The interacting boson model

P. Van Isacker, GANIL, France

Introduction to the IBM
Practical applications of the IBM

Overview of nuclear models

- Ab initio methods: Description of nuclei starting from the bare nn \& nnn interactions.
- Mean-field methods: Nuclear average potential with global parametrization (+ correlations).
- Nuclear shell model: Nuclear average potential + (residual) interaction between nucleons.
- Phenomenological models: Specific nuclei or properties with local parametrization, e.g. the interacting boson model.

Ab initio methods

- Many ab initio methods exist and give consistent results.
- Example : $A=4$

Method	$\langle T\rangle$	$\langle V\rangle$	E_{b}	$\sqrt{\left\langle r^{2}\right\rangle}$
FY	$102.39(5)$	$-128.33(10)$	$-25.94(5)$	$1.485(3)$
CRCGV	102.30	-128.20	-25.90	1.482
SVM	102.35	-128.27	-25.92	1.486
HH	102.44	-128.34	$-25.90(1)$	1.483
GFMC	$102.3(1.0)$	$-128.25(1.0)$	$-25.93(2)$	$1.490(5)$
NCSM	103.35	-129.45	$-25.80(20)$	1.485
EIHH	$100.8(9)$	$-126.7(9)$	$-25.944(10)$	1.486

H. Kamada et al., Phys. Rev. C 64 (2001) 044001

$\mathrm{A} b$ initio calculations for light nuclei

- Systematic studies of light nuclei $(A \leq 12) \Rightarrow$ evidence for three-body nucleon interactions.

R.B. Wiringa and S.C. Pieper, Phys. Rev. Lett. 89 (2002) 182501

NSDD Workshop, Trieste, April 2005

Tri-partite classification of nuclei

- Empirical evidence for seniority-type, vibrational- and rotational-like nuclei:

- Need for model of vibrational nuclei.

The interacting boson model

- Spectrum generating algebra for the nucleus is U(6). All physical observables (hamiltonian, transition operators,...) are expressed in terms of s and d bosons.
- Justification from
- Shell model: s and d bosons are associated with S and D fermion (Cooper) pairs.
- Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian.

The IBM hamiltonian

- Rotational invariant hamiltonian with up to N body interactions (usually up to 2): $\hat{H}_{\text {IBM }}=\varepsilon_{s} \hat{n}_{s}+\varepsilon_{d} \hat{n}_{d}+\sum_{l_{1} l_{l} l_{2}, L} v_{l_{1}}^{L} l_{1}^{\prime} l_{2}\left(b_{l_{1}}^{+} \times b_{l_{2}}^{+}\right)^{(L)} \cdot\left(\tilde{b}_{l_{1}} \times \tilde{b}_{l_{2}}\right)^{(L)}+\cdots$
- For what choice of single-boson energies ε and boson-boson interactions v is the IBM hamiltonian solvable?
- This problem is equivalent to the enumeration of all algebras G satisfying

$$
\mathrm{U}(6) \supset G \supset \mathrm{SO}(3) \equiv\left\{\hat{L}_{\mu}=\sqrt{10}\left(d^{+} \times \tilde{d}\right)_{\mu}^{(1)}\right\}
$$

Dynamical symmetries of the IBM

- $\mathrm{U}(6)$ has the following subalgebras:

$$
\begin{aligned}
& \mathrm{U}(5)=\left\{\left(d^{+} \times \tilde{d}\right)_{\mu}^{(0)},\left(d^{+} \times \tilde{d}\right)_{\mu}^{(1)},\left(d^{+} \times \tilde{d}\right)_{\mu}^{(2)},\left(d^{+} \times \tilde{d}\right)_{\mu}^{(3)},\left(d^{+} \times \tilde{d}\right)_{\mu}^{(4)}\right\} \\
& \operatorname{SU}(3)=\left\{\left(d^{+} \times \tilde{d}\right)_{\mu}^{(1)},\left(s^{+} \times \tilde{d}+d^{+} \times \tilde{)_{\mu}^{(2)}-\sqrt{\frac{7}{4}}\left(d^{+} \times \tilde{d}\right)_{\mu}^{(2)}\right\}}\right.\right. \\
& \mathrm{SO}(6)=\left\{\left(d^{+} \times \tilde{d}\right)_{\mu}^{(1)},\left(s^{+} \times \tilde{d}+d^{+} \times \tilde{s}\right)_{\mu}^{(2)},\left(d^{+} \times \tilde{d}\right)_{\mu}^{(3)}\right\} \\
& \mathrm{SO}(5)=\left\{\left(d^{+} \times \tilde{d}\right)_{\mu}^{(1)},\left(d^{+} \times \tilde{d}\right)_{\mu}^{(3)}\right\}
\end{aligned}
$$

