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Black Holes and Elementary String States
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Motivation:

Quantization of a relativistic string gives an
infinite tower of massive states.

The degeneracy of these states grow rapidly
with mass.

Thus it seems natural to define a 'statisti-
cal entropy' associated with elementary string
states:

d(M, Q) = degeneracy of elementary string states
with a given mass M and charges Q = (Qi , Q2,...)



Since string theory includes gravity, one might
expect that a string of very large mass behaves
like a black hole.

One can assign an 'entropy' to these black
holes via the Bekenstein-Hawking formula:

A: area of the event horizon

GJV: Newton's constant

Question: Do these two different ways calcu-
lating entropy of an elementary string agree?

't Hooft, Susskind

IS ( )



In order to make a meaningful comparison we
must ensure that the parameters M and Q ap-
pearing in the arguments of Sstat and SBH refer
to the physical mass and charge.

Usually SBH i s computed as a function of the
physical mass (ADM mass).

But Sstat is calculated as a function of the tree
level mass of the elementary string state.

The physical mass is related to the tree level
mass via a large but finite renormalization ef-
fect. Susskind

Due to this renormalization effect it is difficult
to figure out how Sstat depends on the physical
mass of the black hole.

This makes the comparison of Sstat and
difficult.



In supersymmetric theories, this problem in prin-

ciple can be avoided by considering BPS states.

For these states the mass is determined in

terms of the charges carried by the state.

Furthermore BPS states remain BPS as we

vary the coupling constant.

As a result tree level result for Sstat> calculated
as a function of the quantized charges, gives
Sstat a s a function of the charges at arbitrary
value of the coupling constant.



Consider heterotic string theory compactified
on T5 x S1.

Use ol = 16 unit

R\ radius of S1 in string metric

g\ string coupling constant

coordinate radius of 5 1 = yfa' = 4



The spectrum of tree level heterotic string the-
ory is generated by 24 sets of left-moving bosonic
oscillators a{_n, 8 sets of right moving bosonic
oscillators al_n and 8 sets of right moving fermionic
oscillators ipl_n

1 < I < 24, 1 < i < 8, 1 < n < oo

A generic state:

a11 aIs of1 otr

Q: labels the momentum, winding number and
various gauge charges carried by the state.

Define

NL =
S

J2 nk>
k=l

NR =
r

Y^
k=l

mk +
t

k=l



Consider an elementary string state wound w
times along S1 and carrying n units of momen-
tum along S1.

Suppose the string has level NL left-moving
oscillator excitations and level NR right-moving
oscillator excitations.

m: Mass of the string measured in the canon
ical Einstein metric

2 _

= 9'

«
16

n wR\

1
2.

wR^2

4(JVL-1)

This formula is valid for bosonic states, but
due to supersymmetry for every bosonic state
there will be a fermionic state with the same
mass and charge.



= g2 n wR\

TefJ

16J 4

1

~2,

-1)

BPS states

These states are invariant under half of the

space-time supersymmetry transformations.

= 1 + nw

Thus nw > - 1 for BPS states.

The degeneracy dnw for these states can be

calculated by knowing the number of different

ways we can get level NL = nw-\-l excitations.



Formula for

oo

N=0

For large nw

oon - 2 4

Dabholkar, Harvey



Goal

1) Construct the BPS black hole solution car-
rying the same mass and charge quantum num-
bers as the elementary string state.

2) Calculate its Bekenstein-Hawking entropy
and compare with In dnw-

To carry out this goal we begin by writing down
the low energy effective field theory describing
heterotic string theory on T5 x S1.



Relevant massless fields in ten dimension

GMN' BMN a n d «> ( 1 0 ) . 0 < M, iV < 9MN' BMN

The dynamics of this theory is described by
N = 1 supergravity theory in (9+1) dimen-
sions.

, 4 > ( 1 0 ) , - - - )

••• denote other bosonic and fermionic fields
which will be set to zero in our analysis of clas-
sical solution describing the elementary string
state.



x^\ non-compact directions (0 < \x < 3)

x4: coordinate along S1

For constructing the black hole solution de-
scribing the elementary string described above,
we need non-trivial:

(io)

All other fields are set to zero.

Furthermore we take all fields to be indepen
dent of the compact directions.



Define 'four dimensional fields'

2

T =

—0

4 4

(2) __ 1 (10)

string metric

canonical metric

(l0) __ 2(AWA(2) A(1)A(2h



The low energy effective action is given by:

12

where

Ft) =

[R9 ~

(a) o .(a)
a —

+cyclic permutations of fi, v, p.

