

SMR. 1649 - 6

SPRING SCHOOL ON SUPERSTRING THEORY AND RELATED TOPICS

14 - 22 March 2005

Classifying Supergravity Solutions and Applications

PART II

J.P. GAUNTLETT
Department of Physics
Theoretical Physics Group
Imperial College London
South Kensington Campus
London SW7 2AZ
U.K.

Please note: These are preliminary notes intended for internal distribution only.

BLACK RINGS

Jerome Gauntlett and Jan Gutowski

Introduction

Black hole uniqueness theorems in D=4: [Israel, Carter, Hawking, Robinson...]

Equilibrium black holes are specified by conserved charges M and J. Static \rightarrow Schwarzschild. Stationary \rightarrow Kerr. Black holes have no hair.

Violated in D = 5: vacuum gravity has rotating black holes with topology:

- $-~S^3$ [Myers, Perry]
- $S^1 imes S^2$ "Black Rings" [Emparan, Reall] with the same M and $J_1 = J_2$.

Recent discovery of charged supersymmetric black rings in D=5 Elvang, Emparan, Mateos, Reall

Supersymmetry \Rightarrow stability and can hope to understand quantum properties from string theory.

Solutions found using the classification of supersymmetric solutions of D=5 supergravity

The classification provides powerful tools to find solutions and also can be used to obtain partial uniqueness theorems.

Uniqueness assumed in state counting calculations.

Plan

- 1 Classification of minimal supergravity. Black hole and black ring solutions.
- 2 Concentric black rings.
- 3 Multi-charged rings: have hair
- 4 Conclusions

Black Rings in Minimal Supergravity

Recall classification of D = 5 minimal SUGRA solutions

Timelike case:

$$ds^{2} = -f^{2}(dt + \omega)^{2} + f^{-1}ds_{HK}^{2}$$
$$F = \frac{\sqrt{3}}{2}d[f(dt + \omega)] - \frac{1}{\sqrt{3}}G^{+}$$

where ds^2_{HK} is an arbitrary hyper-Kähler metric and

$$G^{+} \equiv \frac{1}{2}f(d\omega + *d\omega)$$
$$dG^{+} = 0$$
$$\Delta f^{-1} = \frac{4}{9}(G^{+})^{2}$$

Bena and Warner discussed a way to solve these for flat base space.

Special case: ds^2_{HK} is Gibbons-Hawking

Tri-holomorphic Killing-vector K:

$$\mathcal{L}_K J^{(a)} = 0$$

Locally, $K = \partial_{\psi}$:

$$ds_{HK}^2 = H[dx^i dx^i] + H^{-1}(d\psi + \chi_i dx^i)^2$$

where

$$\nabla \times \chi = \nabla H$$

Clearly H is harmonic on \mathbb{R}^3 .

If $\mathcal{L}_K g = \mathcal{L}_K F = 0$, then the most general solution is specified by three further harmonic functions, K, L and M on \mathbb{R}^3 .

In particular the general solution has

$$f^{-1} = H^{-1}K^{2} + L$$

$$\omega = (H^{-2}K^{3} + \frac{3}{2}H^{-1}KL + M)(d\psi + \cos\theta d\phi) + \hat{\omega}_{i}dx^{i}$$

with ω obtained by solving

$$\nabla \times \hat{\omega} = H\nabla M - M\nabla H + \frac{3}{2}(K\nabla L - L\nabla K)$$

Nice.

Black Holes and Black Rings

Gibbons-Hawking base is \mathbb{R}^4 : H = 1/r

$$ds^{2}(\mathbb{R}^{4}) = \frac{1}{r}[dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})] + r(d\psi + \cos\theta d\phi)^{2}$$

Set $\rho = 2\sqrt{r}$ to get usual coordinates for \mathbb{R}^4 with θ, ϕ, ψ Euler angles on S^3 .

Later:

$$r_1 = \rho \cos \frac{\theta}{2}, \qquad \phi_1 = \frac{1}{2}(\psi + \phi)$$

$$r_2 = \rho \sin \frac{\theta}{2}, \qquad \phi_2 = \frac{1}{2}(\psi - \phi)$$

then

$$ds^{2}(\mathbb{R}^{4}) = dr_{1}^{2} + r_{1}^{2}d\phi_{1}^{2} + dr_{2}^{2} + r_{2}^{2}d\phi_{2}^{2}$$

Black Hole [Breckenridge, Myers, Peet, Vafa]