- Three solvable limits are found:

$$
\mathrm{U}(6) \supset\left\{\begin{array}{c}
\mathrm{U}(5) \supset \mathrm{SO}(5) \\
\mathrm{SU}(3) \\
\mathrm{SO}(6) \supset \mathrm{SO}(5)
\end{array}\right\} \supset \mathrm{SO}(3)
$$

Dynamical symmetries of the IBM

- The general IBM hamiltonian is

$$
\hat{H}_{\text {IBM }}=\varepsilon_{s} \hat{n}_{s}+\varepsilon_{d} \hat{n}_{d}+\sum_{l_{1} l_{l} l_{2}^{2}, L} v_{l, L}^{L} L l_{1}^{\prime} l_{2}^{\prime}\left(b_{l_{1}}^{+} \times b_{l_{2}^{+}}^{+}\right)^{(L)} \cdot\left(\tilde{b}_{l_{1}} \times \tilde{b}_{l_{2}}\right)^{(L)}+\cdots
$$

- An entirely equivalent form of $H_{\text {IBM }}$ is

$$
\begin{aligned}
\hat{H}_{\mathrm{IBM}} & =\eta_{0} \hat{C}_{1}[\mathrm{U}(6)]+\eta_{1} \hat{C}_{1}[\mathrm{U}(5)]+\kappa_{0}^{\prime} \hat{C}_{1}[\mathrm{U}(6)] \hat{C}_{[}[\mathrm{U}(5)] \\
& +\kappa_{0} \hat{C}_{2}[\mathrm{U}(6)]+\kappa_{1} \hat{C}_{2}[\mathrm{U}(5)]+\kappa_{2} \hat{C}_{2}[\mathrm{SU}(3)] \\
& +\kappa_{3} \hat{C}_{2}[\mathrm{SO}(6)]+\kappa_{4} \hat{C}_{2}[\mathrm{SO}(5)]+\kappa_{5} \hat{C}_{2}[\mathrm{SO}(3)]
\end{aligned}
$$

- The coefficients η and κ are certain combinations of the coefficients ε and v.

The solvable IBM hamiltonians

- Excitation spectrum of $H_{\text {IBM }}$ is determined by

$$
\begin{aligned}
\hat{H}_{\mathrm{IBM}} & =E_{0}+\eta_{1} \hat{C}_{1}[\mathrm{U}(5)]+\kappa_{1} \hat{C}_{2}[\mathrm{U}(5)]+\kappa_{2} \hat{C}_{2}[\mathrm{SU}(3)] \\
& +\kappa_{3} \hat{C}_{2}[\mathrm{SO}(6)]+\kappa_{4} \hat{C}_{2}[\mathrm{SO}(5)]+\kappa_{5} \hat{C}_{2}[\mathrm{SO}(3)]
\end{aligned}
$$

- If certain coefficients are zero, $H_{\text {IBM }}$ can be written as a sum of commuting operators:

$$
\begin{aligned}
& \hat{H}_{\mathrm{U}(5)}=\eta_{1} \hat{C}_{1}[\mathrm{U}(5)]+\kappa_{1} \hat{C}_{2}[\mathrm{U}(5)]+\kappa_{4} \hat{C}_{2}[\mathrm{SO}(5)]+\kappa_{5} \hat{C}_{2}[\mathrm{SO}(3)] \\
& \hat{H}_{\mathrm{SU}(3)}=\kappa_{2} \hat{C}_{2}[\mathrm{SU}(3)]+\kappa_{5} \hat{C}_{2}[\mathrm{SO}(3)] \\
& \hat{H}_{\mathrm{SO}(6)}=\kappa_{3} \hat{C}_{2}[\mathrm{SO}(6)]+\kappa_{4} \hat{C}_{2}[\mathrm{SO}(5)]+\kappa_{5} \hat{C}_{2}[\mathrm{SO}(3)]
\end{aligned}
$$

The U(5) vibrational limit

- Anharmonic vibration spectrum associated with the quadrupole oscillations of a spherical surface.
- Conserved quantum numbers: n_{d}, v, L.