In this normalization convention the Newton's
constant is given by

GN — 2 .



Note: The action Is completely universal with-
out any parameter.

Expectation values of S and T determine the
string coupling constant and the radius of S1.

gz



We now want to construct an extremal black
hole solution satisfying the following proper-
ties:

It should have the same mass and charge as
the elementary string state carrying quan-
tum numbers (n,w).

It should be a solution of the classical field
equations.

It should be invariant under half of the
space-time supersymmetry transformations.

Asymptotically S - • -i>, T -> f



The extremal black hole solution

1 (dP

F(p) =

dn% = d6>2 + sin2<9d02,

S = g~2

1
T

(1) _ 16g2R~2
(1) 16gRn

I*

F(2) = 1 92™R2

16 (p + gwR/2)? '

strina ~=:: (^f^i/CLx dx '==- D (XS

'Horizon' is at p = 0.

Area of the horizon = 0

2
2



Naively this would imply that the Bekenstein-

Hawking entropy of the black hole is zero!

However let us not give up immediately and

study the solution in some detail.

We shall be interested in the limit of large n

and w at fixed p.

In this limit

p << gwR/2,



Define:

r = g p, T =

In this coordinate system the solution for large
n,w takes the form:

String = ~ dr2 + dr2 +tring r

_
o —

T - y/1

V w
(1) _ 1 Iw

rTT "T /

4
( 2 ) _ 1 fn

4 V w

Curvatures in string metric are small for r » 1
but of order 1 for r ~ l .

—> higher derivative terms become important
for r ~ l .



We see that 5 ~ \frvw for r

S = Inverse string coupling2

—> string coupling ~ (nw)~1/4 for r ~ l .

Thus for large nw we can ignore string loop

corrections to the effective action. AS

The relevant corrections come from higher deriva-

tive terms in the effective action appearing at

string tree level.

In order to study the effect of these higher
derivative corrections, we shall now try to sim-
plify the solution further by using some exact
symmetries of the string tree level effective ac-
tion.



The effective action at string tree level has an
exact symmetry:

r ( io ) _^

This corresponds to changing the radius of 51

In terms of four dimensional fields this be
comes:

Two solutions related by this transformation
has the same entropy.



Choosing e$ = Jw/n we can map the original
solution to the 'checked solution':

dsstring = ~~7 dr + dr +r

S =
4

2\/nw

T
r

= i,
i

As before, the form of the solution is expected
to change near r ~ l by higher derivative cor-
rections.



Under another transformation

S -> K S, T^T, G^-* G^, F$> ->

the tree level effective action gets multiplied
by K.

This leaves the equations of motion unchanged.

This transformation also multiplies the entropy
associated with a solution by a factor of K.



Choosing K = 1/y/nw we can map the checked

solution to the 'hatted solution':
2

string = ~ — dr2 + dr2 + r2

r
T = 1,

= 4 '

= 4 '

Note that this solution is completely universal,

independent of any external parameter.

Thus its modification near r ~ 1 by higher

derivative corrections will also be completely

universal.



Modified form of the hatted solution by higher

derivative terms:

r2 /lO) 2 , /2OO f , 2 2 2

= /4(r),

/ i (r) : universal functions

The entropy computed from this modified so-

lution is also going to be a purely numerica

constant a.

Naively,

a = Ahorizon = -4TT I i m ( r 2 / 2 ( r ) ) .
AGN 8 r->0K J2K JJ



We can now make inverse transformations to
go back to the checked and then to the original
solution.

The original solution:

S = y/nw f3(r) ,
T = \ /



It is also easy to calculate the entropies asso-
ciated with the checked and the original solu-
tions in terms of a.

The entropy associated with the checked so-
lution

the entropy associated with the hat-
ted solution

= a^/nw

The entropy SBH associated with the original
solution

= entropy associated with the checked solution

= aWnw



= a

On the other hand

Sstat = l n

for large nw.

Thus we see that SBH and Sstat has same de-
pendence on n, w, g and R. ( A S )

Q. Can we compute a?



A brief history of subsequent developments

1. Strominger and Vafa computed the statis-
tical entropy Sstat of B p S black holes in five di-
mensions carrying three different types of charges
by describing them as configurations of D-branes.

The corresponding black hole solutions have fi-
nite area event horizon and hence finite Bekenstein-
Hawking entropy SBH even without taking into
account a1 corrections.

In the limit of large charges

2. This result was generalized to many other
examples including black holes in four dimen-
sional heterotic string theories carrying both
electric and magnetic charges, in the limit where
all charges are large.



