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Books: Experimental nuclear spectroscopy is a broad subject. A
few excellent books:

R. F. Casten: Nuclear Structure

A. Bohr and B. R. Mottelson: Nuclear structure

H. Ejiri, M. J. A. de Voigt Nuclear Spectroscopy

H. Morinaga and T. Yamazaki. Gamma spectroscopy

D. N. Poenaru and W. Greiner: Experimental techniques

R. Bock: Heavy ion collisions Vol 1-3
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Introduction: States, energies, widths, electromagnetic (em)
transitions , quantum numbers

Example: levels in 124Xe vs IBA

States : energies, widths lifetimes and electromagnetic (em)
transitions. A quasistationary state Ψ0(t) - i.e. an excited nuclear

state - has a complex energy :

ε0 = E0 − (i/2)Γ0

where E0 is the energy of the state and Γ0 is the width of the state.
This width is related to the lifetime of the state by the relation :

τ0 = (h/2π)/Γ0
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The energy of the state can be measured most directly from the
mass of the state e.g. in an ion trap. In reactions we generally

measure not the energies but energy differences. The lifetime τ0
can be obtained from the exponential decay of the state

| Ψ0(t) |2= A ∗ exp(−t/τ0)

From the lifetime τ0 or from partial lifetimes τ0k respectively one
obtains the electromagnetic transition probabilities B(E, M,λ),

which are crucial observables. Of course the partial lifetimes are
obtained from the total life time by considering the branched

decay.
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PS: Some of you may protest. They say Hamiltonians are Hermitean,
eigenenergies are real so they don’t like the complex energy

ε0 = E0 − (i/2)Γ0

Indeed for particle bound states :

Re ε0 = E0 � Γ0.

So the energies are nearly real but not “really real”. Excited states
decay; we can measure their life time very well; so real energies are

an approximation.
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Observables, Quantum numbers:

Besides the the Hamiltonian H and the energy E0, there are a
number of other important observables and corresponding

quantum numbers as e.g

H , I2 , Iz , σ2 , Tz

E , I(I + 1) , M , S(S + 1), 1/2(N − Z))

P , T2 , K = I3 , F2

π , T (T + 1) , K , F (F + 1)

here the observables and the corresponding quantum numbers in
the second row are approximate ones .

6



A crucial question in spectroscopy is whether state Ψ0

characterized by its measured energy E0 has other good quantum
numbers e.g the parity π. The answer is yes if the following

assumptions are true

1) [H, P ] = 0 ,

2) Ψ0 is not degenerate.

i.e 1) : the Hamiltonian commutes with the operator of the quantum

number : here the parity operator P i.e. : 1) [H, P ] = 0 ,

2) : The dimension of space of the eigenvectors with energy E0 is
one
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1) [H, P ] = 0 ,

2) Ψ0 is not degenerate.

Then one finds that HΨ0 = E0 ∗ Ψ0 and
HPΨ0 =.PHΨ0 = E0 ∗ PΨ0 . Thus Ψ0 and PΨ0are degenerate

states with the same energy E0 and are due to assumption 2)
identical states i.e. PΨ0 = λΨ0. This point is a little tricky if one

considers that the various magnetic sub-states are degenerate in
energy for B = 0. Summing up we find many good or

approximately good quantum numbers in nuclear spectroscopy.
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It is an aim of nuclear spectroscopy to measure besides the
energies and the partial lifetimes these additional quantum

numbers for many nuclear state. The data groups represented at
this workshop have then to make a critical evaluation and to
compile them and to make this information easily accessible.

Example : levels in 124Xe vs the Interacting Boson Model (IBM)

The shown level scheme is from the Koeln group. The experiments
observed a rather “complete “ low spin level scheme. It shows

many spin multiplets e.g. there are four 4+states. Such data allow a
very stringent test of theoretical models in this case the IBM-1

proposed by Arima and Iacchello.
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A problem with phenomenological theories e.g. the IBM but also
the shell model is that they have a few free parameters . Of course
there is a convincing solution to this : multitudes of relevant data. A
typical example of such approach - multitudes of relevant data - is

a description of the nucleus

124Xe in the frame of the Interacting Boson Model IBM1 which is
given in the next figure.

This data comes from the OSIRIS spectrometer in Koeln. V. Werner et
al. N . P. A 692 (2001), 451.

Of these data 7 collective positive parity bands with about 20 levels
and 30 B(E2) ratios and 5 lifetimes are described by the IBM1 with 6
parameters. Of course one can do even better by looking at a set

of data of several neighboring nuclei.
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A useful point of the figure is that it gives the full Hamiltonian with
the used parameters so people can check. Useful are also the
“extra” experimental levels, some of which have unknown spins

and parities. Also the theoretical levels not used in the comparison
are given. This is very useful information and should be given always

. Often theoretical papers show only the levels corresponding to
the observed experimental levels which fit . The authors seem not
to realize how much of the “testing” value of their figure is lost in

such “comparisons”.
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Shape parameters for the nucleus

A) Shape parameters beta and gamma for nuclei which have a
rigid shape in the intrinsic system

B) Shape parameters beta(eff) and gamma(eff) for nuclei which
have a soft (vibrating) shape in the intrinsic system
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nuclear deformation

(x,y)(z,y)(z,x)

(z,x) (x,y)(z,y)

� � � � �� 
 � � � �� � � � � � � �  �! # % '( # � 
 *
 

* !

