Qty + gtyty = 0 with more than five #'s are auxiliary equations of motion. So removing

these equations of motion only changes auxiliary fields to gauge fields but does not affect

the physical content of the theory. By defining the normalization of (2.41) to involve Aa(cr)

and 6a(a) at the midpoint a = ^ as in [37], it should be possible to generalize the action

of (2.40) to a cubic open superstring field theory action.

This spacetime action was first proposed to me by John Schwarz and Edward Witten.
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2.6. Pure spinor description for d ^ 10

It is interesting to ask if the pure spinor description can also be used to covariantly

quantize the superparticle when d ^ 10. Note that unlike the GS superstring action,

the Brink-Schwarz superparticle action is invariant under K-symmetry in any spacetime

dimension. If one defines a pure spinor in d dimensions6 by A7mA = 0 for m = 0 to d — 1,

a pure spinor contains (3iV — 4)/4 independent components where N is the number of

components in an unconstrained SO(d — 1,1) spinor. This counting can be derived using a

construction similar to the counting in d = 10 where (7+A) is a null SO(d — 2) spinor with

(N — 2)/2 components and (7""A) is half of an SO(d — 2) spinor with iV/4 components.

So Aa has 2 components when d = 4, 5 components when 5 < d < 6, 11 components when

7 < d < 10, and 23 components when d = 11.

For d = 11, it was shown in [38] that the pure spinor description correctly describes

a superparticle whose physical spectrum is linearized d= l l supergravity with 32 super-

symmetries. As discussed in [38], physical states for the d = 11 superparticle carry ghost-

number three and the state W = XaXfiX1Bo,f31(x,Q) describes the d = 11 supergravity

multiplet where -BQ(87 is the spinor component of the three-form superfield [39]. And for

7 < d < 10, one can easily check that the pure spinor description correctly describes a

superparticle whose physical spectrum is a dimensional reduction of super-Yang-Mills with

16 supersymmetries. However, for d < 6, the situation is more subtle. Note that a d = 6

spinor is described by Â  where J = 1 to 2 is an SU(2) spinor index and a = 1 to 4 is

an SU*(4) index. The constraint A7mA = 0 implies X^X^ejK = 0, which implies that

XJ
a = cJha for some c J and ha. And for d = 4, A7mA = 0 implies that either Aa = 0 or

AA = 0 where (a, a) = 1 to 2 are the standard SU(2) Weyl indices.

Using techniques similar to the d = 10 case, one finds that for 5 < d < 6 o r d = 4, the

cohomology of Q = Xada describes off-shell super-Yang-Mills with 8 or 4 supersymmetries.

As in d = 10, Q^> = 0 implies that XaXl3DaAi3 = 0, which implies that D^aA^ =

7™g.Bm for some vector gauge field Bm. However, unlike d = 10, the theory is off-shell

since D(aAp) = ^™pBm does not impose equations of motion when d < 6. This might

seem surprising since the Brink-Schwarz superparticle contains the PmPm — 0 mass-shell

constraint for any d. But note that for d < 6, there are also subtleties in the light-cone

In arbitrary spacetime dimension, this is not the pure spinor definition used by Cartan. For

example, in d = 11, Cartan would define a pure spinor to satisfy both Xjm\ = 0 and \~fmnX = 0

[11].
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quantization of the Brink-Schwarz superparticle. When d = 6, the light-cone Sa variable

contains 4 components, which naively suggests 24/2 = 4 states in the physical spectrum

instead of the 8 states of d = 6 super-Yang-Mills. And when d = 4, Sa contains 2

components, which naively suggests 22/2 = 2 physical states instead of the 4 states of d = 4

super-Yang-Mills. Since light-cone quantization of the superparticle is not straightforward

in d < 6, it is not so surprising that there are subtleties in the pure spinor description in

these dimensions.

3. Covariant Quantization of the Superstring

In this section, the pure spinor description of the superparticle will be generalized

to the superstring. Although there have been several previous approaches to covariantly

quantizing the superparticle, this is the first approach which successfully generalizes to

covariant quantization of the superstring. But before discussing the pure spinor approach,

it will be useful to discuss an alternative approach of Siegel [4] which contains some of the

same features as the pure spinor approach.

3.1. Review of GS formalism using the approach of Siegel

In conformal gauge, the classical covariant GS action for the heterotic superstring

is[40]

shet = J d2z[±nmtim + i n m r 7 ^ 5 ^ - i f l m r 7 ^a^] + sR (3.1)

where xm and 6a are the worldsheet variables (m = 0 to 9, a = 1 to 16), SR de-

scribes the right-moving degrees of freedom for the Eg x E$ or 50(32) lattice, and

TIm = dxm + \Qa^dQ^ and fim = dxm + \Ba^dQ^ are supersymmetric combina-

tions of the momentum. In what follows, the right-moving degrees of freedom play no role

and will be ignored. Also, all of the following remarks are easily generalized to the Type

I and Type II superstrings.

Since the action of (3.1) is in conformal gauge, it needs to be supplemented with

the Virasoro constraint T = — | l I m I I m = 0. Also, since the canonical momentum to 6a

does not appear in the action, one has the Dirac constraint pa = SA/5doOa = | ( I Im —

\9jmdi6)(/ym6)a where pa is the canonical momentum to 6a. If one defines

da=pa- \(nm - ^7mdi0)(7m0)a, (3-2)
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one can use the canonical commutation relations to find {da, dp} = i~f™pVLm, which implies

(since I I m n m = 0 is a constraint) that the sixteen Dirac constraints da have eight first-class

components and eight second-class components. Since the anti-commutator of the second-

class constraints is non-trivial (i.e. the anti-commutator is an operator II+ rather than a

constant), standard Dirac quantization cannot be used since it would involve inverting an

operator. So except in light-cone gauge (where the commutator becomes a constant), the

covariant Green-Schwarz formalism cannot be easily quantized.