3. For a special class of these four dimensional
black holes, Maldacena, Strominger, Witten
computed the subleading (in I/charges) cor-
rections to Sstat-

4. For these black holes, subleading correc-
tions to SBH were computed by Cardoso, de
Wit, Mohaupt + Kapelli by taking into account
a special class of higher derivative terms in the
action.

It was found that including these subleading
corrections we get

In computing the subleading corrections to H
we had to take into account modification of
the Bekenstein-Hawking formula due to Wald.



5. Given the expression for the entropy of the
black hole as a function of electric and mag-
netic charges, we can now set the magnetic
charges to zero to compute entropy of black
holes carrying electric charges (n,w).

In the leading approximation the answer van-
ishes.

However the full expression including the sub-
leading corrections do not vanish.

Result for heterotic string wound on S1:

—> a = 4TT

Exact agreement with Sstat- Dabhoikar



Instead of reviewing the detailed analysis we
shall now give a brief outline of the steps which
are involved in the computation of a.

(Lopes Cardoso, de Wit, Kappeli, Mohaupt; Dabholkar;

AS; Hubeny, Maloney, Rangamani)

Tree level heterotic string effective action con-
tains a term

dAx J- det g S R
IDTT

Supersymmetrization of this term gives many
other terms.

These constitute a special class of higher deriva-
tive terms which are 'holomorphic'.

The analysis leading to the computation of a
takes into account only these higher derivative
corrections to the effective action.



Given this modified action we proceed as fol-
lows in order to determine the modified solu-
tion describing the heterotic string configura-
tion carrying charges

1. First we note that the modified solution de-
scribing the heterotic string configuration un-
der study must satisfy the modified field equa-
tions derived from the new action.



2. We can also use the fact that we are trying
to describe a BPS state that is invariant un-
der a certain set of space-time supersymmetry
transformations.

As a result the field configuration describing
this state must also be invariant under these
space-time supersymmetry transformations.

These give constraints on the field configura-
tions.

3. Boundary condition: At large distance where
higher derivative corrections are negligible, the
solution must approach the leading order solu-
tion found earlier.



Now recall the general form of the 'hatted so-
lution':

r2
asstring ~

s =
f =

rrr -

Jl\r) 2 J2\r) 2 2 2\

= /3(r),

= MO,
= /s(O,

Substitute these into the field equations / BPS
conditions.

This gives constraints on / i , . . . / 6 -



For large r the solution must match the so-
lution of the low energy effective field theory
found earlier.

This gives, for large r,

r 2
~-, /2W ^ -

2 r
/3(r) ~ - , /4(r) ~ 1

r

~ - , f6(r) - -



Define h(r) = ln ( / i ( r ) ) .

Then the constraints on fi,.--fe may be ex-
pressed as:

/20) = e"

/30) = -

U(r) =

satisfies the differential equation

ft' ( l + 4 (ft')2) + r h"



At large r the equation for h admits a solution:
r

h = I n -
2

/i> • • • /6 calculated from this gives us back the
supergravity results.



For small r the equation for h admits a solu-

tion:

h = 2 l n -
2

Thus /2 ( r ) =e-
h =

This gives the naive entropy associated with
the hatted solution:

" = T: lim~0 /2O)) =

—> finite area of the event horizon but wrong
answer!

However due to higher derivative terms in the

action the Bekenstein-Hawking formula itself

gets modified (waid)



Wald's formula for spherically symmetric black
holes:

r

SBH = 2TT dOdcj)
JH

H\ the horizon

C\ Lagrangian density

€rt = __etr _ J-

— Q otherwise

hap\ Metric along the horizon

Using this formula we get:

a = 4TT

in exact agreement with the statistical entropy.



However our analysis is not complete yet.

h(r) satisfies a second order differential equa-

tion.

It admits a solution h = ln(r/2) for large r that

gives the correct asymptotic behaviour.

It admits a solution h = 2ln(r/2) at small r

that gives the correct entropy.

However a second order differential equation

has two integration constants.

Thus there is no guarantee a priori that a solu-

tion that has the small r behaviour h = 2 ln(r/2)

will approach the asymptotic form h = ln(r/2)

at large r.



Study small fluctuations about the solution h =
ln(r/2) at large r.

Result:

h ~ In - + A cos (- + B) + O(A2)

A, B\ integration constants

Thus for a generic initial condition we expect
the solution to oscillate about h = ln(r/2).

Numerical results show that this is exactly what
happens. (AS; Hubeny, Maloney, Rangamani)

40 50



In order to interprete this result we need to
analyse the origin of the oscillatory solutions
around h = ln(r/2) for large r.