+ - � ! / � 1 �2 � �
3 5 3 7 9 :; <

Davydov & Filippov, Nucl. Phys. 8 (1958) 237−249

Investigation of

15



16



Nuclear shapes rigid or soft?

Crucial and fundamental parameters of the nucleus are the radius
R0 and the Bohr parameters β and γ, which describe the

quadrupole shape of the nuclear surface. Of course these
parameters are to some extent model dependent. The most used
simple model is the rigid axial rotor model of Bohr and Mottelson

and its generalization to to a triaxial shape by Davidov and Fillipov.
This is given in the next transparencies.

The shape parameters β and γ are are widely used . There is a
problem. Many nuclei have even in the “body fixed” reference

system- whatever that means for soft nuclei - no fixed values of γ

and even of β.
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Thus the values of β and γ found in the literature are really effective
parameters βeff and γeff although few authors, who give them

admit it. The shape parameters βeff and γeff are model
dependent parameters. A rather clean way to introduce effective
shape parameters which are observables has been suggested by
K. Kumar and Doug Cline using the concept of Q-invariants or Q

shape parameters . Relative Q-invariants called K- shape
parameters were used by the Koeln-Dubna group. A problem with
these shape parameters is that they are defined by sum rules. Thus

we have to do some extrapolation from the data which can be
done however safely by suitable nuclear models as e.g. the

Interacting Boson model 1 introduced by Arima and Iacchello or
the proton Neutron version of the Interacting Boson Model IBM-2
which was introduced by Iacchello , Arima , Otsuka and Talmi.
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Triaxiality in nuclei. A very active topic @ Gamma Sphere, Euroball
& Co @ Argonne , Berkeley, Legnaro, Strasbourgh & Co.

1) Wobbling mode in strongly deformed triaxial odd nuclei e.g.
163Lu, 165Lu. Experiment : e.g. G. B. Hagemann et al.

Kopenhagen, Bonn ..., Theory: I. Hamamoto Kopenhagen - Lund

2) Chiral - twin bands in odd odd triaxial nuclei e.g. 130Pr -134Pr .
Experiment : e.g. K. Starosta , T. Koike, D. B. Fossan et al., Stony

Brook et al. Theory : S. Frauendorf, Notre Dame

3) Near maximum triaxiality e.g. in odd 125Xe, 127Xe et al.
Experiment and analysis with particle rotor model e.g. : I.

Wiedenhoever, A. Gade, A. Gelberg et al. , Koeln
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Triaxiality and the quadratic and cubic

Q invariants ( Q shape parameters) q2 and q3 .

A basic property of the nucleus is its geometric shape.
Parameterizing the nuclear shape, one usually turns to the well

known geometric deformation parameters β and γ.

But this approach incorporates a major problem. In many nuclei
e.g. in vibrating nuclei the shape parameters β and γ do not have
fixed values. As a partial solution K. Kumar introduced and Doug

Cline used very much the quadrupole shape invariants
(parameters) qn. K. Kumar, Phys. Rev. Lett. 28 (1972) 249 ; D. Cline

Nucl. Phys. A 557 (1993) 615.
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The quadrupole shape invariants (parameters) qn. K. Kumar, Phys.

Rev. Lett. 28 (1972) 249 are the expectation values of the products

of the E2 transition operator eQ.

q2 = e2 < 0+
1 |(Q.Q)|0+

1 > , (1)

q3 =
√
35
2 e3 < 0+

1 |[QQQ](0)|0+
1 > , (2)

q4 = e4 < 0+
1 |(Q.Q) (Q.Q)|0+

1 > , (3)

dot: scalar product; brackets: tensorial coupling ; Q

quadrupole operator; e elementary electric charge.
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For the rigid triaxial rotor the parameters q2 and q3 are directly
related to the deformation parameters β and γand the nuclear

radius R0:

q2 = e2Q2
0β2,where Q0 = 3ZR2

0/(4π) (4)

q3 = e3Q3
0β3 cos(3γ) = q

3/2
2 cos(3γ) (5)

The quantities q2 and q3 are obtained directly from data by multiple
sums of E2 matrix elements:

q2 = e2
∑
i

< 0+
1 ||Q||2+

i >< 2+
i ||Q||0+

1 > , (6)

q3 =
√

7
10 e3

∑
i,j

< 0+
1 ||Q||2+

i >< 2+
i ||Q||2+

j >< 2+
j ||Q||0+

1 >(7)

These relations are called the Cline Flaum sum rule. No doubt the
geometrical parameters β and γ are more intuitive. But the

parameters q2 and q3 can be directly “measured” from the above
(truncated) sum rule.
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An evaluation of q2 and q3 by the Cline Flaum sum rule using E(2)
transition matrix elements from multiple Coulomb excitation has

been done for some nuclei by D. Cline and Co-workers,
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An evaluation of q2 and q3 by the Cline Flaum sum rule using
extensive sets of experimental quadrupole transition matrix

elements from multiple Coulomb excitation has been done for
some nuclei by D. Cline and Co-workers,

e.g .C.Y. Wu, D. Cline, T. Czosnyka, A. Backlin, C. Baktash, R.M.
Diamond, G.D. Dracoulis, L. Hasselgren, H. Kluge, B. Kotlinski, J.R.

