

SMR. 1649 - 7

SPRING SCHOOL ON SUPERSTRING THEORY AND RELATED TOPICS

14 - 22 March 2005

Classifying Supergravity Solutions and Applications

PART III

J.P. GAUNTLETT
Department of Physics
Theoretical Physics Group
Imperial College London
South Kensington Campus
London SW7 2AZ
U.K.

Please note: These are preliminary notes intended for internal distribution only.

AdS_5 Solutions in M-theory and New Sasaki-Einstein Metrics

Jerome Gauntlett, Dario Martelli, James Sparks and Dan Waldram

Introduction

Supersymmetric solutions to D=10,11 SUGRA with AdS_5 factors should be dual to N=1 susy CFTs in D=4.

Maldacena c. 1997 > 3.4k citations.

BUT....until recently

- * Very few explicit examples were known
- * Lacked any general classification of the underlying geometry - essential for understanding the general class of susy CFTs with string or M-theory duals.

Type IIB SUGRA:

Basic example: consider flat D3-branes with worldvolume $\mathbb{R}^{1,3}$ transverse to \mathbb{R}^6 i.e. the D3-branes are embedded in $\mathbb{R}^{1,3} \times \mathbb{R}^6$.

Find that N = 4 SYM is dual to type IIB on

$$AdS_5 \times S^5$$

$$F_5 \sim Vol(AdS_5) + Vol(S^5)$$

Metric on $AdS_5 \times S^5$:

$$ds^{2} = \rho^{2} ds^{2}(\mathbb{R}^{1,3}) + \frac{1}{\rho^{2}} [d\rho^{2} + \rho^{2} ds^{2}(S^{5})]$$

reveals \mathbb{R}^6 transverse to D3-branes.

Consider a Calabi-Yau cone with metric

$$ds^2 = d\rho^2 + \rho^2 ds^2(X_5)$$

where X_5 is known as a "Sasaki-Einstein" manifold.

Consider flat D3-branes at the apex of the CY cone. Leads to new AdS/CFT examples: Type IIB on

$$AdS_5 \times X_5$$
$$F_5 \sim Vol(AdS_5) + Vol(X_5)$$

is dual to the N=1 SCFT living on the D3-branes at the apex of the cone.

Until recently: only two *explicit* examples of X_5 were known S^5 (flat CY) and $T^{1,1}$ (conifold).

Examples with more fluxes?

M-Theory:

The most general type of solution:

$$AdS_5 \times_w M_6$$
$$G_4 \neq 0$$

until recently, very few examples known. e.g. Maldacena and Nunez found N=1 and N=2 examples which are dual to M5-branes wrapped on holomorphic curves in CY_3 and K3, respectively.

PLAN

- 1. Classification of all such solutions in D=11
- 2. Explicit examples in D=11
- 3. New Sasaki-Einstein metrics \rightarrow type IIB examples.

$AdS_5 \times_w M_6$ solutions in D = 11

$$ds^{2} = e^{2\lambda(x)}[ds^{2}(AdS_{5}) + ds^{2}(M_{6})(x)]$$

$$G_{4} = G_{4}(x)$$

i.e. G is a 4-form on M_6 . Ansatz preserves symmetries of AdS_5 .

D=11 susy solutions equivalent to:

$$\left[\nabla_m + \frac{1}{2}im\gamma_m\gamma_7 - \frac{1}{4}e^{-3\lambda}(\gamma \cdot G)_m\right]\epsilon = 0$$
$$\left[\gamma^m\nabla_m\lambda + \frac{1}{6}e^{-3\lambda}(\gamma \cdot G) - im\gamma_7\right]\epsilon = 0.$$

plus

$$dG = 0$$
$$d*G + (1/2)G \wedge G = 0$$

Analyse using the G-structure tools. Find that M_6 has an SU(2) structure. Specified by two vectors K^1, K^2 and three two-forms J^i orthogonal to K^i .

ANALYZE to find the most general geometries. Includes two interesting properties:

- 1. K^2 is a Killing vector which corresponds to the $U(1)_R$ symmetry of N=1 SCFT.
- 2. Most general configurations involve a one parameter family of D=4 Kähler metrics on a base space B_4 (satisfying various constraints). The K^2 vector is non-trivially fibred over it.