The fa's computed from h = ln(r/2) represent
a flat (locally) background for large r.

(All field strengths fall off to zero a s r - 4 oo.)

Thus for small A

+ (
2 V2

represents solution of the linearized equations
of motion for various fields around flat back-
ground.

The r dependence of the oscillatory part indi-
cates as if we have fields of mass2 = —|.

How is this possible?



Origin of the negative mass2 modes:

In the presence of higher derivative terms in
the action, typically there are additional solu-
tions of the equations of motion even at the
linearized level.

Example: Take a scalar field ty with action:

l - M~2

The equations of motion for ip has solutions:

ty = Aelk'x

with

k2 = 0 or k2 = -M2

Similarly, in the presence of higher derivative
terms, the equations of motion of the string
effective action will also have these additional
oscillatory solutions even at the linearized level.

—> responsible for the oscillations seen in our
analysis.



Quantization of these additional solutions will

give rise to additional states in the spectrum

which are not present in the string spectrum.

Solution (Zwiebach):

We must try to remove these higher derivative
terms by field redefinition.

In the scalar field example we take:

This gives the standard kinetic term for

This maps ip = Aelk-X with k2 = —M2 to

= 0



The generalization of this construction to gauge
field, metric etc. will remove the higher deriva-
tive terms from the action at the quadratic
level and map the additional oscillatory solu-
tions to zero.

For example, for the metric, this will require
defining a new metric

The coefficients a, 6, ... have to be chosen ap-
propriately to remove higher derivative terms
from the quadratic term in the action.

These new fields are the correct ones to be
used in describing string theory.



Once we use these right field variables, the
oscillatory part of the solution will get mapped
to zero.

As a result our solution should approach the
correct asymptotic form at large r.

Can we explicitly carry out this field redefini-
tion and verify this?

This requires reformulating the supergravity ac-
tion in terms of a new set of variables.

This has not been done yet.

Presumably when we use the correct field vari-
ables, the second order differential equation for
h will be replaced by an ordinary equation with
unique solution.



Generalization to other heterotic string com
pactifications.

Heterotic on K5 x S1.

any manifold / orbifold, possibly with back-
ground gauge fields etc., that preserves at least
N = 2 supersymmetry.

(N = 2 supersymmetry is needed to get the
BPS states.)

Consider a heterotic string wrapped on S1 with
winding number w and carrying n units of mo-
mentum along S1.



In the limit of large nw, the statistical entropy

associated with this state is still given by:

Sstat — ^Vnw

(This is controlled by the central charge of the

conformal field theory describing the heterotic

string compactification.)

—• does not depend on the choice of K5.



The classical solution describing this heterotic

string involves background fields along S1 and

the non-compact directions.

The tree level effective field theory involving

these fields is independent of the choice of K5

to all orders in a1.

As a result the classical solution describing the

black hole solution does not depend on the

choice of K5.

—> we get the same entropy of the black hole:

—• The agreement between Sstat and SBH con-
tinues to hold. AS



Finite charge corrections:

One of the advantages of working with the
elementary string states is that we know their
degeneracy very precisely.

The degeneracy dnw of BPS states carrying
charge quantum numbers (n, w) is determined
from the formula

oo oo
Z^ dN-lQ — l o [I (1 - q )

N=0 n=l

For large nw this gives:

However we can calculate the corrections to
this formula.

27 ,
Sstat = \n(dnw) = 4rKy/nw - — In(Vmy) + O(l)

Question: Can we reproduce these corrections
by keeping track of non-leading contribution to



Note: The field S is of order yfnw near the

horizon.

—• string coupling ~ S~1/2 ~ (nw)~1/4 near the

horizon.

—> in the limit of large nw we can ignore the
string loop corrections to the effective action
and focus on the tree level contribution.

However this is no longer the case if we want

to study the non-leading corrections to the en-

tropy (in inverse powers of nw).

We need to take into account quantum correc-

tions to the string effective action, and then

repeat the whole analysis.



There is however an ambiguity in carrying out
this comparison.

The proof of equivalence of different statistical
ensembles is valid only in the limit of infinite
size (charges).

The definition of various thermodynamic quan-
tities is idependent of the ensemble we use for
large charges, but depends on the ensemble
when we consider non-leading corrections.

It is not a priori clear which definition of sta-
tistical entropy we should compare with
(Ooguri, Strominger, Vafa)



Strategy:

1. Try to find a definition of statistical en-
tropy that agrees with the black hole entropy
for toroidal compactification.

2. Then check if this works for other compact-
ifications.



In order to make this guess it is useful to ex-

amine the formula for black hole entropy after

including quantum corrections to the special

higher derivative terms which we have been

analysing.