Leigh, J.O. Newton, W.R. Phillips, S.H. Sie, J. Srebrny and F.S.
Stephens, Nucl. Phys. A 607 (1996) 178.

Of course, there is great interest to obtain the shape invariants q2
and q3 from relations involving restricted sets of data. These

relations are obtained by suitable truncation of the sums. A further
crucial point is to establish the accuracy of these approximate
relations in the various collective models. In second order one

obtains for q2 and q3 the following relations:

25



q2 ≈ q(1)
2 = e2 < 2+

1 ||Q||0+
1 >2= B(E2; 0+

1 → 2+
1 ) (8)

|
√

10

7
(q3/q

3/2
2 )approx| =

√
10

7
|Kappr.

3 | = (9)

|
√√√√√B(E2; 2+

1 → 2+
1 )

B(E2; 2+
1 → 0+

1 )
− 2 ∗

√
B(E2; 2+

2 → 0+
1 ) · B(E2; 2+

2 → 2+
1 )

B(E2; 2+
1 → 0+

1 )
|,(10)

where we again write the squared quadrupole moment in form of
a B(E2)

B(E2; 2+
1 → 2+

1 ) = (35/32 ∗ π) ∗ Q(2+
1 )2 .

26



Differences of the approximate and exact values of K3 and γ in the
Triaxial Rigid Rotor Model. Black line second order expression from 4
BE2 . Dotted line first order from 2 B(E2) . RK3 = 1and γ − γappr = 0

means approximation is exact. Maximum difference of 2ndorder

approximation : γ − γappr < 3degree
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Determination of γappr from K
appr.
3 i.e. from 4 B(E2)‘s and from the

sign of the quadrupole moment of the 2+
1 state .

(q3/q
3/2
2 )approx = K

appr.
3 =< β3cos(3γ.) > / < β2 >3/2

152Sm 154Gd 156Gd 158Gd 160Gd 188Os
6(1) 7(2) 7(2) 6(2) 5(2) 17(3) γ.

0.307 0.310 0.339 0.349 0.351 0.185 β
192Os 194Pt 196Pt 106Pd* 112Cd* 114Cd*
25(2) 41(2) 42(2) 19(2)* 22(2)* 25.8(7)* γ.

0.167 0.143 0.129 0.230 0.181 0.184) β

* β soft nucleus; βand γare correlated.
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Quartic shape parameter q4 = e4 < QQ.QQ >as a measure of
beta rigidity

q4 = (q22)∗ < β4 > / < β2 >2

< β4 > / < β2 >2= 1 for β−rigid nucleus.

Quartic shape parameter q4 from two absolute B(E2)’s

q4 = q22 ∗ (7/10) ∗ B(E2,4+
1 → 2+

1 )/B(E2,2+
1 → 0+

1 )
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What do we learn for β and γ from q2 , q3, q4 if the nucleus is rigid or
βrigid and gammasoft ?

K3 = q3/(q2)
3/2 =< β3cos(3γ)/ < β2 >3/2

K4 = q4/(q2)
2 =< β4 >< β2 >2

Quartic shape parameter q4 from two absolute B(E2)’s

q4 = q22 ∗ (7/10) ∗ B(E2,4+
1 → 2+

1 )/B(E2,2+
1 → 0+

1 )

β γ K3 K4

rigid 0 SU(3) 1 1
rigid rigid Triax Rot cos(3γ) 1
rigid soft 0(6) < cos(3γ) > 1
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Summing up: there is an approach to extract physics from data by
looking at approximate relations between observables with no free

parameters at all.

These approximate relations are obtained from truncated sum rules
and their accuracies have been established in various collective

models as the rigid triaxial rotor and the IBA . Examples of such
relations are :

Cubic shape parameter q3 from four observables and triaxiality

The Three B(E2) Relation

Spin Dependent Generalized Grodzins Relation

Thanks: V. Werner (now Yale), R. Jolos (Dubna), N. Pietralla (Stony
Brook) , C. Scholl( Cologne) R. Casten, A. Dewald
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The Three B(E2) Relation

V. Werner, P. von Brentano R.V. Jolos PL B 521 (2001)146

I. M. Naqib J. Phys G1 (1975) L19

Phenomenological models are crucial in the analysis of data.
Particularly interesting are (approximate) relations between

observables without free parameters. An example is the Three B(E2)
Relation, which occasionally allows to get a quadrupole moment

from B(E2) data.:

B(E2; 2
+
1 → 2

+
1 )=

=B(E2; 4
+
1 → 2

+
1 ) - B(E2; 2

+
2 → 2

+
1 )

B(E2; 2+
1 → 2+

1 ) = 35
32π Q(2+

1 )2 .•
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Three B(E2) Relation :

For the three dynamical symmetries of the IBM :

B(E2; 4+
1 → 2+

1 ) = B(E2; 2+
2 → 2+

1 ) + B(E2; 2+
1 → 2+

1 )