In 1986, Siegel suggested an alternative approach in which the canonical momentum

to 9a is an independent variable using the free-field action [4]

2z[^dxmdxm + Pad0a]. (3.3)

In this approach, Siegel attempted to replace the problematic constraints of the covariant

GS action with some suitable set of first-class constraints constructed out of the super-

symmetric objects n m , da and d9a where

da=Pa~ \{dxm + ^ 7
m ^ ) ( 7 m ^ ) a (3.4)

is defined as in (3.2) and is no longer constrained to vanish. The first-class constraints

should include the Virasoro constraint A = —\HrnY[rn — dad0a = —\dxmdxm —pad9a and

the K-symmetry generator Ba = Wn('jmd)a. To get to light-cone gauge, one also needs

constraints such as Cmnp = da(
/ymnp)a^'dp which is supposed to replace the second-class

constraints in da. Although this approach was successfully used for quantizing the super-

particle [41], a set of constraints which closes at the quantum level and which reproduces

the correct physical superstring spectrum was never found.

Nevertheless, the approach of Siegel has the advantage that all worldsheet fields are

free which makes it trivial to compute the OPE's that

xm{y)xn{z) -* -2r,mn log \y-z\, Pa(y)9^(z) -> 5^y - z)~\ (3.5)

da(y)dp(z) -> -^-L-^7^nm(z), da(y)Hm(z) -» ^-L^^dO^z). (3.6)

This gives some useful clues about the appropriate ghost degrees of freedom. Since (6a,pa)

contributes —32 to the conformal anomaly, the total matter contribution is —22 which is

expected to be cancelled by a ghost contribution of +22. Furthermore, the spin contribu-

tion to the 50(9,1) Lorentz currents in Siegel's approach is Mmn = ^pjmn9, as compared

with the spin contribution to the SO(9,1) Lorentz currents in the RNS formalism which

is ipmipn- These two Lorentz currents satisfy similar OPE's except for the numerator in

the double pole of Mmn with Mmn, which is +4 in Siegel's approach and +1 in the RNS

formalism. This suggests that the worldsheet ghosts should have Lorentz currents which

contribute —3 to the double pole.
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3.2. Superstring quantization using pure spinors

In fact, there exists an 50(9,1) irreducible representation contributing c = 22 and

with a —3 coefficient in the double pole of its Lorentz current [3]. This representation

consists of a bosonic pure spinor Aa satisfying the condition that

Aa7^A^ = 0 (3.7)

for m = 0 to 9. To show that this representation has the desired properties, it is useful

to temporarily break manifest Lorentz invariance by explicitly solving the pure spinor

constraint of (3.7).

A parameterization of Aa which preserves a C/(5) subgroup of (Wick-rotated) 50(10)

is [3] [23]

A+ = es, Xab = uab, \a = -\e-seabcdeubcude (3.8)

o

where a = 1 to 5, uab = — uba are ten independent variables, and the SO(10) spinor Xa has

been written in terms of its irreducible £7(5) components which transform as (1 s, 101,5_ a)

representations of 5£7(5)f/(i). A simple way to obtain these £7(5) representations is to

write an 50(10) spinor using [± ± ± ± ±] notation where Weyl/anti-Weyl spinors have

an odd/even number of + signs. The Is component of Aa is the component with five +

signs, the 101 component has three + signs, and the 5_3 component has one + sign. The

Aa parameterization of (3.8) is possible whenever A+ ^ 0.

Using the above parameterization of Aa, one can define the action 5A for the worldsheet

ghosts as

Sx= f d2z[dtds - ^vabduab] (3.9)

where t and vah are the conjugate momenta to s and uab satisfying the OPE's

t(y) s(z) -+ log(y - z), vab(y) ucd(z) -> 6}?5% - z)'1. (3.10)

Note that the factor of \ in the vabduab term has been introduced to cancel the factor of

2 from uab = — uba. Also note that s and t are chiral bosons, so their contribution to (3.9)

needs to be supplemented by a chirality constraint.

One can construct 5O(10) Lorentz currents Nmn out of these free variables as

N = -^{-Auahv
ah + \dt - ^s), Nb

a = uacv
bc - Ub

aucdv
cd, (3.11)

V5 4 2 2 5
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- Uabdt — 2uabds + uacubdvcd - -uabucdvcd)

where Nmn has been written in terms of its C/(5) components (N,Nb,Nab,Nab) which

transform as (lo, 24O, IO2,10_2) representations of SU(5)u(i)- The Lorentz currents of

(3.11) can be checked to satisfy the OPE's

Nmn(y)Xa(z) -+ I ( 7 - " ) ^ ^ M , (3.12)
z y — z

Nkl{y)Nmn{z) -» ^—^ v~y ' ; ^' ^ - 3 ^ — ^ >J^—- (3-13)
y - z (y-z)2

So although 5A of (3.9) is not manifestly Lorentz covariant, any OPE's of Aa and Nmn

which are computed using this action are manifestly covariant.

In terms of the free fields, the stress tensor is

Tx = ^vabduab + dtds + d2s (3.14)

where the d2s term is included so that the Lorentz currents of (3.11) are primary fields.

This stress tensor has central charge +22 and can be written in manifestly Lorentz invariant

notation as [42]

Tx = ^NmnN
mn - \j2 - dJ (3.15)

1U o

where J is defined in terms of the free fields by

J = \uahv
ab + 3t + 33s. (3.16)

Note that J has no singularities with Nmn and satisfies the OPE's

J(y)J(z) - -4(y - z)-2, J(y)Xa(z) - (y - z^X^z).

The operator § J can be identified with the ghost-number operator so that Aa carries ghost

number +1.
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3.3. Physical vertex operators

Physical states in the pure spinor formalism for the open superstring are denned as

ghost-number one states in the cohomology of Q = J Xada where Aa is constrained to

satisfy Xjm\ = 0. The constraint X^mX = 0 implies that the canonical momentum for Aa,

which will be called wa, only appears in combinations which are invariant under the gauge

transformation

6wa = (7
mA)QAm (3.17)

for arbitrary Am. This implies that wa only appears in the Lorentz-covariant com-

binations Nmn = \ : w^mnX : and J =: waX
a : where the normal-ordered expres-

sions can be explicitly defined using the parameterization of (3.11) and (3.16). When

(mass)2 = n/2, open superstring vertex operators are constructed from arbitrary com-

binations of [xm, 6a,da,X
a, Nmn, J] which carry ghost number one and conformal weight

n at zero momentum. Note that [da, Nmn, J] carry conformal weight one and AQ carries

ghost number one.