Explicit Solutions

Assume that M_6 is complex. Then can explicitly construct all compact regular solutions by solving ODEs.

* Topology: $S^2 \rightarrow M_6 \rightarrow B_4$

- * Metric for M_6 : completely explicit given metric on B_4 which can be in one of two classes;
- (a) B_4 is Kähler-Einstein with positive scalar curvature (Kähler and $R_{ij} = \lambda g_{ij}$ with $\lambda > 0$). These have been classified by Tian and Yau: explicit: $S^2 \times S^2$, CP^2 implicit: del Pezzo P_k $k=3,\dots 8$ (CP^2 blown up at k points).
- (b) B_4 is a product. All explicit: $S^2 \times S^2$, $S^2 \times H^2$, $S^2 \times T^2$

A special case of the S^2 bundle over $S^2 \times H^2$ case gives the N=1 Maldacena Nunez solution.

Nice.

What is dual conformal field theory? Something to do with M5-branes.

Consider D=11 solution with $S^2 \times T^2$ base:

Dimensional reduction on one of the S^1 s of $T^2 \to AdS_5 \times_w M_5$ solution of type IIA with various fluxes $\neq 0$.

T-dualise on the other S^1 of the $T^2 \to \mathsf{type}$ IIB solution

$$AdS_5 \times X_5$$

$$F_5 \sim Vol(AdS_5) + Vol(X_5)$$

 $\Rightarrow X_5$ must be Sasaki-Einstein, at least locally. In fact gives an infinite number of new explicit Sasaki-Einstein metrics on $S^2 \times S^3$!

Sasaki-Einstein

A SE X_5 is equivalent to the cone

$$ds^2 = dr^2 + r^2 ds^2(X_5)$$

being CY_3 .

There is a canonical vector which is Killing:

$$(\partial_{\psi'})^j = r(\partial_r)^i J_i^j$$

This corresponds to the "U(1)" R-symmetry of the D=4 SCFT.

Locally, metric can be written

$$ds^{2}(X_{5}) = (d\psi' + \sigma) + ds^{2}(B_{4})$$

where B_4 is Kähler-Einstein and $d\sigma = 2J_4$

Three possibilities:

1. Regular SE:

Have a U(1) R-symmetry and it is free.

 B_4 is globally defined and hence can classify using Tian and Yau:

Explicit:

$$B_4 = CP^2 \to S^5$$

$$B_4 = S^2 \times S^2 \to T^{1,1}$$

Implicit: $B_4 = P_k$ del Pezzo k = 3, ... 8.

2. Quasi regular SE:

U(1) R-symmetry with finite isotropy groups. B_4 is an orbifold.

3. Irregular SE:

Have a non-compact \mathbb{R} R-symmetry. B_4 is not a manifold.

The metrics obtained from D=11 provide the first explicit example in the quasi-regular class, and the very first examples in the irregular class!

The SE metrics $Y^{p,q}$:

$$ds^{2} = \frac{1 - cy}{6} (d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$+ \frac{1}{w(y)q(y)} dy^{2} + \frac{q(y)}{9} [d\psi - \cos\theta d\phi]^{2}$$

$$+ w(y) [d\alpha + f(y)(d\psi - \cos\theta d\phi)]^{2}$$

with

$$w(y) = \frac{2(b-y^2)}{1-cy}$$

$$q(y) = \frac{b-3y^2+2cy^3}{a-y^2}$$

$$f(y) = \frac{bc-2y+y^2c}{6(a-y^2)}$$

For regularity we demand

$$b = \frac{1}{2} - \frac{p^2 - 3q^2}{4p^3} \sqrt{4p^2 - 3q^2}$$

with 0 < q < p.