A. Arima \& F. Iachello, Ann. Phys. (NY) 99 (1976) 253 D. Brink et al., Phys. Lett. 19 (1965) 413

The $\mathrm{SU}(3)$ rotational limit

- Rotation-vibration spectrum of quadrupole oscillations of a spheroidal surface.
- Conserved quantum numbers: $(\lambda, \mu), L$.

The $\operatorname{SO}(6) \gamma$-unstable limit

- Rotation-vibration spectrum of quadrupole oscillations of a γ-unstable spheroidal surface.
- Conserved quantum numbers: σ, v, L.

A. Arima \& F. Iachello, Ann. Phys. (NY) 123 (1979) 468
L. Wilets \& M. Jean, Phys. Rev. 102 (1956) 788

Modes of nuclear vibration

- Nucleus is considered as a droplet of nuclear matter with an equilibrium shape. Vibrations are modes of excitation around that shape.
- Character of vibrations depends on symmetry of equilibrium shape. Two important cases in nuclei:
- Spherical equilibrium shape
- Spheroidal equilibrium shape

Vibrations about a spherical shape

- Vibrations are characterized by a multipole quantum number λ in surface parametrization: $R(\theta, \varphi)=R_{o}\left(1+\sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} \alpha_{\mu \mu} Y_{\mu \mu}^{*}(\theta, \varphi)\right)$
$-\lambda=0$: compression (high energy)
$-\lambda=1$: translation (not an intrinsic excitation)
- $\lambda=2$: quadrupole vibration

NSDD Workshop, Trieste, April 2005

Vibrations about a spheroidal shape

- The vibration of a shape with axial symmetry is characterized by $a_{\lambda v}$.
- Quadrupolar oscillations
$-v=0$: along the axis of symmetry (β)
$-v= \pm 1$: spurious rotation
$-v= \pm 2$: perpendicular to axis of symmetry (γ)

Synopsis of IBM symmetries

- Three standard solutions: $\mathrm{U}(5), \mathrm{SU}(3), \mathrm{SO}(6)$.
- Analytic solution for $\mathrm{U}(5) \rightarrow \mathrm{SO}(6)$ via SU(1,1) Richardson-Gaudin integrability.
- Hidden symmetries because of parameter transformations: $\mathrm{SU}_{ \pm}(3)$ and $\mathrm{SO}_{ \pm}(6)$.
- Partial dynamical symmetries.
- Critical-point symmetries?

Classical limit of IBM

- For large boson number N, a coherent (or intrinsic) state is an approximate eigenstate,

$$
\hat{H}_{\mathrm{IBM}}\left|N ; \alpha_{\mu}\right\rangle \approx E\left|N ; \alpha_{\mu}\right\rangle, \quad\left|N ; \alpha_{\mu}\right\rangle \propto\left(s^{+}+\sum_{\mu} \alpha_{\mu} d_{\mu}^{+}\right)^{N}|\mathrm{o}\rangle
$$

- The real parameters α_{μ} are related to the three Euler angles and shape variables β and γ.
- Any IBM hamiltonian yields energy surface:

$$
\left\langle N ; \alpha_{\mu}\right| \hat{H}_{\text {IBM }}\left|N ; \alpha_{\mu}\right\rangle=\langle N ; \beta \gamma| \hat{H}_{\text {IBM }}|N ; \beta \gamma\rangle \equiv V(\beta, \gamma)
$$

Geometry of IBM

- A simplified, much used IBM hamiltonian:

$$
\hat{H}_{\mathrm{CQF}}=\varepsilon_{d} \hat{n}_{d}-\kappa \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}, \quad \hat{Q}_{\mu}^{\chi}=s^{+} \tilde{d}_{\mu}+d_{\mu}^{+} s+\chi\left(d^{+} \times \tilde{d}\right)_{\mu}^{(2)}
$$

- H_{CQF} can acquire the three IBM symmetries.
- H_{CQF} has the following classical limit:

$$
\begin{aligned}
V_{\mathrm{CQF}}(\beta, \gamma) & \equiv\langle N ; \beta \gamma| \hat{H}_{\mathrm{COF}}|N ; \beta \gamma\rangle \\
& =\varepsilon_{d} N \frac{\beta^{2}}{1+\beta^{2}}-\kappa N \frac{5+\left(1+\chi^{2}\right) \beta^{2}}{1+\beta^{2}} \\
& -\kappa \frac{N(N-1)}{1+\beta^{2}}\left(\frac{2}{7} \chi^{2} \beta^{4}-4 \sqrt{\frac{2}{7}} \chi \beta^{3} \cos 3 \gamma+4 \beta^{2}\right)
\end{aligned}
$$