For example, the most general vertex operator at (mass)2 = 0 is

U = XaAa(x,6) (3.18)

where Aa(x,9) is an unconstrained spinor superfield. As was shown in subsection (2.5),

QU = 0 and 5U = QQ, implies 7%PnpqrDaAp = 0 and 5Aa = DaQ,, which are the super-

Maxwell equations of motion and gauge invariances written in terms of a spinor superfield.

At the next mass level, the physical states of the open superstring form a massive

spin-2 multiplet containing 128 bosons and 128 fermions. Although it was not previously

known how to covariantly describe this multiplet in D=10 superspace, such a superspace

description was found with Osvaldo Chandia using the pure spinor approach [43]. When

(mass)2 = | , the most general vertex operator is

U = dXaAa(x,6)+ : d6(3XaBal3(x,e) : + : d,3X
aCl3

a(x,e) : (3.19)

+ : nmXaHma(x,9) : + : JXaEa(x,9) : + : NmnXaFamn(x, 6) :

where : OAXa$aA(x,B)(z) : =§ ^OA(y) Xa(z)$aA(z) and $aA(x,9) are the various

superfields appearing in (3.19). Using the OPE's of (3.6), it was shown in [43] that QU = 0

implies the equations

(imnp^r13 [DaBPl - Ya-yHs/3} = 0, (3.20)
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= 0,

+ S^Ep + ^ V aFpst] = 0,

l3{DaAp + Baf}

— A ^ a P ~ y r , t K
^ Jmnpqr ia(3 'lstJ->-VWxy>

i[DaAp + Bal3 + 2-y^ ^

— V)^ >vwxy Ks

" ^ Imnp I a/3 wxysi

ryaP n T?a — ryaP (ry^WXy \ TV'S
imnpqr ot±-'j3 ImnpqrK I Is I ap *-*• vwxy

lmnpqrJ-ycx± (3 imnpqr\ I I )<xp-L^vwxyi

where K£w is an arbitrary superfield. And the gauge invariance SU = QVt implies the

gauge transformations

SAa = nla + 27- /3amn§ - DaQA - i(7mn)/3
Q^/3^5mn, (3.21)

where

O =: 00afi l a(x, 0) : + : dafif (re, 0) : + : Umn3m(x, 9) : (3.22)

and : ©^^^(x, 9) : =§ —z^OA{y) £IA(Z). Using d=10 superspace techniques, it was argued

in [43] that the equations of motion and gauge transformations of (3.20) and (3.21) imply

that the superfields <&aA{%i9) in (3.19) correctly describe a massive spin-two multiplet

with (mass)2 = ^.

To compute scattering amplitudes, one also needs vertex operators in integrated form,

JdzV, where V is usually obtained from the unintegrated vertex operator U by anti-

commuting with the b ghost. But since there is no natural candidate for the b ghost in
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this formalism, one needs to use an alternative method for obtaining V which is from the

relation [Q, V] = dU [44]. Using this alternative method, one finds for the open superstring

massless vertex operator that [3]

V = d9aAa(x, 9) + UmBm(x, 9) + daW
a(x, 9) + \NmnF

mn(x, 9). (3.23)

To show that QV = dU, note that

QV = d(XaAa) + Xad9(3{-DOIAP - DpAa + i£pBm) (3.24)

So QV = dU if the superfields satisfy

-DaAp - DpAa + 7 ^ B m = 0, (3.25)

DaBm - dmAa - jmapW3 = 0,

XaX"(lmn)^DaF
mn = 0,

which imply the super-Maxwell equations of subsection (2.2). Note that the fourth equation

of (3.25) is implied by the third equation since XaX/3DaD/3W
l = i(A7mA)<9mW^ = 0. It

is useful to note that in components,

V = am(x)dxm + l-d[man] (x)Mmn + ̂ {x)qa + O(92), (3.26)

where Mmn = \prfnn9 + Nmn is the spin contribution to the Lorentz current and

<la — Pa + \{dxm + j29jmd9)('yTn9)a is the spacetime-supersymmetry current. So (3.26)

closely resembles the RNS vertex operator [27] for the gluon and gluino. If one drops

the ^NmnF
mn term, the vertex operator of (3.23) was suggested by Siegel [4] based on

superspace arguments.

For the Type II superstring, the unintegrated massless vertex operator is U —

XaXPAaa{x,9,9) where A and 9a are right-moving worldsheet fields and the chirality

of the a. index depends if the superstring is IIA or IIB. The physical state condition

QU = QJJ = 0 and gauge invariance SU = QQ + QQ. where Q& = QQ, = 0 implies that

&A^ = 0, 5Aa0 = Dati$ + D$Qa, (3.27)
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n Ofl — ' v ^ D~£i- — o
±J<x*LP — imnpqrJ-^oiil'j — u

for any five-form direction mnpqr, which are the linearized equations of motion and gauge

invariances of the Type IIA or Type IIB supergravity multiplet. The integrated form of the

closed superstring massless vertex operator is the left-right product of the open superstring

vertex operator of (3.23) and is given by

VSG= Id2z (3.28)

.*(x, 9,9) + d9aflmAam(x, 9,9) + Ilmd9&Am&(x, 9,9) + JlmtinAmn(x, 9,9)

^ j n ( x , 9,9) + ft?n™(x, 9, §)) + ^Nmn(d9'3Cip(x, 9,9) + W(l™(x, 9, §))

+dJ$P
aP(x, 9,9) + NmJ&Cmn&{x, 9,9) + daNmnC

amn(x, 9,9) + NrnnNpqS
mnpc'(x, 9, §)}.

3-4- Tree-level scattering amplitudes

As usual, the TV-point tree-level open superstring scattering amplitude will be defined

as the correlation function of 3 unintegrated vertex operators Ur and N — 3 integrated

vertex operators J dzVr as

r r N

A= dz4... / dzN (U1(z1)U2{z2)U3(z3) H Vr(zr)). (3.29)
J J r=4

For massless external states, the vertex operators are given in (3.18) and (3.23).

