The interacting boson model

P. Van Isacker, GANIL, France

Introduction to the IBM
Practical applications of the IBM
Overview of nuclear models

- *Ab initio* methods: Description of nuclei starting from the bare nn & nnn interactions.
- Mean-field methods: Nuclear average potential with global parametrization (+ correlations).
- Nuclear shell model: Nuclear average potential + (residual) interaction between nucleons.
- Phenomenological models: Specific nuclei or properties with local parametrization, e.g. the interacting boson model.
Ab initio methods

- Many **ab initio** methods exist and give consistent results.
- Example: \(A=4 \)

<table>
<thead>
<tr>
<th>Method</th>
<th>(\langle T \rangle)</th>
<th>(\langle V \rangle)</th>
<th>(E_b)</th>
<th>(\sqrt{\langle r^2 \rangle})</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY</td>
<td>102.39(5)</td>
<td>-128.33(10)</td>
<td>-25.94(5)</td>
<td>1.485(3)</td>
</tr>
<tr>
<td>CRCGV</td>
<td>102.30</td>
<td>-128.20</td>
<td>-25.90</td>
<td>1.482</td>
</tr>
<tr>
<td>SVM</td>
<td>102.35</td>
<td>-128.27</td>
<td>-25.92</td>
<td>1.486</td>
</tr>
<tr>
<td>HH</td>
<td>102.44</td>
<td>-128.34</td>
<td>-25.90(1)</td>
<td>1.483</td>
</tr>
<tr>
<td>GFMC</td>
<td>102.3(1.0)</td>
<td>-128.25(1.0)</td>
<td>-25.93(2)</td>
<td>1.490(5)</td>
</tr>
<tr>
<td>NCSM</td>
<td>103.35</td>
<td>-129.45</td>
<td>-25.80(20)</td>
<td>1.485</td>
</tr>
<tr>
<td>EIHH</td>
<td>100.8(9)</td>
<td>-126.7(9)</td>
<td>-25.944(10)</td>
<td>1.486</td>
</tr>
</tbody>
</table>

NSDD Workshop, Trieste, April 2005
Ab initio calculations for light nuclei

- Systematic studies of light nuclei ($A \leq 12$) ⇒ evidence for three-body nucleon interactions.

NSDD Workshop, Trieste, April 2005
Tri-partite classification of nuclei

• Empirical evidence for seniority-type, vibrational- and rotational-like nuclei:

• Need for model of vibrational nuclei.

NSDD Workshop, Trieste, April 2005
The interacting boson model

- Spectrum generating algebra for the nucleus is U(6). All physical observables (hamiltonian, transition operators,…) are expressed in terms of s and d bosons.

- Justification from
 - Shell model: s and d bosons are associated with S and D fermion ($Cooper$) pairs.
 - Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian.

NSDD Workshop, Trieste, April 2005
The IBM hamiltonian

- Rotational invariant hamiltonian with up to N-body interactions (usually up to 2):
 \[\hat{H}_{\text{IBM}} = \varepsilon_s \hat{n}_s + \varepsilon_d \hat{n}_d + \sum_{l_1 l_2 l'_1 l'_2, L} \nu_{l_1 l_2 l'_1 l'_2, L} \left(b^+_{l_1} \times b^+_{l_2} \right)^{(L)} \cdot \left(\tilde{b}_{l'_1} \times \tilde{b}_{l'_2} \right)^{(L)} + \cdots \]

- For what choice of single-boson energies ε and boson-boson interactions ν is the IBM hamiltonian solvable?

- This problem is equivalent to the enumeration of all algebras G satisfying
 \[\mathbb{U}(6) \supset G \supset \mathbb{SO}(3) \equiv \left\{ \hat{L}_\mu = \sqrt{10} \left(d^+ \times \tilde{d} \right)_\mu^{(1)} \right\} \]

NSDD Workshop, Trieste, April 2005
Dynamical symmetries of the IBM

- **U(6)** has the following subalgebras:

 \[U(5) = \left\{ \left(d^+ \times \tilde{d} \right)_\mu^{(0)}, \left(d^+ \times \tilde{d} \right)_\mu^{(1)}, \left(d^+ \times \tilde{d} \right)_\mu^{(2)}, \left(d^+ \times \tilde{d} \right)_\mu^{(3)}, \left(d^+ \times \tilde{d} \right)_\mu^{(4)} \right\} \]