Phase diagram of IBM

Microscopy of IBM

- In a boson mapping, fermion pairs are represented as bosons:
$s^{+} \Leftrightarrow S^{+} \equiv \sum_{j} \alpha_{j}\left(a_{j}^{+} \times a_{j}^{+}\right)_{0}^{(0)}, \quad d_{\mu}^{+} \Leftrightarrow D_{\mu}^{+} \equiv \sum_{i j} \beta_{j i j}\left(a_{j}^{+} \times a_{j}^{+}\right)_{\mu}^{(2)}$
- Mapping of operators (such as hamiltonian) should take account of Pauli effects.
- Two different methods by
- requiring same commutation relations;
- associating state vectors.

Extensions of the IBM

- Neutron and proton degrees freedom (IBM-2):
$-F$-spin multiplets $\left(N_{v}+N_{\pi}=\right.$ constant $)$.
- Scissors excitations.
- Fermion degrees of freedom (IBFM):
- Odd-mass nuclei.
- Supersymmetry (doublets \& quartets).
- Other boson degrees of freedom:
- Isospin $T=0$ \& $T=1$ pairs (IBM-3 \& IBM-4).
- Higher multipole (g, \ldots) pairs.

Scissors excitations

- Collective displacement modes between neutrons
 and protons:
- Linear displacement (giant dipole resonance): $\boldsymbol{R}_{v}-\boldsymbol{R}_{\pi} \Rightarrow E 1$ excitation.
- Angular displacement (scissors resonance): $\boldsymbol{L}_{v}-\boldsymbol{L}_{\pi} \Rightarrow M 1$ excitation.

Supersymmetry

- A simultaneous description of even- and oddmass nuclei (doublets) or of even-even, evenodd, odd-even and odd-odd nuclei (quartets).
- Example of ${ }^{194} \mathrm{Pt},{ }^{195} \mathrm{Pt},{ }^{195} \mathrm{Au} \&{ }^{196} \mathrm{Au}$:

Example of ${ }^{195} \mathrm{Pt}$

NSDD Workshop, Trieste, April 2005

Example of ${ }^{196} \mathrm{Au}$

NSDD Workshop, Trieste, April 2005

Isospin invariant boson models

- Several versions of IBM depending on the fermion pairs that correspond to the bosons:
- IBM-1: single type of pair.
- IBM-2: $T=1 \mathrm{nn}\left(M_{T}=-1\right)$ and $\mathrm{pp}\left(M_{T}=+1\right)$ pairs.
- IBM-3: full isospin $T=1$ triplet of $\mathrm{nn}\left(M_{T}=-1\right)$, np $\left(M_{T}=0\right)$ and $\mathrm{pp}\left(M_{T}=+1\right)$ pairs.
- IBM-4: full isospin $T=1$ triplet and $T=0 \mathrm{np}$ pair (with $S=1$).
- Schematic IBM-k has only $S(L=0)$ pairs, full IBM-k has $S(L=0)$ and $D(L=2)$ pairs.

Algebraic many-body models

- The integrability of quantum many-body (bosons and/or fermions) systems can be analyzed with algebraic methods.
- Two nuclear examples:
- Pairing vs. quadrupole interaction in the nuclear shell model.
- Spherical, deformed and γ-unstable nuclei with s, d-boson IBM.

$$
\mathrm{U}(6) \supset\left\{\begin{array}{c}
\mathrm{U}(5) \supset \mathrm{SO}(5) \\
\mathrm{SU}(3) \\
\mathrm{SO}(6) \supset \mathrm{SO}(5)
\end{array}\right\} \supset \mathrm{SO}(3)
$$

NSDD Workshop, Trieste, April 2005

Other fields of physics

- Molecular physics:
- U(4) vibron model with s, p-bosons.

$$
\mathrm{U}(4) \supset\left\{\begin{array}{c}
\mathrm{U}(3) \\
\mathrm{SO}(4)
\end{array}\right\} \supset \mathrm{SO}(3)
$$

- Coupling of many $\mathrm{SU}(2)$ algebras for polyatomic molecules.
- Similar applications in hadronic, atomic, solidstate, polymer physics, quantum dots...