The first step to evaluate the correlation function is to eliminate all worldsheet fields

of non-zero dimension (i.e. dxm, d9a, pa, J and JVmn) by using their OPE's with other

worldsheet fields and the fact that they vanish at z —> oo. One then integrates over the

xm zero modes to get a Koba-Nielsen type formula,

A = Jdz4...dzN{XaX(3X''fap-y(zr,kr,r]r,9)) (3.30)

where AaA/3A7 comes from the three unintegrated vertex operators and fap^ is some func-

tion of the zr's, the momenta kr, the polarizations rjr, and the remaining 9 zero modes.

One would like to define the correlation function (AaA^A7/a^7) such that A is super-

symmetric and gauge invariant. An obvious way to make A supersymmetric is to require
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that the correlation function vanishes unless all sixteen 6 zero modes are present, but this

gives the wrong answer by dimensional analysis. The correct answer comes from realiz-

ing that Y = AaA^A7/a/g7 satisfies the constraint QY = 0 when the external states are

on-shell. Furthermore, gauge invariance implies that (Y) should vanish whenever Y = QSl.

As discussed in subsection (2.5), there is precisely one state in the cohomology of Q

at zero momentum and ghost-number three which is (A7m#)(A7n#)(A7p0)(#7mnp#). So if

fafr{9) = AaPl + 9sBafhS +... + {ime)a{1
ne)p{1

pe)1{dlmnpe)F +..., (3.31)

it is natural to define

(XaX'3X1faf3J(zr,kr,r]r,9)) = F(zr,kr,Vr). (3.32)

This definition is supersymmetric when all external states are on-shell since

cannot be written as the supersymmetric variation of a quantity which is annihilated by

Q. And the definition is gauge invariant since

(A7m0)(A7n0)(A7P0)(07mnp0) ^ QQ

for any Q. Note that (3.32) can be interpreted as integration over an on-shell harmonic

superspace involving five #'s since (AaA^A7/a/37) is proportional to

^)/a/37|,=0 = J' W f a ^ (3-33)

For three-point scattering, A = (\aA\(z\) \^A2Q{Z2) X^A^ZS)), it is easy to check

that the prescription of (3.32) reproduces the usual super-Yang-Mills cubic vertex. In the

gauge of (2.15), each Aa contributes one, two or three #'s. If the five #'s are distributed as

(1,1,3), one gets the a^a^d^a3^ vertex for three gluons, whereas if they are distributed

as (2,2,1), one gets the (C17m^2)am vertex for two gluinos and one gluon. Together with

Brenno Vallilo, it was proven that the above prescription agrees with the standard RNS

prescription of [27] for N-point massless tree amplitudes involving up to four fermions [28].

The relation of (3.26) to the RNS massless vertex operator was used in this proof, and

the restriction on the number of fermions comes from the need for different pictures in

the RNS prescription. Furthermore, using the map from on-shell states in the pure spinor

BRST cohomology to on-shell states in the RNS formalism, it was argued in [23] that tree

amplitudes involving massive states must also agree with the RNS prescription.
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4. Quantization of the Superstring in a Curved Background

Although it is not known how to covariantly quantize the GS superstring, one can

construct the classical GS superstring action in a curved background. It has been shown

that when the background fields satisfy their on-shell equations to lowest order in a', the

classical worldsheet action is invariant under K-symmetry. However, because of quantiza-

tion problems, it is not known how to compute a' corrections to the background equations

of motion using the GS formalism.

As will be reviewed here, one can use the pure spinor description to construct an

analogous action for the superstring in a curved background. In this case, classical BRST

invariance will imply the on-shell equations for the background to lowest order in a'. Since

quantization is straightforward using the pure spinor description, one can now compute

a' corrections to the background equations by requiring quantum BRST invariance of the

action. Note that in the pure spinor description, the equations coming from classical BRST

invariance are expected to imply that the action is conformally invariant to one-loop order.

Since the one-loop beta function vanishes, it is sensible to ask if there are finite corrections

to the background equations coming from one-loop BRST invariance. Similarly, n-loop

BRST invariance is expected to imply (n + l)-loop conformal invariance of the action, so

this method can in principle be extended to all orders in a'.

4-1. Relation between n-symmetry and classical BRST invariance

The fact that classical BRST invariance in the pure spinor description is related to

K-symmetry in the GS description can be understood by computing the Poisson brackets

of Q = J Xada with the worldsheet fields. One finds that

= \<ym6, SQ9a = Xa, 8Qda =-Um(lm\)a, 5Qwa = da, (4.1)

which resemble the K-symmetry transformations

§x
m = £7

m0, 59a = C, (4-2)

where £a = IIm(7m«;)Q. As shown by Oda and Tonin [45], this relation is useful for

constructing BRST-invariant actions from K-invariant GS actions.

If the GS action SGS satisfies SSGS = 0 under (4.2) up to the Virasoro constraint

n m n m = 0 when £a = nm(7m«;)Q, then when £a is arbitrary, 6SGS = J d2zIlm(Zjm£l) for

some Q,a. Since SQS is independent of da and wa, this implies from (4.1) that the BRST
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transformation of SQS is SQSGS = / d2zUm{\'^m€t). One can therefore define a classically

BRST-invariant action as

SBRST = SGS + J d2z5Q(wafl
a) (4.3)

= SGS /

Although Q2 = 0 naively implies that / d2z5Q(waQ,a) is BRST invariant by itself, one can

check from (4.1) that 6q6QWa — —IIm(7mA)Q. Note that such a transformation for wa is

not inconsistent with Q2 = 0 since Swa = — Urn('jrnX)a is a gauge transformation of the

type discussed in (3.17). So

6Q5Q(wan
a) = (5Q5Qwa)n

a = -nm(A7
mf i) ,

which implies that SBRST of (4.3) is BRST-invariant.

