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CLASSIFYING SUPERGRAVITY
SOLUTIONS AND APPLICATIONS

Jerome Gauntlett



[Introduction |

Supersymmetric solutions of SUGRA theories
have played a very important tole in many
developments in string/M-theory.

What are they? Consider bosonic solutions
with ¢ = O:

1
E,UJ/ = R/,u/ — ERgMV — T/ﬂ/ = 0
Matter Equations = O,
and oy = O:
@’UJE —_— O,
Me = 0.

i.e. admitting a "Killing spinor” e

Vi ~ Vi + (fluzes x ), where V, is the
Levi-Civita connection.

M = M(fluxzes) is a matrix, which gives al-
gebraic constraints.



Can we classify such susy solutions?

(i) Matter =0

R,u,y
V,ue

||
o ©

= special holonomy.

Eulcidean case:

SU(n) in d = 2n - Calabi-Yau
Sp(n) in d = 4n - Hyper-Kahler
Goind=7

Spin(7) in d =8

Lorentzian: more possibilities.

(ii) Matter£0

~

V is a connection on the Clifford bundie and
not, in general on the spin bundle.

What should we do~?



Motivation

1. Compactifications to D = 4: fluxes tend
to stabilise moduli.

2. Black Holes: seek exotica such as black
rings. Uniqueness theorems (assumed in black
hole state counting calculations).

3. AdS/CFT: new examples; deeper under-
standing.

4. Surprises: previous construction of SUGRA
solutions relied on guessing ansatz. (eg black
rings, Godel)

5. Mathematics
Want:

(i) Precise characterisation of geometry
(ii) Explicit solutions where possible.



Key Tool for classification: G-Structures
Gauntlett, Martelli, Pakis, Waldram

PLAN:

1. G-structures and classification.
Three examples, including minimal D=5 su-
pergravity solutions.

2. Black Rings in D=5

3. New AdS/CFT examples and new Sasaki-
Einstein manifolds.



G-Structures|

Let M be an n-dimensional manifold.

F(M) be the frame bundle: a principal GI(n)
bundle.

A G-Structure is a principal G sub-bundle.

Equivalent to no-where vanishing tensors. e.g.

gap = Om) (orO(p,q))
9abs €ay...an = SO(n)

n = 2m

Jlb,J2=-1 = Gi(m,C)
ga,b7 Jab, J2 - —1 = U(’)’TL)
Gab Jab, Qar.am = SU(m)

Classify G-structures by their intrinsic tor-
sion: it measures the deviation from special
holonomy.



Intrinsic Torsion

Let n define a G C SO(n) structure. Basic
idea:

Vn «— @;W;

W; are G-modules which specify the type of
G-structure.

In more detail:
3 V/ such that V/n = 0. Define

T=V-V=w-0d E /\1@/\2

= Alg so(n)

N @gagh)
Then V= (V — V) — element of Al ® gt
This is the part of T that is independent of
V'’ and is called the intrinsic torsion:

7O c Al g gL = O;W;
TO) = @;W;

The type of G-structure is classified by which
W; # 0. e.g.
Mal W, =0 T0 =0 Vvp=0<«
Special holonomy G
(ii) all W; = 0 — most general kind of G-
structure.
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An example: SU(3) structures in d = 6.
Specified by a real form J, and a complex
form 2., satisfying

J N O4
QANQ = —z’gj/\J/\J

This defines a metric, and orientation and an
almost complex structure.

The intrinsic torsion has 5 components. De-
compose fundamental and adjoint of SO(6)
into SU(3) reps: 6 =3+3, 15 =1+3+3+38.
Hence Al ® g1 gives the reps:

(3+3) x 1+3+3)=0+1)+@+8)+
(6+6)+(3+3)+(3+3)
corresponding to 5 W,;.

Each W; € W,; can be expressed entirely in
terms of dJ and df2:

dJ — Wy, W3, Wy
dS2 — Wi, Wo, Wx



e.g.

(Wada = J*2(dJ)apy0,
(Ws)a = Q1%2°3(d2) 4p, b
Examples:
Wi =Wr=0 — complex
Wi =Wor=W3=Wy =0 — Kahler
W; =0 — Calabi — Yau
& dJ=d2 =0

There exists (more than) 32 different SU(3)
structures.



To classify supergravity solutions

1. Observe that the isotropy group G of the
Killing spinor € defines a GG-structure. Explic-
itly, the tensors defining the G-structure can
be constructed as bi-linears:

T(k:) ~ a—(k)e
T he algebraic conditions staisfied by the ten-

sors can be obtained e.g. by using Fierz iden-
tities.

2. Vye = Vu+ (fluzes x M)e = 0O restricts
the intrinsic torsion and determines some of
the flux. Me = 0O places additional conditions
on the flux and intrinsic torsion. Note that
some of the flux components can drop out
completely. HARD WORK.