The interacting boson model

P. Van Isacker, GANIL, France

Introduction to the IBM
Practical applications of the IBM

The IBM hamiltonian

- Rotational invariant hamiltonian with up to N body interactions (usually up to 2):

$$
\hat{H}_{\mathrm{IBM}}=\varepsilon_{s} \hat{n}_{s}+\varepsilon_{d} \hat{n}_{d}+\sum_{l_{1} l_{l} l_{2} l_{L}, L} v_{l_{2} l_{1}^{\prime}}^{L}\left(b_{l_{1}}^{+} \times b_{l_{2}}^{+}\right)^{(L)} \cdot\left(\tilde{b}_{l_{1}} \times \tilde{b}_{l_{2}^{\prime}}\right)^{(L)}+\cdots
$$

- Explicit forms of the hamiltonian: multipole expansion and "standard representation".

The IBM hamiltonian

- Standard representation:

$$
\begin{aligned}
\hat{H}= & \mathrm{C}(1) \hat{N}+\mathrm{C}(2) \hat{n}_{d}+\mathrm{C}(3) \frac{1}{2}\left[\left[d^{\dagger} \times d^{\dagger}\right]^{(0)} \times[\tilde{d} \times \tilde{d}]^{(0)}\right]^{(0)} \\
& +\mathrm{C}(4) \sqrt{5} \frac{1}{2}\left[\left[d^{\dagger} \times d^{\dagger}\right]^{(2)} \times[\tilde{d} \times \tilde{d}]^{(2)}\right]^{(0)} \\
& +\mathrm{C}(5) \frac{3}{2}\left[\left[d^{\dagger} \times d^{\dagger}\right]^{(4)} \times[\tilde{d} \times \tilde{d}]^{(4)}\right]^{(0)} \\
& +\mathrm{C}(6)\left[\left[s^{\dagger} \times d^{\dagger}\right]^{(2)} \times[\tilde{d} \times \tilde{d}]^{(2)}+\left[d^{\dagger} \times d^{\dagger}\right]^{(2)} \times[\tilde{s} \times \tilde{d}]^{(2)}\right]^{(0)} \\
& +\mathrm{C}(7)\left[\left[s^{\dagger} \times s^{\dagger}\right]^{(0)} \times[\tilde{d} \times \tilde{d}]^{(0)}+\left[\left[d^{\dagger} \times d^{\dagger}\right]^{(0)} \times[\tilde{s} \times \tilde{s}]^{(0)}\right]^{(0)}\right. \\
& +\mathrm{C}(8) \sqrt{5}\left[\left[s^{\dagger} \times d^{\dagger}\right]^{(2)} \times[\tilde{s} \times \tilde{d}]^{(2)}\right]^{(0)} \\
& +\mathrm{C}(9)\left[\left[s^{\dagger} \times s^{\dagger}\right]^{(0)} \times[\tilde{s} \times \tilde{s}]^{(0)}\right]^{(0)} .
\end{aligned}
$$

- Multipole expansion:
$\hat{H}=\operatorname{EPS} \hat{n}_{d}+\mathrm{A}(0) \hat{P}^{\dagger} \hat{P}+\mathrm{A}(1) \hat{L} \cdot \hat{L}+\mathrm{A}(2) \hat{Q}_{\chi} \cdot \hat{Q}_{\chi}+\mathrm{A}(3) \hat{T}_{3} \cdot \hat{T}_{3}+\mathrm{A}(4) \hat{T}_{4} \cdot \hat{T}_{4}$,

The $\mathrm{U}(5)$ vibrational limit

- U(5) Hamiltonian:

$$
\hat{H}_{\mathrm{U}(5)}=\varepsilon \hat{n}_{d}+\sum_{L=0,2,4} c^{L} \frac{1}{2}\left(d^{+} \times d^{+}\right)^{(L)} \cdot(\tilde{d} \times \tilde{d})^{(L)}
$$

- Energy eigenvalues:

$$
E\left(n_{d}, v, L\right)=\varepsilon n_{d}+\kappa_{1} n_{d}\left(n_{d}+4\right)+\kappa_{4} v(v+3)+\kappa_{5} L(L+1)
$$

with

$$
\begin{aligned}
& \kappa_{1}=\frac{1}{12} c_{0} \\
& \kappa_{4}=-\frac{1}{10} c_{0}+\frac{1}{7} c_{2}-\frac{3}{70} c_{4} \\
& \kappa_{5}=-\frac{1}{14} c_{2}+\frac{1}{14} c_{4}
\end{aligned}
$$

The U(5) vibrational limit

- Conserved quantum numbers: n_{d}, v, L.