Rotor SU(3) B(E2; 2+
2 → 2+

1 ) = 0

γ − unstable − Rotor O(6) B(E2; 2+
1 → 2+

1 ) = 0

Vibrator U(5) B(E2; 2+
1 → 2+

1 ) = 0

B(E2; 2+
1 → 2+

1 ) = (35/32 ∗ π) ∗ Q(2+
1 )2 .
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The Three B(E2) Relation connects the squared electric

quadrupole moment of the 2+
1 state Q(2+

1 )2 with the absolute
lifetimes of the 4+

1 and the 2+
2 states.. It gives a new way to

approximately determine Q(2+
1 )2, which is usually not easy to

access experimentally and which may be of interest for RIB
experiments:

Q(2+
1 )2 = 32π/35 ∗ [B(E2; 4+

1 → 2+
1 ) - B(E2; 2+

2 → 2+
1 )]

This (approximate) relation was checked successfully for the triaxial
rotor and in the parameter space of the Casten triangle of the IBM.
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Test of the Three B(E2) Relation in the Triaxial Rigid Rotor Model. R =
0 means relation is fulfilled. Maximum deviation 5% ; independent of

β.
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Good agreement between γapprfrom 4 B(E2) and γ for rigid triaxial
rotor . β = 0.3 agrees also.

〈2+
1 ||Q||0+

1 〉 〈2+
1 ||Q||2+

1 〉 〈2+
2 ||Q||2+

1 〉 〈2+
2 ||Q||0+

1 > Kapp
3 γapp γ

6.394 -7.643 0.000 0.000 -1.00 0.02 0

6.176 -6.619 3.821 1.655 -0.62 17.25 20

6.394 0.000 7.643 0.000 0.00 30.00 30

6.176 6.619 -3.821 1.655 0.62 42.75 40

6.394 7.643 -0.001 0.001 1.00 59.98 60
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Test of three B(E2) relation vs data
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Test of Q(2+
1 )2 from Three B(E2) Relation vs Q(2+

1 )2exp

Q(2+
1 )2 = 32π/35 ∗ [(B(E2; 4+

1 → 2+
1 ) - B(E2; 2+

2 → 2+
1 )]

156Gd 158Gd 160Gd 188Os 190Os e2b2

3.79(11) 4.19(11) 4.20(10) 1.80+7
−21 1.14+14

−30 B(E2)Rel
3,72(15) 4.04(16) 4.33(17) 1.72+10

−38 0.90+19
−32 Q(2+

1 )2exp

192Os 194Pt 196Pt 112Cd 114Cd e2b2

0.56+6
−19 −0.13+5

−18 0.26(9) 0.43(6) 0.31(4) B(E2)Rel
0.84+24

−8 0.20+2
−7 0.24(18) 0.14(3) 0.13(6) Q(2+

1 )2exp
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end lecture 1
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Experimental nuclear spectroscopy 2

Trieste IAEA April 2005

Peter von Brentano ,IKP Universität zu Köln, Germany

Lecture 2:

Nuclear spectroscopy is a broad subject. Excellent books are e.g.:

R. F. Casten: Nuclear Structure

A. Bohr and B. R. Mottelson: Nuclear structure

H. Ejiri, M. J. A. de Voigt Nuclear Spectroscopy

H. Morinaga and T. Yamazaki. Gamma spectroscopy

D. N. Poenaru and W. Greiner: Experimental techniques

R. Bock: Heavy ion collisions Vol 1-3
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Second lecture:

Lifetimes from Doppler shifted Spectra from RDDS (recoil distance
Doppler shifted ) data from fusion evaporation reactions. Examples

158Er and Xenon isotopes

K- parameters, Q invariants. Rigid or soft shape of nuclei.

Spin Dependent Generalized Grodzins Relation

In the measurements of lifetimes of nuclear states great progress has
been made. In particular the problem of unknown side feeding in
fusion reactions has been solved by the use of γ, γ coincidence
Doppler shifted data and by novel analysis methods such as the

variants of the DDCM method. Here I mention in particular the work of
the Dewald group in Koeln. Thus reliable lifetimes are now available

not only from Coulomb excitation - as shown in the work of Doug Cline
and D. Schwalm - but also from fusion reactions e.g. in the work of the

Dewald group; which allow to determine the shapes of collective
excitations in nuclei. These developments will be reviewed by

examples
2
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Problems in RDDS lifetimes . Single RDDS

a) unobserved side-feedings of unknown lifetimes

b)de-orientation: angular distribution changes with time.

c) complicated (observed) cascading in decay scheme

d)target heated by beam develops bubble.

Remedies: d) reduce beam current . Singles lifetime RDDS data are
reliable only if a-d are discussed in paper.

(γ, γ)coincidence RDDS data with DDCM analysis eliminates the 3
problems a,b,c. Implies statistics problem : need GASP, Euroball,

Gamma Sphere & Co.
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Lifetimes from Doppler shifted Spectra from (γ, γ)coincidence RDDS
(recoil distance Doppler shifted ) data.

Quantitative analysis : DDCM by Dewald Köln group :

Method and example of 158Er

Refs e.g. and refs contained therein:

1989De38 Z.Phys. A334, 163 (1989) A.Dewald, S.Harissopulos, P.von
Brentano The Differential Plunger and the Differential Decay Curve

Method for the Analysis of Recoil Distance Doppler-Shift Data .

