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BLACK RINGS

Jerome Gauntlett and Jan Gutowski



Introduction

Black hole uniqueness theorems in D = 4:
[Israel, Carter, Hawking, Robinson...]

Equilibrium black holes are specified by con-
served charges M and J. Static — Schwarzschild.
Stationary — Kerr. Black holes have no hair.

Violated in D = 5: vacuum gravity has ro-
tating black holes with topology:

— 53 [Myers, Perry]

— Sl % 82 - “Black Rings’ [Emparan, Reall]
with the same M and J; = Js.

Recent discovery of charged supersymmetric
black rings in D=5 Elvang, Emparan, Mateos, Reall

Supersymmetry = stability and can hope to
understand quantum properties from string
theory.



Solutions found using the classification of su-
persymmetric solutions of D = 5 supergrav-
ity

The classification provides powerful tools to
find solutions and also can be used to obtain

partial uniqgueness theorems.

Unigueness assumed in state counting calcu-
lations.

Plan

1 Classification of minimal supergravity. Black
hole and black ring solutions.

2 Concentric black rings.

3 Multi-charged rings: have hair

4 Conclusions



Black Rings in Minimal Supergravity |

Recall classification of D = 5 minimal SUGRA
solutions

Timelike case:

ds? = —f2(dt+w)? + flds%
_ V3 L o+
F = —;d[f(dt+w)]—ﬁG

where ds% - is an arbitrary hyper-K&hler met-
ric and

Gt = —;—f(dw—}-*dw)
dGT = 2
AfTH = (G

Bena and Warner discussed a way to solve these for flat base

space.



Special case: ds% is Gibbons-Hawking

Tri-holomorphic Killing-vector K:
LrJ® =0
Locally, K = 8¢:
ds? i = H[dz'dz"] + H™ 1 (dy + xidaz®)?
where

Vxx=VH

Clearly H is harmonic on r3.

If Lixg = LgF = 0, then the most general
solution is specified by three further harmonic
functions, K, L and M on RrS3.



In particular the general solution has
£t H 1K’ 4+ L
3
w = (H K3+ -2-H—1KL + M)(dy + cos 0de)

+&;dz
with w obtained by solving

3
Vx®=HVM~MVH+ ~(KVL -~ LVK)

Nice.



Black Holes and Black Rings

Gibbons-Hawking base is R*: H = 1/r

ds2 (&%) = Z[dr? 4 r2(d62 + sin2 8de2)]
Tr
+r(dip 4 cos 0dp)?

Set p = 2./r to get usual coordinates for r*
with 0, ¢, Euler angles on S3.

Later:
= peoss, 1= +9)
e = p 62, 1= 3 Y+ @
) 1
r2 = psing, ¢2=§(¢—¢)
then

ds?(RY) = drf + r3d¢3 + dr3 + r3de3



Lies in the Gibbons-Hawking class with

1
H = -
Tl
K o= 42
27T
Q-q°1
L = 1 —
3+4r
M=
4

* Asymptotically flat

x Horizon topology S3 (r = 0)

* 2 parameter solution: @Q,q

* 2 conserved charges:
Q -electric charge. (Mass~ @Q by susy)
J1=J2~q(3Q - ¢%) = .

* Entropy~ (Q3 — j2)1/2

* No CTC's: j2< @3



Single Black Ring [Elvang, Emparan, Mateos, Reall]

Lies in the Gibbons-Hawking class with

1
H = —
T
q
K = —=h
!
Q—q°
L = 1 h
-+ 42 1
3 3gR
M o= 2 2T,
4 16
where
1
hy = ————
X — X1
and

X1 = (07 07 *R2/4)
* Asymptotically flat

x Horizon topology S x S2(x = x1)

* T hree parameter solution: @,q, R



*x 1 hree independent conserved charges:

Q -electric charge. (Mass~ Q)

J = —q(30 — Jo=J —R2
1= SGQ(Q 72, 2 1+4Gq

* Single ring in the minimal theory does not
violate uniqueness (Jq & Jo).

* Radius of SZ2is ¢/2. Radius of St is

I = \j?)[(Q — 32)2 . RQ]

4q

x Entropy ~ ¢2L
2\2
x No CTCs « {Q=¢)° - p2
442

% g is a dipole charge (which in general are
not conserved).



* Setting R = 0 one obtains the black hole
solution. However, it is not a smooth limit.

Concentric Black RiINgs [Gauntlett, Gutowski]

The natural generalization is to stay in the
Gibbons-Hawking class with

1
H = —
T
1 N
K = _—Zq'ihz
2
=1
1 N 5
L = 1+ZZ(Q¢—% Yhi
i=1

3 N 3 N
M = 7 > g — 2 > qilx;|hi
i=1 i=1

with h; = 1/|X — X’il
* Asymptotically flat

* If |x;| # 0 then we have N Killing horizons
with topology St x §2



Interpretation

The S! direction of each horizon lies on an
orbit of the Killing-vector field @p.

In R* (asymptotic infinity) such orbits lie in
a two plane and are specified by a point in
R3 labelled by (rg,0g,¢0): the two-plane is
specified by (g, ¢g) and the radius of the S?!
orbit is given by rg.