Lies in the Gibbons-Hawking class with

$$H = \frac{1}{r}$$

$$K = -\frac{q}{2}\frac{1}{r}$$

$$L = 1 + \frac{Q - q^2}{4}\frac{1}{r}$$

$$M = \frac{3q}{4}$$

- * Asymptotically flat
- * Horizon topology S^3 (r = 0)
- \star 2 parameter solution: Q,q
- * 2 conserved charges:

Q -electric charge. (Mass $\sim Q$ by susy)

$$J_1 = J_2 \sim q(3Q - q^2) \equiv j.$$

- * Entropy $\sim (Q^3 j^2)^{1/2}$
- \star No CTC's: $j^2 \leq Q^3$

Single Black Ring [Elvang, Emparan, Mateos, Reall]

Lies in the Gibbons-Hawking class with

$$H = \frac{1}{r}$$

$$K = -\frac{q}{2}h_1$$

$$L = 1 + \frac{Q - q^2}{4}h_1$$

$$M = \frac{3q}{4} - \frac{3qR^2}{16}h_1$$

where

$$h_1 = \frac{1}{|\mathbf{x} - \mathbf{x}_1|}$$

and

$$\mathbf{x}_1 \equiv (0, 0, -R^2/4)$$

- * Asymptotically flat
- * Horizon topology $S^1 \times S^2(\mathbf{x} = \mathbf{x}_1)$
- \star Three parameter solution: Q,q,R

* Three independent conserved charges:

Q -electric charge. (Mass $\sim Q$)

$$J_1 = \frac{\pi}{8G}q(3Q - q^2),$$
 $J_2 = J_1 + \frac{3\pi}{4G}qR^2$

- * Single ring in the minimal theory does not violate uniqueness $(J_1 \neq J_2)$.
- \star Radius of S^2 is q/2. Radius of S^1 is

$$L = \sqrt{3\left[\frac{(Q - q^2)^2}{4q^2} - R^2\right]}$$

- \star Entropy $\sim q^2 L$
- \star No CTCs $\Leftrightarrow \frac{(Q-q^2)^2}{4q^2} > R^2$
- \star q is a dipole charge (which in general are not conserved).

 \star Setting R=0 one obtains the black hole solution. However, it is not a smooth limit.

Concentric Black Rings [Gauntlett, Gutowski]

The natural generalization is to stay in the Gibbons-Hawking class with

$$H = \frac{1}{r}$$

$$K = -\frac{1}{2} \sum_{i=1}^{N} q_i h_i$$

$$L = 1 + \frac{1}{4} \sum_{i=1}^{N} (Q_i - q_i^2) h_i$$

$$M = \frac{3}{4} \sum_{i=1}^{N} q_i - \frac{3}{4} \sum_{i=1}^{N} q_i |\mathbf{x}_i| h_i$$

with $h_i = 1/|\mathbf{x} - \mathbf{x}_i|$

- * Asymptotically flat
- \star If $|\mathbf{x}_i| \neq 0$ then we have N Killing horizons with topology $S^1 \times S^2$

Interpretation

The S^1 direction of each horizon lies on an orbit of the Killing-vector field ∂_{ψ} .

In \mathbb{R}^4 (asymptotic infinity) such orbits lie in a two plane and are specified by a point in \mathbb{R}^3 labelled by (r_0, θ_0, ϕ_0) : the two-plane is specified by (θ_0, ϕ_0) and the radius of the S^1 orbit is given by r_0 .

All these S^1 orbits are concentric, with common centre r=0. E.g. $\theta=\pi$ and $r=R^2/4$, corresponding to the single ring solution, defines an S^1 lying in the (r_2,ϕ_2) plane, whereas $\theta=0$ and $r=R^2/4$ defines an S^1 lying in the orthogonal (r_1,ϕ_1) two-plane, both centred at the origin.

 \star Set one of the $\mathbf{x}_i = \mathbf{0}$ then we get a single black hole sitting at the centre of the rings.

 \star 3N parameters

 \star 3 conserved charges: electric charge \sim Mass, $J_1, J_2.$

$$Mass = \frac{3\pi}{4G} \left[\sum_{i=1}^{N} (Q_i - q_i^2) + (\sum_{i=1}^{N} q_i)^2 \right].$$

Usual non-uniqueness.

 \star Entropy $\sim \sum_{i=1}^{N} q_i^2 L_i$ where

$$L_i = \sqrt{3\left[\frac{(Q_i - q_i^2)^2}{4q_i^2} - R_i^2\right]}$$

 \star Analysis of CTC's requires ω , which requires an integration.

Poles on the z-Axis

Define

$$\Lambda_i \equiv rac{Q_i - q_i^2}{2q_i}$$

No CTCs $\Rightarrow \Lambda_i = \Lambda$ for all i. Then the ring radii are

$$L_i \equiv \sqrt{3\left[\Lambda^2 - R_i^2\right]} \ .$$

Rings can be placed anywhere on the z-axis provided that $R_i^2 < \Lambda^2$.