2001PE02 Nucl.Instrum.Methods . A457, 527 (2001) P.Petkov, A.Dewald,
P.von Brentano Gating on the Feeding or on the Depopulating
Transition in Coincidence Recoil-Distance Doppler-Shift Lifetime

Measurements
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2002Kl02 Phys.Lett. 524B, 252 (2002) T.Klug, A.Dewald, R.V.Jolos, B.Saha,
P.von Brentano, J.Jolie Supersymmetry of Identical Bands in 171,172Yb

Supported by Lifetime Data

2002Kr09 Phys.Rev.Lett. 88, 232501 (2002) R.Krucken, B.Albanna,
C.Bialik, R.F.Casten, J.R.Cooper, A.Dewald, N.V.Zamfir, C.J.Barton,

C.W.Beausang, M.A.Caprio, A.A.Hecht, T.Klug, J.R.Novak, N.Pietralla,
P.von Brentano B(E2) Values in 150Nd and the Critical Point Symmetry

X(5
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The lifetime tau is thus obtained by a very intuitive relation:

d/dt (s+, s−)t = (1/τ) ∗ (s+, u−)t

Here (s+, s−)t is the number of s− in the gate on s+

and (s+, u−)t is the number of u− in the gate on s+

and d/dt is the time derivative of the function(s+, s−)t.

One notes that the absolute normalizations cancel out. This is still some
work.

In the next figure we show the decay scheme of 158Er which serves as
an exemple. The data are from Gammasphere at Berkeley and are

from a Liverpool , Daresbury , Koeln ++.... collaboration.
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Rotational bands in 158Er.
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2002Sh09 Phys.Rev. C65, 034320 (2002) S.L.Shepherd, J.Simpson,
A.Dewald, P.Petkov, P.J.Nolan, M.A.Riley, A.J.Boston, T.B.Brown,

R.M.Clark, P.Fallon, D.J.Hartley, S.Kasemann, R.Krucken, P.von Brentano,
R.W.Laird, E.S.Paul, R.Peusquens High Precision Quadrupole Moment
Measurements of States up to I = (h-bar) in the Yrast Band of 158Er
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“Transition quadrupole moment” Qt(I) for soft rotors:

For the rigid rotor one finds

B(E2; I + 2 → I) =
(
CI0

I+2020

)2
Q2

0 (1)

For the diagonal matrixelements one finds:

〈I ‖ Q2 ‖ I〉 =
√

2I + 1CI0
I020Q0 (2)

where Q0 is a constant equal to the intrinsic quadrupole moment Q0

of the nucleus.
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In the case that the nucleus is not a rigid but a soft rotor the intrinsic
quadrupole moment Q0(I) is a function of the angular momentum . In

this case one introduces following Emling and Schwalm a
spindependent

“transition quadrupole moment” Qt(I) and writes:

B(E2; I + 2 → I) =
(
CI0

I+2020

)2
Q(I)2t (3)

The constant Q2
0 is replaced by a spindependent function Q2

t (I). In
this case one finds a slightly different Qt(I) for the diagonal moment.
The advantage of introducing the “transition quadrupole moment”

Qt(I) is that its spin dependence is only due to the deviations from the
rigid rotor.
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Lifetimes from RDDS

(recoil distance Doppler shifted ) data.

Results for Xenon isotopes
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A problem with phenomenological theories is that they have a few
free parameters . Of course there is a convincing solution: multitudes
of relevant data. A typical example of such approach - multitudes of

relevant data - is a description of the nucleus

124Xe in the frame of the Interacting Boson Model IBM1 which is given
in the next figure.

This data comes from the OSIRIS spectrometer in Koeln. V. Werner et al.
N . P. A 692 (2001), 451.

Of these data 7 collective positive parity bands with about 20 levels
and 30 B(E2) ratios and 5 lifetimes are described by the IBM1 with 6

parameters.

Of course one can do even better by looking at a set of neighboring
nuclei.
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1999Kl11 Phys.Rev. C60, 034301 (1999) T.Klemme, A.Fitzler, A.Dewald,
S.Schell, S.Kasemann, R.Kuhn, O.Stuch, H.Tiesler, K.O.Zell, P.von

Brentano, D.Bazzacco, F.Brandolini, S.Lunardi, C.M.Petrache, C.Rossi
Alvarez, G.De Angelis, P.Petkov, R.Wyss Lifetimes Measurements for