3. Equations of motion. Consider [Vm, Vale =
0. Impose matter equations of motion and

Bianchi identities = Eyne = 0. Need to im-

pose at most one component of E,n = 0

and only in Lorentzian case.
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An Example: Heterotic compactified on Msg.
Set Yang-Mills fields to zero for simplicity.
Susy =

1
(Vm -+ gHmnprnp) e =0,
1

where € is chiral D = 6 spinor.

* ¢ — SU(3) structure:

Jm'n, —ZET rm'n,€

T
anp € rmnpﬁ

* Analyse:
d(e 2%Q) 0,
d(e™?®JAJ) = 0,
e?®d(e™2®)) = —xH

Have W7 = Wro = 0, = complex. W, =
—(1/2)Wg = 2d®P. H restricted by structure.

* H e.oom. is automatically satisfied. In-
tegrability of susy = just need to impose
dH = 0.
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Neat reformulation [Gauntiett, Martelli, Waldram][Cardoso,
Curio, Dall’Agata, Lust, Manousselis, Zoupanos] Of results
of Strominger and Hull. The key point is that
the G-structure approach generalises and is
systematic.

Can apply the programme in 3 broad ways:

1. Classify the most general supergravity so-
lutions in D=10/11 supergrvaity

2. Lower-Dimensional Supergravities

D =45,6,7. can be much more explicit.

3. Special classes of Solutions

Compactifications from D = 11,10 to e.g.
Mg Or to AdSs.

12



Minimal D = 5 supergravity|

The Model

x Equations of motion:

1
Rop + Q(FOc’yFﬁ7 - ggaﬁFQ) =0

2
d*F—I——-\/?F/\F:O
dFf =20

* Supersymmetry

1

bor L,

(v — 48577) Fm} e = 0.
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Classification [Gauntlett, Gutowski, Hull, Pakis, Reall]

1. From the Killing spinor we can construct

foKp, Xy, i=1,2,3

2. Algebraic conditions — two cases, de-
pending whether K is time-like or null:

* Timelike: SU(2) structure in D=5.
K ~ €0, ds?2 = —ePel4e%% and Xt ~ Xébea/\eb

x Null: R3 structure:
K =¢et , ds? = 26+6—+€i6i and Xt ~eT Ael

ot +
e” — e —(1/2)p° —ple’
e s el pleT

____)6

preserves structure.

3. Analyse Killing spinor equations plus equa-
tions of motion

14



1. Timelike case: K = 0

ds? = —f2(dt+w)? + fldsT(Ms)
_ V3 1 o+
F o= Sdlfdt+w) - =6

where ds#; ;. is an arbitrary hyper-K&hler met-
ric and w is a one-form on My, satisfying

GT = —é—f(dw + *xdw)

dGT = 0
AfTH = S(GT)?

Preserve 1/2 susy

Can find many solutions.
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2. Null case: K = 0y

ds?
F

H = H(u,x), F = F(u,x), a= (u,Xx).

H1L (}"du2 + Qdudv) — H?(dx + adu)?,

Satisfy 2nd order ODEs: general solution in-
volves 3 u depenendent harmonic functions.

Plane fronted waves

Preserve 1/2 susy

Can find many explicit solutions.
3. Maximal Susy

Null and timelike: AdSs3 x S2, Plane wave
Timelike and timelike: AdS>xS3, Gédel, BMPV
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Can generalise to:
D=456,7
gauged SUGRA
add matter fields

D =11 SUGRA

[Gauntlett, Pakis]
* FleldS g/“/’ C/_u/p, ¢'u, —_ O

1. From the Killing spinor we can construct
Ky Qpvy 2y s

2. Algebraic conditions — two cases, de-
pending whether K is time-like or null:

Timelike: SU(5) structure in D=11.
K ~ el ds? = —e0el 4 eaea

Null: (Spin(7) x R®) x R structure:

V = eTand ds? = 2ete™ + elet —+ e i =
1,...,8.
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3. Analyse Killing spinor equations plus equa-
tions of motion

Timelike case:

ds?
F

—A2(dt + w)? + AT Lds? (M1g)

My has an SU(5) structure with very weakly
constrained intrinsic torsion Wg ~ dlog(A).

This is to be expected, since this is the most
general timelike susy solution preserving just
1/32 susy.

Similar story for null case.

Recent progress in refining classification for
the case of preservation of more than one
SUSY Mac Conamhna, Cariglia, Gran, Gutowski, Papadopou-
los,Roest.  Maximal case already done Frigueroa-
O'Farril, Papadopoulos.
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Summary

GG-Structures are simple and effective tools
to classify SUGRA solutions.

Three main applications:

1. Compactifications to e.g. Mg, AdSs
Many cases considered.

Is there an analogue of the Calabi-Yau theo-
rem?

2. Classification of low-dimensional SUGRA
theories.

Powerful way of finding new solutions. Con-
structs solutions in quite different ways than
previous ansatze.

3. Classification of most general solutions.
Being refined. More than 1/2 susy?
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