We consider black holes carrying general 28

dimensional electric charge vector Q

(6 winding i^, 6 momentum n̂  and 16 gauge

charges Qg)

Define

KT — n 2 — ± I \ A _ „.. n 2J



The entropy SBH of a black hole carrying elec-
tric charge vector Q is given by the formula

SBH ~ ^ + 4TTSO - 12 ln(250)

where SQ is the value of 5 at the horizon and
is given by

Cardoso, de Wit, Mohaupt

Define

Then SBH(N) can be regarded as the Legendre
transform of a function

= — - 12 In —



with n determined from

i s simpler than SBH(N).

This suggests that FBH^I1)
 m a y b e t h e Quan-

tity that has a more direct relation with its
statistical counterpart.

On the other hand, the statistical counterpart
of FBHiv) i s realized naturally in a kind of
mixed ensemble rather than in the microcanon-
ical ensemble.



d/v = degeneracy of elementary string states
with charge Q (TV = Q2/2)

Define

N

: Legendre transform of

SstatW ~ \ndN for large N

Conjecture: AS

Sstat(N) = SBH(N) + constant +

Equivalents



For toroidal compactification:
oo

N n = l

For small [i this gives

T(\i) = — - 12 In — + In 16 +

Compare with

= ——12 In —+constant+O(e-27r2/^)

agreement up to non-perturbative terms.



Does it work for other N — 4 supersymmetric
heterotic string compactifications?

Examine this in the context of CHL compact-
ification

Chaudhuri, Hockney, Lykken; Chaudhuri, Polchinski, . . .

1. Take heterotic string on a T6.

2. Take an orbifold of the theory by an abelian
group whose elements act as a shift + rotation
on the Narain lattice.

In order to preserve N = 4 supersymmetry we
need to ensure that the rotation group does
not act on the right-handed component of the
lattice.

This procedure gives an N — 4 supersymmetric
theory with reduced rank (= 28 - k) gauge
group.



We now follow the same procedure to calculate
a n d

 -^"(AO
 a n d compare.

Result:

4?r2 24 - k , 2TT
In h constant + n.p.

2

Compare with

4TT2 24 - k , 2TT , ^ ^ ,
l n h constant + n.p

2

agreement up to non-perturbative terms.



Some open problems

1. We have seen that after appropriate symme-
try transformations, the near horizon limit of
the classical black solution representing an el-
ementary string is independent of any external
parameter or the choice of compactification.

Thus string propagation in this background is
described by a universal conformal field theory.

A detailed analysis of this CFT is likely to gen-
erate new insight into the black holes that they
describe.



2. One could try to carry out a similar analysis
for heterotic string compactified on T^x^S1 for
other values of n.

This requires studying entropy of higher di-
mensional black holes.

The argument showing that the SBH has the
form a^frvw can be generalized to higher di-
mensions. (Peet)

Can we compute a by taking into account the
higher derivative corrections?

This might be possible if we can find supersym-
metrization of the curvature2 term in (9+1)
dimensions.

We could then compactify this theory on Tn

and study black hole solutions describing ele-
mentary string states.



3. The analysis described here takes care of
only part of the higher derivative corrections
which come from supersymmetrizing the cur-
vature square terms.

These terms are somewhat special in the sense
that they come from holomorphic corrections
to the generalized prepotential.

However since at r ~ l the curvature is of order
1, other higher derivative terms will also be
important.

Is there some kind of non-renormalization the-
orem that tells us that only the holomorphic
corrections affect the value of a?



4. Generalization to type II compactification

The scaling argument can be generalized to

type II theory on T5 x S1

—• the black hole entropy for fundamental string
wrapped on S1 with winding number w and n
units of momentum has

= a1

a! is some universal constant

On the other hand, counting of degeneracy of

elementary string states give

= 2\/2 TT

Q. Can we calculate a! by the same method as

in the case of heterotic string?



Unfortunately tree level type II theories have no
curvature2 corrections to the effective action.

Thus a computation similar to the one for het-
erotic string gives

a' = 0

Thus here if we want to reproduce the statis-
tical entropy we must take into account other
higher derivative corrections.



Q. What is the basic difference between het-
erotic and type II?

Most likely this method of computing black
hole entropy gives some sort of In(index) rather
than In(degeneracy).

This is not surprising in view of the fact that
in our analysis we have taken into account
only a very special class of terms (hoiomor-
phic) terms.

For heterotic string index may be of order de-
generacy whereas for type II the index may van-
ish.

What exactly is the index that is being com-
puted by our method?