The $\mathrm{SU}(3)$ rotational limit

- SU(3) Hamiltonian:

$$
\hat{H}_{\mathrm{SU}(3)}=a \hat{Q}_{\chi} \cdot \hat{Q}_{\chi}+b \hat{L} \cdot \hat{L}
$$

- Energy eigenvalues:

$$
E(\lambda, \mu, L)=\kappa_{2}\left(\lambda^{2}+\mu^{2}+3 \lambda+3 \mu+\lambda \mu\right)+\kappa_{5} L(L+1)
$$

with

$$
\begin{aligned}
& \kappa_{2}=\frac{1}{2} a \\
& \kappa_{5}=b-\frac{3}{8} a
\end{aligned}
$$

The $\operatorname{SU}(3)$ rotational limit

- Conserved quantum numbers: $(\lambda, \mu), L$.

The $\operatorname{SO}(6) \gamma$-unstable limit

- $\mathrm{SO}(6)$ Hamiltonian:

$$
\hat{H}_{\mathrm{SO}(6)}=a \hat{P}^{+} \cdot \hat{P}+b \hat{T}_{3} \cdot \hat{T}_{3}+c \hat{L} \cdot \hat{L}
$$

- Energy eigenvalues:

$$
E(\sigma, v, L)=\kappa_{3}[N(N+4)-\sigma(\sigma+4)]+\kappa_{4} v(v+3)+\kappa_{5} L(L+1)
$$

with

$$
\begin{aligned}
& \kappa_{3}=\frac{1}{4} a \\
& \kappa_{4}=\frac{1}{2} b \\
& \kappa_{5}=-\frac{1}{10} b+c
\end{aligned}
$$

The $\operatorname{SO}(6) \gamma$-unstable limit

- Conserved quantum numbers: σ, v, L.

Configuration mixing in shell model

- Example of platinum isotopes $(Z=78,82<N<126)$:
- Regular configuration: 4 proton holes in 50-82 shell.
- Deformed configuration: 6 proton holes in 50-82 shell and 2 protons in the 82-126 shell.
- Neutrons always in 82-126 shell.
P. Federman \& S. Pittel, Phys. Lett. B 69 (1977) 385.

Configuration mixing in IBM

- Example of platinum isotopes $(Z=78,82<N<126)$:
- Regular configuration: $N_{\pi}=2$ proton bosons.
- Deformed configuration: $N_{\pi}=4$ proton bosons.
- Always N_{v} neutron bosons.
- IBM-1: configurations with N and $N+2$ bosons.
P.D. Duval \& B.R. Barrett, Nucl. Phys. A 376 (1982) 213.

Example: Coexistence in ${ }^{186} \mathrm{~Pb}$

- Observation: triplet of differently shaped 0^{+} states in ${ }^{186} \mathrm{~Pb}$.
- Mean-field theory predicts three minima.
- IBM calculation for Pb isotopes yields
- spectroscopy;
- geometry.

Lead isotopes in the IBM

- Hamiltonian for three configurations:

$$
\begin{aligned}
& H=H_{0 p-0 \mathrm{~h}}+H_{2 p-2 h}+H_{4 p--4 \mathrm{~h}}+H_{\text {mix }}^{02}+H_{\text {mix }}^{24} \\
& H_{i p-i h}=\varepsilon_{i} n_{d}+\kappa_{i} Q_{i} \cdot Q_{i}, Q_{i}=\left(s^{+} \tilde{d}+d^{+} \tilde{s}\right)^{(2)}+\chi_{i}\left(d^{+} \tilde{d}\right)^{(2)} \\
& H_{\text {mix }}^{i i}=\omega_{0}^{i t}\left(s^{+} s^{+}+\tilde{s} \tilde{s}\right)+\omega_{2}^{i i}\left(d^{+} \cdot d^{+}+\tilde{d} \cdot \tilde{d}\right)
\end{aligned}
$$

- Single parameter set for all Pb isotopes.
- Parameters for $2 \mathrm{p}-2 \mathrm{~h}$ and $4 \mathrm{p}-4 \mathrm{~h}$ configurations obtained from I-spin considerations.

Spectroscopy of lead isotopes

NSDD Workshop, Trieste, April 2005