134Nd and Neighboring Nuclei with the Coincidence-Plunger
Technique

26



27



-0.5

0

0.5

-0.5

0

0.5

-1

0

1

-0.5

0

0.5

-1

0

1

nucleus.nb 1

-0.5

0

0.5

-0.500.5 -1 0 1

nucleus.nb 1

-0.5

0

0.5

-0.500.5

-1

0

1

nucleus.nb 1

prolate deformation

28



-1

-0.5

0

0.5

1

-0.5

0

0.5

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

nucleus.nb 1

-1

-0.5

0

0.5

1

-0.500.5

-1
-0.5

0
0.5

1

nucleus.nb 1

-1

-0.5

0

0.5

1

-0.5
0
0.5

-1 -0.5 0 0.5 1

nucleus.nb 1

oblate deformation

29



Z

124Xe
β = 0.25
γ = 25.5o

125Xe
β = 0.21
γ = 24o

127Cs
β = 0.22
γ = 22o

126Xe
β = 0.19
γ = 27.2o

127Xe
β = 0.18
γ = 24o

Ba
β = 0.24
γ = 22.3o

128

129Cs
β = 0.20
γ = 22o

Ba
β = 0.22
γ = 23o

129 Ba

o

131

β = 0.20
γ = 25

Ba
β = 0.22
γ = 24.4o

130 Ba

o

132

β = 0.19
γ = 26.4

Ba

o

134

β = 0.16
γ = 28.3

Ba

o

124

β = 0.30
γ = 20.3

Xe

56

o

122

β = 0.26
γ = 24.7

128Xe
β = 0.19 
γ = 27.4 o

129Xe
β = 0.18
γ = 29.0o

Xe

o

130

β = 0.17
γ = 28.2

Xe131

β = 0.16
γ = 30o

Xe

o

132

β = 0.14
γ = 29.1

Xe

γ = 30o

133

β = 0.13

126Ba
β = 0.28
γ = 21.8o

Xe

o

123

β = 0.22
γ = 21

125Cs
β = 0.26
γ = 21o

Ba127

γ = 21o
β = 0.24

N

70 71 72 73 74 7568 69 76 77 78 79

54

55

30



Values of the Q invariants and the K- parameters for the dynamical
symmetries of the Interacting Boson model .

Comparison to data
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K- parameters, Q invariants. Rigid or soft shape of nuclei.

We call the nucleus beta rigid if (QQ)0is diagonal for spin zero
states.i.e. :

< 0n|QQ|01 >= q2 δ1n

In this case one finds

q4 =< 01|(QQ)0(QQ)0|01 > =

= Σn < 01|(QQ)0|0n >< 0n|(QQ)0|01 > =

< 01|(QQ)0|01 >< 01|(QQ)0|01 >

q4 = q2 ∗ q2

35



q4 = q2 ∗ q2

This implies

K4 = K2 ∗ K2 and

σ4 = K4 − K2 ∗ K2 = 0

That is for a beta rigid nucleus the shape fluctuations σ4 vanish. This is
what one expects of course.

Similar arguments hold for a gamma rigid nucleus for which σ6 = 0.

36



Discussion of parameters of 124Xe:

q2 is very well determined

F2 measures how much E 2 strength is in the 2+
1 state. As we are near

a dynamical symmetry here 0(6) F2 is nearly one. F2 � 1 shows the
quality of the Q- phonon model.

K3 is nearly 0 in accordance with the 0(6) character of 124Xe

K4 is nearly one. This shows the interesting fact that 124Xe has a fixed
value of β. Thus 124Xe is beta rigid.

In correspondence the fluctuations σ4 =0.031 are small.
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The large values of K6 and of the fluctuation parameter σ6 =0.28
show the interesting fact that 124Xe has no fixed value of γ. Thus it is γ

soft. Of course <γ> can have a mean value : < γ >eff= 250, which is
very near to the maximum possible triaxiality of γ = 30. We have
made a long and detailed discussion of the K and σ parameters

showing how much physics is in these parameters.

Summary

Shape 124Xe

beta shows no fluctuations

gamma shows strong fluctuations

Nucleus is beta rigid and gamma soft

It is rather good case of =86) dynamical symmetry of IBA
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The usual approach to spectroscopy is to compare the individual
states and observables to a theoretical model like the Interacting

Boson Model or the Shell Model. There is , however, another approach
to extract physics from data. This approach uses relations between

collective observables with no free parameters at all. Such approach
may be better suited to RIB physics, which inherently yields a more

restricted set of data.
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These - parameter free - approximate relations can be obtained from
truncated sum rules and their accuracies can be tested in the various

collective models. Examples are:

Cubic shape parameter q3 and Triaxiality ( lecture 1)

Cubic shape parameter q3 from four observables ( lecture
1)

The Three B(E2) Relation ( lecture 1)

Spin Dependent Generalized Grodzins Relation (follows)
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Spin Dependent Generalized Grodzins Relation,

The Grodzins relation : L. Grodzins, PL 2, 88 (1962). S. Raman, ADNDT 78

(2001).and its generalization R.V. Jolos , P. von Brentano and N. Pietralla,

Dubna, Koeln, Stony Brook.

E(2+1 ) ∗ B(E2; 2 ⇒ 0+) = (0.5 ± 0.1) ∗ Z2 ∗ A−2/3

A Generalized Grodzins Relation for the quasi rotational ground band
for nuclei with : E(21) < 0, 1 ∗ E(22)

(E(I + 2) − E(I)) ∗ B(E2; I + 2 ⇒ I)∗

∗(2I + 5)/(I + 1) ∗ (I + 2) = const

41



“Horizontal” Grodzins relation ( vs A ). S. Raman, ADNDT 78 (2001)

42



S. Raman, ADNDT 78 (2001)
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Test of the “vertical” Spin Dependent
Generalized Grodzins Relation

154Sm ∆Eg B(E2)↓ G(J) Gen.Grodzins
J..... MeV.... Wu ............ Wu*MeV
2 0.082 174(5) 2.5 35.7(6)
4 0.185 244(6) 0.75 33.8(6)
6 0.277 290(8) 0.433 34.8(10)
8 0.359 318(17) 0.304 34.7(15)
10 0.430 314(16) 0.233 31.5(15)
22 1.178