It can be easily checked that this construction of SBRST agrees with the superparticle

and superstring actions constructed using pure spinors. For example, for the heterotic

superstring in an on-shell super-Yang-Mills background,

SGS = Shet + J d2z[d9aAi + nmi?4] J1 (4.4)

where Shet is defined in (3.1), J1 are the right-moving Eg x Eg or 5O(32) currents, / is a

Lie algebra index, and Aa and Bm satisfy (2.11) and (2.13). One can use (4.2) together

with SJ1 = -ig[Aa, J}1 to compute that fta = d9a + Wal J1 where Wa is defined in

(2.13). So

SBRST = SGS + J d2z 5Q(wad0a + waW
aIJ1) (4.5)

= SGS + [d2z[dad9a + waB\a + (daW
aI + w

= fd2z[^dxmdxm+Pad9a + wad\a + (d9aAi + UmBI
m + daW

aI

which is the pure spinor version of the heterotic superstring action in a super-Yang-Mills

background.
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4-2. Open superstring and supersymmetric Born-Infeld equations

Over fifteen years ago, it was shown that one-loop conformal invariance of the bosonic

open string in an electromagnetic background implies that the background satisfies the

Born-Infeld equations, and higher-loop conformal invariance implies higher-derivative cor-

rections to these equations [46]. However, because of problems with describing fermionic

backgrounds, this result was generalized only to the bosonic sector of supersymmetric Born-

Infeld theory using the Ramond-Neveu-Schwarz formalism of the open superstring [47].

Although fermionic backgrounds can be classically described using the Green-Schwarz for-

malism of the superstring, quantization problems have prevented computation of the equa-

tions implied by one-loop or higher-loop conformal invariance. Nevertheless, it has been

argued that K-symmetry of the classical Green-Schwarz superstring action in an abelian

background implies the abelian supersymmetric Born-Infeld equations for the background

[48] [49].

Using the pure spinor description of the superstring, physical states are defined using

the left and right-moving BRST charges

Q=fda{Xada) and Q = I da(Xada) (4.6)

where da and da are left and right-moving worldsheet variables for the N=2 D=10 su-

persymmetric derivatives and AQ and AQ are left and right-moving pure spinor variables

satisfying

A7™/3A
/3 = Aa7™/3A

/3 = 0 (4.7)

for m = 0 to 9. As was shown with Vladimir Pershin, classical BRST invariance of the

open superstring in a background implies that the background fields satisfy the full non-

linear supersymmetric Born-Infeld equations of motion. This was verified by computing

the boundary conditions of the open superstring worldsheet variables in the presence of

the background and showing that the left and right-moving BRST currents satisfy

Xada = Xada (4.8)

on the boundary if and only if the background fields satisfy the supersymmetric Born-Infeld

equations of motion. Since Xada is left-moving and Xada is right-moving, -§^{Q + Q) =

J da -§^{Xada — Xada). So (4.8) implies that classical BRST invariance is preserved in the

presence of the open superstring background. Although similar results can be obtained
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using /^-symmetry in the classical Green-Schwarz formalism, this pure spinor approach has

the advantage of allowing the computation of higher-derivative corrections through the

requirement of quantum BRST invariance.

The first step in computing the equations implied by classical BRST invariance is

to determine the appropriate boundary conditions for the open superstring worldsheet

variables in the presence of the background. Recall that for the bosonic string in an

electromagnetic background, the Neumann boundary conditions -§^xm = 0 are modified

to

where Fmn is the electromagnetic field strength. For the bosonic string, these modified

boundary conditions do not affect classical BRST invariance since (4.9) together with

pmn _ _pnm impijes that the left-moving stress-tensor T = \dxmdxrn remains equal to

the right-moving stress-tensor T = \dxrndxm on the boundary where d = J^ + -^ and

d = -jfr — -j^. So by defining the left and right-moving reparameterization ghosts to satisfy

c = c and b = b on the boundary, one is guaranteed that the left and right-moving BRST

currents coincide on the boundary in the presence of the background.

However, for the superstring using the pure spinor formalism, the boundary conditions

on the worldsheet variables in the presence of a background do not automatically imply that

the left and right-moving BRST currents coincide on the boundary. As will be reviewed

here, Xada = Xada on the boundary if and only if the background superfields satisfy the

supersymmetric Born-Infeld equations of motion.

In a background, the open superstring action using the pure spinor description is

S = So + V where

So = ~ fdrdaS.^dxmdxm+padea + padt + wad\a + wad\a\ (4.10)

is the action in a flat background and V is the super-Maxwell integrated vertex operator

defined in (3.23). Before computing the boundary conditions on the worldsheet variables

in the presence of V, it is convenient to add a surface term Sb to the action such that

S = So + Sb is manifestly invariant under the N=l D=10 supersymmetry transformations

89% = ea, 5xm = ^ + 7 m e , 691 = 0, (4.11)

where 9% = -4= (9a ±9a). Note that although So is invariant under (4.11) using the flat

boundary conditions 9°L = dax
m = 0, it is not invariant under (4.11) for more general
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boundary conditions. However, it was shown in [24] that by choosing Sb appropriately,

one can make S = So + Sb invariant under (4.11) for arbitrary boundary conditions.

Furthermore, it is convenient to modify the vertex operator V to

V = 9%Aa(x, 9+) + H™Bm(x, 9+) + d+Wa{x, 0+) + ^N™nFmn(x, 9+) (4.12)

where the +/— index denotes the sum/difference of left and right-moving worldsheet vari-

ables. With this modification of V, the background superfields transform covariantly under

the N=l D=10 supersymmetry transformations of (4.11).

As was shown in [24], cancellation of the surface term equations of motion implies

that the flat boundary conditions

91 = I!™ = d~ = A^ = w~ = 0 (4.13)

are modified in the presence of V to

91 = -Wa(x,0+), (4.14)

jjm = 0«(d™Aa _ DaBm + ^yyP + l^JnjSW^W^dmW5) (4.15)

+ Ii\{dmBn - dnB
m) + d+dmWa + ^Nfd

a - DaB

\a -*- \b ( \ aj-tmn — •*• Trrninf \ /3 +

A_ = - -A + (7 r n n J / 3 t , Wa — -b [TimnjaWp.