- \star Family includes $T^{1,1}$ and S^5 . $(Y^{p,0} \equiv T^{1,1}/Z_p \text{ and } Y^{p,p} \equiv S^5/Z_2 \times Z_p)$
- \star SE Killing vector is $\partial_{\psi'} = \partial_{\psi} (1/6)\partial_{\alpha}$
- \star Two classes of b:
- (i) $4p^2 3q^2 = n^2$ then SE vector $\partial_{\psi'}$ has U(1) orbits \Rightarrow Quasi-Regular SE
- (ii) $4p^2-3q^2\neq n^2$ then SE vector $\partial_{\psi'}$ has $\mathbb R$ orbits \Rightarrow Irregular SE
- * Isometry group $\sim SU(2) \times U(1) \times U(1)$
- * Topology: $S^2 \times S^3$ just as for $T^{1,1}$

Dual to new SCFTs

* Symmetries: $SU(2) \times U(1) \times U(1) \times U(1)_B$

* Central charges:

$$\frac{a(Y^{p,q})}{a(S^5)} = Vol(S^5)/Vol(Y^{p,q})$$

$$= \frac{3p^2[3q^2 - 2p^2 + p(4p^2 - 3q^2)^{1/2}]}{q^2[2p + (4p^2 - 3q^2)^{1/2}]}$$

Quasi-regular case: U(1) R-symmetry and rational a.

Irregular case: \mathbb{R} R-symmetry and quadratic irrational a.

* Baryons arise from D3-branes wrapped on supersymmetric 3-cycles [Martelli, Sparks; Herzog, Ejaz, Klebanov]. R-charges of baryons:

$$R \propto \frac{Vol(\Sigma_i)}{Vol(Y^{p,q})} = \dots$$

Identifying the dual field theory

There is a toric description of the Calabi-Yau cone since the $Y^{p,q}$ have a a $U(1)^3$ action [Martelli, Sparks]. The Calabi-Yau cone is an ALE space fibred over S^2 .

The toric description gives information about how to resolve singularity of cone. Also leads to an identification of the dual quantum field theory. Find a quiver gauge theory, with superpotential terms [Benvenuti, Franco, Hanany, Martelli, Sparks] that generalises that for the conifold.

Can use the procedure of a-maximisation [Intriligator, Wecht] to find a as well as the the R-charges of the baryon.

Idea: the exact R-symmetry is the linear combination of all possible U(1)s which maximises

$$a_{trial}(R) = \frac{3}{32}(3TrR^3 - TrR)$$

Find exact agreement with calculations found from the geometry!

Now have an infinite number of AdS/CFT examples where both the geometry and the field theory are known.

Nice.

Conclusions

- * The conifold (the cone over $T^{1,1}$) can be resolved (blow up an S^2) and deformed (blow up an S^3) while preserving the CY condition and geometries are known exactly. What are the analogous geometries smoothing the singularity of the cones over $Y^{p,q}$? Co-homogeneity two.
- \star $\beta\text{-deformations:}$ exactly marginal deformations of the field theories based on $Y^{p,q}$ [Benvenuti, Hanany] and exact AdS_5 geometries found [Lunin, Maldacena] !
- \star Wrap D5-branes on S^2 's: breaks conformal invariance and leads to duality cascades. Singular solutions that describe the UV have been found [Herzog, Ejaz, Klebanov]. Can the singularity be smoothed, generalising the Klebanov/Strassler solution?

* Can generalise to give new SE manifolds in all odd dimensions.

Physics: Gives new $AdS_4 \times X_7(SE)$ susy solutions of M-theory. X_7 are co-homogeneity one and generalise the known homogeneous examples $Q^{1,1,1}$ and $M^{3,2}$. Recall:

$$S^1 \rightarrow Q^{1,1,1} \rightarrow S^2 \times S^2 \times S^2$$

 $S^1 \rightarrow M^{3,2} \rightarrow S^2 \times CP^2$

What is the field theory? Also what is the field theory for $AdS_5 \times_w M_6$ solutions.

 $AdS_5 imes_w M_6$ in D=11. Explicit solutions were obtained when M_6 is assumed to be complex. There may well be more. Interesting that Maldacena Nunez solution with N=2 susy is in the non-complex class.

- \star Classify all type IIB AdS_5 solutions in progress.
- \star Could also classify AdS_n for other n.
- * Geometries describing renormalisation group flows between different field theories?