All these S1 orbits are concentric, with com-
mon centre r = 0. E.g. # =7 and r = R?/4,
corresponding to the single ring solution, de-
fines an S1 lying in the (75, ®>) plane, whereas
9 = 0 and r = R?/4 defines an S lying in the
orthogonal (rq,¢1) two-plane, both centred
at the origin.

* Set one of the x; = 0 then we get a single
black hole sitting at the centre of the rings.



* 3N parameters

* 3 conserved charges: electric charge~ Mass,
J1, Jo.

37'(' N ) N 2
Mass = @[Z(Qi—%)"'(z a;)°] .
i=1 i=1
Usual non-unigueness.

* Entropy~ Zz_l q; L where

Li=J3[( 20”2

4%‘

* Analysis of CTC'’s requires w, which re-
quires an integration.



Poles on the z-AXis

Define
Qi —q?
2q;
No CTCs = A; = A for all <. Then the ring
radii are

N;

Il

L= \/3 A% - R?| .
Rings can be placed anywhere on the z-axis
provided that R? < A2,

As R, increases, the circumference of the
rings get uniformly smaller!



Comparing a black hole with two rings

Black hole with parameters @, g correspond-
ing to charge @ and J; = Jo = £(3Q — ¢?).

Cannot match these conserved charges with
a single black ring which has Jqi # Jo.

Can match with e.g. one black ring on the
negative z-axis with parameters 01,91, R1 and
another on the positive z-axis with parame-

ters 2, q2, R>.

Can choose the parameters so that

SBH > SRingsa SBH = SRings> SpH < SRings

Black rings can be entropically preferred to
the black hole!

Challenge for state counting intepretation.



Contrast with extreme Reissner-Nordstrom
black holes in D = 4

e.dg. Two Mass = ( R-N black holes have
same charges as a single Mass = 2Q R-N
black hole. However, The entropy of the for-
mer scales like Q2 while the latter scales like
4Q2 . Thus a single R-N black hole is always
preferred entropically.



Multi-Charged B

lack Rings'

D = 5 minimal supergravity (g, A) coupled to
n — 1 vector multiplets (A%, ¢%).

Use the classification of solutions for these
models: timelike and null case. When time-
like case has a Gibbons-Hawking base space
the solution is specified in terms of 2n + 2
harmonic fucntions H, M, L!, K

Focus on 3 U(1)'s. Can arise from D=11
reduced on T° or type IIB reduced on T°.
If we set all U(1)'s equal — D=5 minimal
theory.



Black Hole [BvPv]

x 4 parameter solution Q, Q2 Q3, J; = Jo.

*x Brane interpretation

QlM2: 01 2

Q2 M2: O 3 4
Q3 M2: O 5 6
or
QlD1: 0 5
Q?2D5: 012 3 45
Q3P: O 5

Microscopic state counting interpretation of
entropy [vafa, Strominger]: [BMPV]



Three-—Charge Black Ring [Gauntlett, Gutowski];

[Bena, Warner]; [Elvang, Emparan, Mateos, Reall]

x 7 Parameter Solution: Q,Q2 Q3, three
dipole charges ¢!, 42,43 and R.

x 5 Conserved charges: Q,Q%, Q3, J1 £« J

* Non-unique - they have hair. But are dis-
tinguished from black holes.

* Challenge for state counting interpretation
of entropy.

* Multi concentric generalisation [Gauntlett, Gutowski]



Black Rings and supertubes

Recall the basic supertube in type IIA [Mmateos,

Townsend]

DO: O
F1: O 1

d2: 0 1 4

Carries DO and F'1 charge, and dipole D2-
charge.

2 T-dualities and then uplift to D =11

M2: 0 1 2
M2: 0 3 4
m5: 012 3 4 4

The general black ring is a three-charge, three-
dipole charge supertube:

QlM2: 01 2

Q2 M2: 0 3 4

Q3 M2: 0 5 6
gt m5: 0 345 6
¢?m5: 01 2 5 6 1
¢>m5: 01 2 3 4 W



| Conclusions and Future Directions]

* Concentric black ring solutions
* Concentric black rings with multiple charges

* Interesting uniqueness and entropy proper-
ties.

* Microscopic state counting interpretation
of entropy?

The near horizon limit of the type IIB solu-
tions has a decoupling limit (not the same
as the near ring horizon limit) that is locally
AdS3x 83 xT*, so the states should be found
in the CFT. [Bena, Kraus]

Also, entropy can be recovered in M-theory
by viewing the ring as a loop of (0,4) CFT

arising on wrapped mb-branes. [Cyrier, Mateos,
Strominger]



* More general ring solutions.

Classification = that black holes have near
horizon geometry of (i) BMPV, (ii) AdS3xS2
or (iii) k1. Only AF solutions in class (i) are
BMPV [Real]; [Gutowski]

Non-circular rings with varying charge density
- functions worth of non-unigueness?[gena, Warner]
Non- Regular [Horowitz, Real] 7 CT CS?

Multi-black ring solutions with different cen-
tres?

* Supersymmetric black ring solutions in D =
5 ADS supergravity?

* Supersymmetric exotica in other dimen-
sions?