Using the boundary conditions of (4.14) and (4.15), the difference between the left

and right-moving BRST currents on the boundary is

2{\ada - Xada) =

x ^ 5 D a W x
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I™ [dmAa - DaB

- dmBn)]

\%d+

- ^\a
+N™ [DaFmn + ^F)J^xW

xdkFmn\, (4.16)

Requiring this to be zero implies the equations:

DaAp + DfsAa - j^pBm + J U ^ A W ^ W "

+ ^-(jF)a'
y(-fF)^-y^xjZWxW'J(drnBn - dnBm) = 0, (4.17)

f) A —DH 4 - ' v aW^ A -
I~'mr>-OL J-/a1-'m ~ /map'' T^ ̂ > ,

,-dmBn) = 0, (4.18)

3^xW
xdnW

1 = 0, (4.19)

I DaFmn + ̂  {-fF)a
/3^xW

xdkFmn\ = 0. (4.20)

As in the super-Maxwell equations of (3.25), the contraction of (4.17) with 7 ^ p g r

implies the equations of motion for Aa, the contraction of (4.17) with j^f defines Bm, the

contraction of (4.18) with ^maf defines W1, the contraction of (4.19) with (jrs)i3a defines

Frs, and the remaining contractions of (4.18) and (4.19) are implied by these equations

through Bianchi identities. Note that because of the non-linear terms in (4.17)-(4.19), W1

and Fmn are now complicated functions of the spinor and vector field strengths constructed

from the gauge fields Aa and Bm.

Finally, equation (4.20) vanishes as a consequence of (4.19) and the pure spinor prop-

erty

^ M At = A+ 7
mA++A_7-A_ = A7

mA+A7™A = 0. (4.21)
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To show that (4.20) vanishes, it is useful to write (4.19) and (4.20) as

and \%\^babpW~i = 0 where

n — n J n w^l/P -v?, lVA f l W f (VWl«r) (A 99"!

One can check that

{Da, Dp} = (7™/3 + :^ (7^)a 7 (7*V7^)£m (4-23)

where

dm = dm + \dmW^{sj - l^xW^nW^WW)^, (4.24)

so (4.21) implies that X°(.X^DaDpW^ = 0.

To prove that equations (4.17)- (4.19) are the abelian supersymmetric Born-Infeld

equations, it was shown in [24] that they are invariant under N=2 D=10 supersymmetry

where the second supersymmetry acts non-linearly on the superfields. Except for factors

of i coming from different conventions for the supersymmetry algebra, equations (4.17)-

(4.19)are easily shown to coincide with the superspace Born-Infeld equations (33)-(35) of

reference [49] which were independently derived using the superembedding method [48].

4-3. Closed superstring and Type II supergravity equations

In a curved background, the classical GS superstring action can be written as

S = ~±h f d2<GMN{Z) + BMN(Z))dZMdZN (4.25)

where M = [m, fi, p] are curved N=2 D=10 superspace indices, ZM = [x™,^ ,^] , fi and

jl denote SO(9,1) spinors of opposite chirality for the Type IIA superstring and of the

same chirality for the Type IIB superstring, and GMN and BMN describe the background

superfields. When the background fields satisfy the Type II supergravity equations of mo-

tion, the action of (4.25) is invariant under ^-symmetry. However, because of quantization

problems, it is not known how to use the action of (4.25) to compute a' corrections to

the supergravity equations. This is an important question since it is not yet understood

how the superspace structure of Type II supergravity equations is modified by these a'

corrections.

As will be reviewed in this subsection, an analogous action can be constructed using

the pure spinor description of the Type II superstring in a curved background. As was
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shown with Paul Howe in [25], classical BRST invariance of this action implies the Type II

supergravity equations and quantum BRST invariance is expected to imply a' corrections

to these equations. Except for the Fradkin-Tseytlin term which couples the dilaton to

worldsheet curvature, the Type II sigma model action in a curved background can be

constructed by adding the massless integrated closed superstring vertex operator of (3.28)

to the fiat action of (4.10), and then covariantizing with respect to N=2 D=10 super-

reparameterization invariance. Alternatively, one can consider the most general action

constructed from the closed superstring worldsheet variables which is classically invariant

under worldsheet conformal transformations.

Using the worldsheet variables of the previous subsection, the Type II sigma model

action is denned as

S = - ^ Id2z[l(GMN(Z) + BMN{Z))dZMBZN + Pa~\Z)daL (4.26)
lira J 2 p

BzM + E%{z)d&dzM J M £ J & M

where M = (m,fi,p) are curved superspace indices, ZM = ( i m , ^ , ^ ) , A = (a,a,a) are

tangent superspace indices, 5A and S^ are the flat actions for the pure spinor variables,

r is the worldsheet curvature, and [GMN = VcdE^EffjBMN, E^,E^^MoP-,^MOP,

Paf3, C^, Cf7 ,5f -, <5] are the background superfields. Note that da and da can be treated

as independent variables in (4.26) since pa and pa do not appear explicitly.

If the Fradkin-Tseytlin term f d2z$(Z)r is omitted, (4.26) is the most general action

with classical worldsheet conformal invariance and zero (left,right)-moving ghost number

which can be constructed from the Type II worldsheet variables. Note that da carries

conformal weight (1,0), d& carries conformal weight (0,1), Aa carries ghost number (1,0)

and conformal weight (0,0), AQ carries ghost number (0,1) and conformal weight (0,0),

wa carries ghost number (—1,0) and conformal weight (1,0), and wa carries ghost number

(0,-1) and conformal weight (0,1). Since wa and wa can only appear in combinations

which commute with the pure spinor constraints, the background superfields must satisfy

= 0, (4.27)

p£ {ibcde)p^ = o,
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and the different components of the spin connections will be defined as

VMJ = Q$5p
a + \w&(icd)J, ClMJ = Clflsi + \&t{lcd)^. (4.28)