(E(I + 2) − E(I)) ∗ B(E2; I + 2 ⇒ I) ∗ (2I + 5)/(I + 1) ∗ (I + 2)

= (E(2) ∗ B(E2; 2 ⇒ 0) ∗ 5/2 = Const

For nuclei with : E(21) < 0,1 ∗ E(22)
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150Nd ∆Eg B(E2)↓ G(J) Gen.Grodzins
J..... MeV.... Wu ............ Wu*MeV
2 .130 103(1) 2.5 33.5(3)
4 .251 179(1) 0.75 33.7(2)
6 .339 210(8) 0.433 30.8(16)
8 .410 275(26) 0.304 34.3(30)
10 .469 203(11) 0.233 22.2(11)

Phys.Rev.Lett. 88, 232501 (2002) R.Krucken, B.Albanna, C.Bialik, R.F.Casten,
J.R.Cooper, A.Dewald, N.V.Zamfir, C.J.Barton, C.W.Beausang, M.A.Caprio,
A.A.Hecht, T.Klug, J.R.Novak, N.Pietralla, P.von Brentano B(E2) Values in
150Nd and the Critical Point Symmetry X(5)
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The Spin Dependent Generalized Grodzins Relation gives the spin
dependence of the B(E2) in the quasi rotational ground state band

from the energies:

The relation is derived from the Bohr Hamiltonian. Ĥ = T̂(B) + V(Q2µ)
where V is the potential energy depending only on the quadrupole

moment operator Q2µ.

It holds when a constant mass parameter B is used and the rotational
energies are small compared to the vibrational energies of the

band-heads of the β and γ bands : E(21) < 0.1 ∗ E(22) . Thus it does
not hold for vibrational nuclei.

The energies and the B(E2)’s of the rigid rotor nuclei have been tested
empirically . Thus the generalization of the Grodzins relation is

empirically checked for the rigid rotor case.

In general the energies deviate significantly from the rigid rotor,
because the (variable) moments of inertia are spin dependent . Then
the relation predicts corresponding deviations in the B(E2)t’s. from the

rigid rotor.It should be tested .
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Experimental nuclear spectroscopy 3

Trieste IAEA April 2005

Peter von Brentano ,IKP Universität zu Köln, Germany

Lecture 3:

1



We continue the discussion of the progress made in the low spin nuclear
spectroscopy putting an emphasis again on the measurements of lifetimes
and transition matrix elements of nuclear states. In the second lecture the
focus was on heavy ion fusion reactions and in particularly on the problem

of unknown side feeding. Here we discuss in particular

the (n,n’γ) fusion reaction

resonant (γ, γ′) reaction :

(γ, γ′) coincidence spectroscopy following beta decay

Here we discuss in particular the spectroscopy of isovector excitations

2



Comparison of spectra from

(n,n’γ) and from

resonant (γ, γ′) reactions and from

(γ, γ′) coincidence spectra following beta decay .

These reactions produce beautiful spectra.

We show 3 Setups for low spin spectroscopy

in Lexington, in Stuttgart and @ FN-Tandem @ Cologne.

Lifetimes from(n,n’γ) reactions and from resonant

(γ, γ′) reactions

3



Proton beam

Excitation function: level scheme, J

Angular distributions: J , δ, τ

Experimental setup at the Van de Graaff
accelerator of the University of Kentucky
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γγ

Observables

Cologne Osiris spectrometer
−coincidence experiments at the 

energies

effective lifetimes in in−beam experiments from Doppler−shifts

multipole mixing ratios

branching ratios

γ

photo peak eff. ~1%
10 HPGe detectors
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(n,n’γ) Spectroscopy: Steve Yates & Co Lexington

The (n,n’γ) reaction is a fusion reaction . But there is no coulomb barrier for
the neutron. As there is no coulomb barrier for the (n,n’γ) reaction the popu-
lated spins start with spin zero. As all compound nucleus fusion reactions the
reaction is “complete” in a given window of spins and excitation energies.
A disadvantage is that due to statistics the data are usually singles data. A
remedy is to measure excitation functions. By comparing two spectra at two
different neutron energies one can find the states with the higher excitation
energy . This allows to determine the excitation energies of the states from
singles excitation measurements without the need to do γ,γ coincidence
spectra . Thus from excitation functions and from angular distributions one
can obtain energies , spins and deltas ( E2/M1 mixing ratios) and one ob-
tains fairly complete level schemes. A further big advantage of the (n,n’γ)
spectroscopy is the use of the Dopper shift attenuation method to obtain life
times. The big advantage here is that one can eliminate the unknown side
feeding which has an unknown time delay. This is done again by consider-
ing only the states with the highest excitation energies for which there is no
indirect side feeding. Thus the (n,n’γ) spectroscopy gives also quite reliable
lifetimes.
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Recent examples of the low spin spectroscopy of isovector excitations in the
mass 90 region come from the Koeln Lexington Stuttgart Collaboration. E.g. :

C.Fransen, N.Pietralla, Z.Ammar, D.Bandyopadhyay, N.Boukharouba, P.von
Brentano, A.Dewald, J.Gableske, A.Gade, J.Jolie, U.Kneissl, S.R.Lesher,