As R_i increases, the circumference of the rings get uniformly smaller!

Comparing a black hole with two rings

Black hole with parameters Q, q corresponding to charge Q and $J_1 = J_2 = \frac{q}{2}(3Q - q^2)$.

Cannot match these conserved charges with a single black ring which has $J_1 \neq J_2$.

Can match with e.g. one black ring on the negative z-axis with parameters Q_1, q_1, R_1 and another on the positive z-axis with parameters Q_2, q_2, R_2 .

Can choose the parameters so that

$$S_{BH} > S_{Rings}, \quad S_{BH} = S_{Rings}, \quad S_{BH} < S_{Rings}$$

Black rings can be entropically $\underline{preferred}$ to the black hole!

Challenge for state counting interretation.

Contrast with extreme Reissner-Nordstrom black holes in D=4

e.g. Two Mass=Q R-N black holes have same charges as a single Mass=2Q R-N black hole. However, The entropy of the former scales like Q^2 while the latter scales like $4Q^2$. Thus a single R-N black hole is always preferred entropically.

Multi-Charged Black Rings

D=5 minimal supergravity (g,A) coupled to n-1 vector multiplets (A^i,ϕ^i) .

Use the classification of solutions for these models: timelike and null case. When timelike case has a Gibbons-Hawking base space the solution is specified in terms of 2n + 2 harmonic fucntions H, M, L^I, K^I

Focus on 3 U(1)'s. Can arise from D=11 reduced on T^6 or type IIB reduced on T^5 . If we set all U(1)'s equal \to D=5 minimal theory.

Black Hole [BMPV]

* 4 parameter solution Q^1, Q^2, Q^3 , $J_1 = J_2$.

* Brane interpretation

 Q^1 M2: 0 1 2 Q^2 M2: 0 3 4 Q^3 M2: 0

or

 Q^1 D1: 0 5 Q^2 D5: 0 1 2 3 4 5 Q^3 P: 0 5

Microscopic state counting interpretation of entropy [Vafa, Strominger]; [BMPV]

Three-Charge Black Ring [Gauntlett, Gutowski];

[Bena, Warner]; [Elvang, Emparan, Mateos, Reall]

- * 7 Parameter Solution: Q^1, Q^2, Q^3 , three dipole charges q^1, q^2, q^3 and R.
- * 5 Conserved charges: $Q^1, Q^2, Q^3, J_1 \neq J_2$
- * Non-unique they have hair. But are distinguished from black holes.
- * Challenge for state counting interpretation of entropy.
- * Multi concentric generalisation [Gauntlett, Gutowski]

Black Rings and supertubes

Recall the basic supertube in type IIA [Mateos, Townsend]

D0: 0 F1: 0 1 d2: 0 1 ψ

Carries D0 and F1 charge, and dipole D2-charge.

2 T-dualities and then uplift to D=11

M2: 0 1 2

M2: 0 3 4

m5: 0 1 2 3 4 ψ

The general black ring is a three-charge, three-dipole charge supertube:

 Q^1 M2: 0 1 2 Q^2 M2: 0 3 4 Q^3 M2: 0 5 6 q^1 m5: 0 3 4 5 6 ψ q^2 m5: 0 1 2 5 6 ψ q^3 m5: 0 1 2 3 4

Conclusions and Future Directions

- * Concentric black ring solutions
- * Concentric black rings with multiple charges
- * Interesting uniqueness and entropy properties.
- * Microscopic state counting interpretation of entropy?

The near horizon limit of the type IIB solutions has a decoupling limit (not the same as the near ring horizon limit) that is locally $AdS_3 \times S^3 \times T^4$, so the states should be found in the CFT. [Bena, Kraus]

Also, entropy can be recovered in M-theory by viewing the ring as a loop of (0,4) CFT arising on wrapped m5-branes. [Cyrier, Mateos, Strominger]

* More general ring solutions.

Classification \Rightarrow that black holes have near horizon geometry of (i) BMPV, (ii) $AdS_3 \times S^2$ or (iii) $\mathbb{R}^{1,4}$. Only AF solutions in class (i) are BMPV [Real]; [Gutowski]

Non-circular rings with varying charge density - functions worth of non-uniqueness?[Bena, Warner] Non- Regular [Horowitz, Reall] ? CTCs?

Multi-black ring solutions with different centres?

- \star Supersymmetric black ring solutions in D= 5 ADS supergravity?
- * Supersymmetric exotica in other dimensions?