Although the background superfields appearing in (4.26) look unconventional, they

all have physical interpretations. The superfields EMA, BMN and $ are the super-

vielbein, two-form potential and dilaton superfields, PaP is the superfield whose low-

est components are the Type II Ramond-Ramond field strengths, and the superfields

Cf7 = C^g + |C^ab(7ab)g and Cf7 = frS? + ±C~<ah(labf& are related to the N=2

D=10 dilatino and gravitino field strengths. Unlike the GS sigma model of (4.25) where

the spinor supervierbein is absent, the action of (4.26) contains Efy and E^. This means

that the action is invariant under two sets of local Lorentz and scale transformations which

act independently on the unhatted and hatted spinor indices. One therefore has two inde-

pendent sets of spin connections and scale connections, (flj^•, fij$) and (Cl^•, &$), which

appear explicitly in the Type II sigma model action. Under the two types of local Lorentz

and scale transformations,

Sda = - £ % , 6d& =-±id0, (4.29)

where Eg = E(s)5f + iS6c(76c)Q^, s f = S^)^f + i E 6 c ( 7 6 c ) / , E6c and S6c parameterize

independent local Lorentz transformations on the unhatted and hatted spinor indices, £(s)

and £(s) parameterize independent local scale transformations on the unhatted and hatted

spinor indices, and the background superfields [Paa, C^, C^7, S^] transform according

to their spinor indices.

Finally, the background superfields S^- appearing in (4.26) are related to curvatures

constructed from the spin and scale connections. Note that a similar relation occurs in the

Type II RNS sigma model action which contains the terms

1 / " _ ~ _ _

where ipa = e<^n(x)i\)m, /ipa — e^(x)/0m, and e^(x) is the target-space vielbein.

It is important to note that the Fradkin-Tseytlin term f d2z$(Z)r is absent from the

GS action of (4.25) since it breaks K-symmetry. However, as was argued in [25], this term
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is necessary in the pure spinor description in order to preserve quantum BRST invariance

and conformal invariance. The presence of this term can also be justified by the coupling

constant dependence e(2ff~2^ of genus g scattering amplitudes.

As was shown in [25], classical BRST invariance of (4.26) implies that the background

superfields satisfy the Type II supergravity equations. For the action of (4.26) to be BRST

invariant, it is necessary that the BRST currents are nilpotent and holomorphic, i.e. that

{Q, Q} = {Q, Q} = {Q, Q} = 0 and that B(Xada) = d(X&d&) = 0.

To analyze the conditions implied by nilpotency, it is convenient to use the canonical

momenta PM = dL/d(doZM) to write

da = E™[PM + \BMN{dZN - BZN) - nMpi\Pwy - ClM^X^], (4.31)

d& = E¥[PM + ^BMN(dzN - BzN) -

Using the canonical commutation relations

[PM,ZN} = -i6%[, [wa,\f
}] = -i6P, [w&,\

one finds that

{Q, Q} = j \a\P[Tap
CDc + \{dZN - BZN)Haf3N - Raf3

{Q, Q} = f \*\*[T&$
cDc + \{dZN - BZN)H0N - R^

{Q, Q} = j X^[Ta$
cDc + \{dZN - BZN)Ha$N - Ra$

where Dc = E^\PM — ^Ma^XaWf3 — ClM&^XaWA), TAB01 and RAB/3^ are defined using the

spin connection, and TAB"
 a nd RAB(P

 a r e defined using the ^j^j^ spin connection.

So nilpotency of Q and Q implies that

XaX/3Taf3
c = XaX(3Haf3B = XaXl3Ra^ = XaX>5X1Rap1

5 = 0, (4.32)

WT&fiC = WH&fiB = \&tfR&ih* = \a\WR&h* = 0,

XaXt3Tap
C = XaX(3HapB = XaX/3Ra*/f3

5 = XaXl3Ri&p5 = 0,

for any pure spinors Aa and Xa. One can easily check that the nilpotency constraints on

RABCD in (4.32) are implied through Bianchi identities by the nilpotency constraints on
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TABC• Since Xa and Xa are independent pure spinors, the remaining constraints imply

that

{lmnPqrYPTap
C = (lmnPqr)^T&0

C = Ta0
C = 0, (4.33)

\1mnpqr) -^a(3C — \1mnpqr) -^aPC = a$C ~ "

for any self-dual five-form direction mnpqr.

As was shown in [25], the constraints of (4.33) can be interpreted as Type II pure

spinor integrability conditions and imply all the essential Type II supergravity constraints.

Furthermore, it was shown in [25] that the remaining conventional Type II supergravity

constraints are implied by the holomorphicity conditions that B(Xada) = d(Xada) = 0.

4-4- Superstring in AdS$ x S5 background and Penrose limit

In this subsection, a quantizable action will be constructed for the superstring in an

AdS§ x S5 background with Ramond-Ramond flux [3] [50] and its Penrose limit [51]. Since

the action is quantizable, one can in principle compute vertex operators and scattering

amplitudes in this background which would be very useful for testing the Maldacena con-

jecture. However, because of the complicated form of the action, only the simplest vertex

operators [52] [50] and scattering amplitudes [53] have so far been computed. Nevertheless,

it has been proven that the action in an AdSs x S5 background is conformally invariant up

to one-loop order [54] [55], and that the action for the Penrose limit plane wave background

is exactly conformally invariant [51].

The action in these backgrounds can be obtained by either plugging in the appropriate

background fields into the Type IIB sigma model action of (4.26) or by requiring that the

sigma model has the desired target-space isometries and is BRST invariant. Except for the

contribution of the pure spinor ghosts, the AdSs x S5 action is a direct generalization of the

AdSs x S3 and AdS2 x S2 actions which were constructed with the collaboration of Cumrun

Vafa and Edward Witten in [56], and with the collaboration of Michael Bershadsky, Tamas

Hauer, Slava Zhukov and Barton Zwiebach in [54].

In either the AdS$ x S5 background with R-R flux or its corresponding plane wave

limit, the worldsheet action using the pure spinor description is

S = SGS+ I d2z{daT + d&L& - ^dJ0F
aP) + Sghost (4.34)
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where FaP = i^o-Fimi'"m5(7mi...m5) is the constant five-form self-dual Ramond-Ramond

flux. For the AdS*, x S5 background, F a / 3 is an invertible 16 x 16 matrix, whereas for its

Penrose limit, Fa@ is not invertible and has rank 8.