A.F.Lisetskiy, M.T.McEllistrem, M.Merrick, H.H.Pitz, N.Warr, V.Werner, S.W.Yates
Phys. Rev. C 67, 024307 (2003)

Comprehensive studies of low-spin collective excitations in 94Mo
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Gamma spectroscopy following beta decay:

(γ, γ′) coincidence spectroscopy from nuclei populated by beta decay is a
very powerful tool. These reactions produce beautiful spectra, as there is no
background from the E2 giant resonance in particular and the continuum
contributions in general.The reaction is not complete because the beta
decay populates selective states. This disadvantage is off set to a large

extent by the very low background, the high statistics and the coincidence
spectra, which are obtained in large arrays. A big progress in spectroscopy
was in the parallel use of several reactions to study one nucleus. In Koeln it

was found that combinations of some of the reactions (p,n), (3He, n),
(3He, p), (4He, n), (4He, nn) , (6Li,3n) with beta decay data and with

heavy ion xn reactions produced very “complete data”

11



Lifetimes of highly excited states from NRF

@ S-Dalinac (Darmstadt) or

@Dynamitron (Stuttgart)

@Linac Rossendorf

NRF = Nuclear resonance fluorescence

NRF = Resonant inelastic photon scattering

NRF = A(γ,γ)A∗

Resonance reaction:

A + γ ⇒

A ∗ ∗(E, I) ⇒ γ + A∗
12



HPGe

HPGe

e-

∆J = 1,2

high energy resolution

(Nuclear Resonance Fluorescence)

The Photon Scattering Technique

Πλ  -strength

1

U.Kneissl, H.H.Pitz and A.Zilges. Prog. Part. Nucl. Physics Vol. 37 p 349 1996
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Comments on NRF = Nuclear resonance fluorescence spectroscopy

The method uses the secondary beam approach which is the basis of the
rare isotopes beam spectroscopy. Here the primary electron beam( which

has good energy resolution ) is converted into a bremsstrahlung photon
beam ( which has bad energy resolution )which is used to induce the

resonance reaction.

A + γ ⇒A ∗ ∗(E, I) ⇒ γ + A∗

It is surprising that the background in the spectra is so low and that the
peaks in the spectrum show up so clearly above the background. This works
in particular at the low electron energies of a few MeV. This is Ulrich Kneissl’s

secret.
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The NRF spectroscopy allows to measure in particular

energies E, total lifetimes respectively partial lifetimes which are obtained
from the total life time by considering the branched decay. Alternatively

one gives the decay constants λk from the lifetimes or from the partial
lifetimes respectively one obtains the electromagnetic transition

probabilities B(E,M, λk) , which are crucial observables. Furthermore one
obtains spins J from the angular distributions of the gammas and parities
from measurements of the linear polarization of the gammas. Finally one
can obtain in rotational nuclei the K quantum number. Summing up one
can measure by NRF spectroscopy a formidable array of observables :

E, B(M1), B(E1), B(E2), J,π, K

16



Review of NRF

U.Kneissl, H.H.Pitz and A.Zilges. Prog. Part. Nucl. Physics Vol. 37 p 349 1996

see also references contained therein

Review of Scissor mode : A Richter Prog. Part. Nucl. Physics Vol. 34 p261 1995

see also references contained therein. Examles are e.g

R.-D.Herzberg, I.Bauske, P.von Brentano, Th.Eckert, R.Fischer, W.Geiger,
U.Kneissl, J.Margraf, H.Maser, N.Pietralla, H.H.Pitz, A.Zilges, Nucl.Phys. A592,

211 (1995) Lifetimes of Two-Phonon 1- States in Even N = 82 Nuclei

J.Bryssinck, L.Govor, D.Belic, F.Bauwens, O.Beck, P.von Brentano, D.De
Frenne, T.Eckert, C.Fransen, K.Govaert, R.-D.Herzberg, E.Jacobs, U.Kneissl,
H.Maser, A.Nord, N.Pietralla, H.H.Pitz, V.Yu.Ponomarev, V.Werner, Phys.Rev.

C59, 1930 (1999)

Uniform Properties of Jpi = 1- Two-Phonon States in the Semimagic
Even-Even Tin Isotopes 116,118,120,122,124Sn

17



Collectivity of the scissors mode

1+
sc

M1 E2

1 2+ +
sc 1

Koln − Stuttgart − 

N. Pietralla et al., Phys. Rev. C 58, 184 (1998)

Rare earth region

Darmstadt − Rossendorf
collaboration

:

p n

core
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Recent examples of the low spin spectroscopy of isovector excitations in the
mass 90 region e.g. 92Zr and 94Mo come from the

Koeln Lexington Stuttgart Collaboration.e.g. :

C.Fransen, N.Pietralla, Z.Ammar, D.Bandyopadhyay, N.Boukharouba, P.von
Brentano, A.Dewald, J.Gableske, A.Gade, J.Jolie, U.Kneissl, S.R.Lesher,

A.F.Lisetskiy, M.T.McEllistrem, M.Merrick, H.H.Pitz, N.Warr, V.Werner, S.W.Yates

Phys. Rev. C 67, 024307 (2003)

Comprehensive studies of low-spin collective excitations in 94Mo

19
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Shell model fit for    Zr

G. Jacobs et al., Phys. Lett. B468, 13 (1999)
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