The first term SGS in (4.34) is the standard covariant GS action

GS
= Jd2z[±VmnL

mLn + J' dyeIJK(^pLTLJL^ + lm&$LTL&jL^K)} (4.35)

where LM and LM are defined using the Metsaev-Tseytlin currents [57] [58]

x = PmLm + QaL
a + Q&L& + \ JmnL

mn, (4.36)

-r^ -z^rn _ —a „ —6t 1 T —mn

= PmL +QaL +Q&L + -JmnL ,

G(xm, Ba,e&) = exp(xmPm+6aQa+9&Q&) takes values in a coset supergroup, [xm, 6a, 6&)

are N = 2 D = \0 superspace variables with m = 0 to 9 and [a, a] = 1 to 16, the generators

[Pm, Qon Q&i Jmn] form a super-Lie algebra with the commutation relations

^ 2'Y^Pm, {Q&,Q$} = 21?$Pm, (4.37)

? [Q&, Pm] = -J^F^Q,, {Qa, Q^} = ^ m n ^ ^

Jmn generate the usual Lorentz algebra, Rmnvi is the constant spacetime curvature tensor

which is related to FQ/9 by the identity

Tymnpq, \j3 _ m p-y6 n Tp/3k _ n pfS mpj3k /A OO\
l x \ ipq/a — laT1 '5k lacy1- ISH ' y±.ooj

and /dyeIJK(^mal3LfL^L l3
K + jm&^LfL^L^K) is the Wess-Zumino term which is con-

structed such that SGS is invariant under /c-symmetry.

Under G —> flGH for global Q, and local H, the currents G~ldG are invariant

up to a tangent-space Lorentz rotation using the standard coset construction where

[Pm,Qa,Q&,Jmn] are the generators in £1 and Jmn are the generators in H. Since the

action is constructed from Lorentz-invariant combinations of currents, it is therefore in-

variant under the global target-space isometries generated by [Pm,Qa,Q&,Jmn]- Note

that because the R-R field-strength is self-dual, only 20 of the 45 Lorentz generators Jmn

appear in (4.37). So only 20 of the Lmn currents are nonzero in (4.36). For the AdS$ x S5

background, these are the 50(4,1) x 50(5) currents Lah and La'h> for a, b = 0 to 4 and
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= J d2z[CSXst + \Nmjrn + \NmnLmn + \NmnNpqR
mn^} (4.39)

a', b' = 5 to 9. And for the plane wave background, these are the currents Uk, U k

and L+-7 for j.k = 1 to 4 and j ' , fc' = 5 to 8.

The terms daL and daX" in (4.34) break kappa symmetry but allow quantization

since they imply non-vanishing propagators for 9a and 9a. And the term —^dadgFaf3

comes from the R-R vertex operator and implies that certain components of da and da

are auxiliary fields. Finally, Sghost describes the action for the worldsheet ghosts which is

non-trivial since the pure spinors transform under Lorentz transformations and therefore

couple through their Lorentz currents to the spacetime connection and curvature. This

ghost action is

Sghost

where Cf
gh

a*st is the free Lagrangian in a flat background for the left and right-moving

worldsheet ghosts (Xa,wa) and (Xa,Wa), Nmn = ^X'jmn'w and Nmn = ^Xjmnw are their

left and right-moving Lorentz currents, and RmnPi is the target-space curvature tensor

defined in (4.38). Note that Sghost is invariant under local tangent-space Lorentz rotations,

which is necessary for the action to be well-defined on the coset superspace described by

G(x,6,6).

To check that the action is classically BRST invariant, i.e. that B(\ada) = d(\ d&) =

0, it is useful to first compute the equations of motion for da and d&- Suppose one varies

ZM = [xmjQaJ&] s u c h t h a t E^5ZM = pa, E%18ZM = p&, and E$5ZM = 0 where

La = E^dZM, L& = E%dZM, Lm = E^dZM, and [La,L&,Lm] are defined in (4.36).

Then the covariant GS action SGS transforms as

SSGS = 2paLm
lmapL!3 + 2p&lT7m&$L^ (4.40)

The transformation of (4.40) is related to kappa symmetry since when pa = KpLm^%P and

p a = K&Lm'j^f, 5SGS is proportional to the Virasoro constraints r\mnL
mLn and r\mnL L .

Furthermore, the commutation relations of (4.37) imply that

6La = dpa + \{imn)%LmnPP + Fa^Lmr, (4.41)

5L& = dp& + i ( 7

5Lmn = (7[mF 7n] )^ /
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where (7
[

So by varying pa and p a , one obtains the equations of motion

dda = 27^LmL /3 + \ $ ^ ^

(4.42)

dd& = 2>yZ$LmLP + \d0(lmn)iL
mn + dpF^&Lm - ±tfmF'ynl)1&(NmnL

r + NmnL"<).

Plugging into (4.42) the equations of motion I? = \Fa<3dp and La = —^F^dp which

come from varying da and d&, one finds

Vda = ^(7[mFr]U(NmnV - ±NmnF
s^ds), (4.43)

V4 = -id^F^&^N^F^ds + NmnL^),

where the spin connections in the covariantized derivatives V and V are Lmn and L

Furthermore, the equations of motion of AQ and AQ coming from (4.39) are

± , (4.44)

So (4.43) and (4.44), together with the identity of (4.38), imply that

d(Xada) = ^A Q ( 7
[ m F 7 " ] )^ iV m n r , (4.45)

Since Nmn = ^(A7mnw) and AaA/3 is proportional to (XjpqrstX)(jPqrst)al3, the right-hand

side of (4.45) is proportional to 7mn7pgrst7'm-^?
7

n'- But since ^mlpqrstl™ = 0, one finds

that

^ = 2lpqrstl
nFln = 2lpqrstl

n
luvwxylnF

uvwxy = 0. (4.46)

So d(Xada) = d(\&d&) = 0 as desired.
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