 \[SU(3) = \left\{ \left(d^+ \times \tilde{d} \right)_\mu^{(1)}, \left(s^+ \times \tilde{d} + d^+ \times \tilde{s} \right)_\mu^{(2)} - \sqrt{7/4} \left(d^+ \times \tilde{d} \right)_\mu^{(2)} \right\} \]

 \[SO(6) = \left\{ \left(d^+ \times \tilde{d} \right)_\mu^{(1)}, \left(s^+ \times \tilde{d} + d^+ \times \tilde{s} \right)_\mu^{(2)}, \left(d^+ \times \tilde{d} \right)_\mu^{(3)} \right\} \]

 \[SO(5) = \left\{ \left(d^+ \times \tilde{d} \right)_\mu^{(1)}, \left(d^+ \times \tilde{d} \right)_\mu^{(3)} \right\} \]

- **Three solvable limits are found:**

 \[U(6) \supset \begin{cases} U(5) \supset SO(5) \\ SU(3) \supset SO(3) \\ SO(6) \supset SO(5) \end{cases} \supset SO(3) \]
Dynamical symmetries of the IBM

- The general IBM hamiltonian is
 \[\hat{H}_{\text{IBM}} = \epsilon_s \hat{n}_s + \epsilon_d \hat{n}_d + \sum_{l_1 l_2 l'_1 l'_2, L} \nu_{l_1 l_2 l'_1 l'_2} \left(b_{l_1}^+ \times b_{l_2}^+ \right)^{(L)} \cdot \left(\tilde{b}_{l'_1} \times \tilde{b}_{l'_2} \right)^{(L)} + \cdots \]

- An entirely equivalent form of \(H_{\text{IBM}} \) is
 \[\hat{H}_{\text{IBM}} = \eta_0 \hat{C}_1[U(6)] + \eta_1 \hat{C}_1[U(5)] + \kappa'_0 \hat{C}_1[U(6)] \hat{C}_1[U(5)] \\
 + \kappa_0 \hat{C}_2[U(6)] + \kappa_1 \hat{C}_2[U(5)] + \kappa_2 \hat{C}_2[\text{SU}(3)] \\
 + \kappa_3 \hat{C}_2[\text{SO}(6)] + \kappa_4 \hat{C}_2[\text{SO}(5)] + \kappa_5 \hat{C}_2[\text{SO}(3)] \]

- The coefficients \(\eta \) and \(\kappa \) are certain combinations of the coefficients \(\epsilon \) and \(\nu \).
The solvable IBM hamiltonians

- *Excitation* spectrum of H_{IBM} is determined by
 \[
 \hat{H}_{\text{IBM}} = E_0 + \eta_1 \hat{C}_1[U(5)] + \kappa_1 \hat{C}_2[U(5)] + \kappa_2 \hat{C}_2[SU(3)] + \kappa_3 \hat{C}_2[SO(6)] + \kappa_4 \hat{C}_2[SO(5)] + \kappa_5 \hat{C}_2[SO(3)]
 \]

- If certain coefficients are zero, H_{IBM} can be written as a sum of commuting operators:
 \[
 \begin{align*}
 \hat{H}_{U(5)} &= \eta_1 \hat{C}_1[U(5)] + \kappa_1 \hat{C}_2[U(5)] + \kappa_4 \hat{C}_2[SO(5)] + \kappa_5 \hat{C}_2[SO(3)] \\
 \hat{H}_{SU(3)} &= \kappa_2 \hat{C}_2[SU(3)] + \kappa_5 \hat{C}_2[SO(3)] \\
 \hat{H}_{SO(6)} &= \kappa_3 \hat{C}_2[SO(6)] + \kappa_4 \hat{C}_2[SO(5)] + \kappa_5 \hat{C}_2[SO(3)]
 \end{align*}
 \]
The U(5) vibrational limit

- Anharmonic vibration spectrum associated with the quadrupole oscillations of a spherical surface.
- Conserved quantum numbers: n_d, ν, L.

D. Brink et al., Phys. Lett. 19 (1965) 413
The SU(3) rotational limit

- Rotation-vibration spectrum of quadrupole oscillations of a spheroidal surface.
- Conserved quantum numbers: $(\lambda, \mu), L$.

The SO(6) γ-unstable limit

- Rotation-vibration spectrum of quadrupole oscillations of a γ-unstable spheroidal surface.
- Conserved quantum numbers: σ, υ, L.

A. Arima & F. Iachello, Ann. Phys. (NY) 123 (1979) 468
L. Wilets & M. Jean, Phys. Rev. 102 (1956) 788

NSDD Workshop, Trieste, April 2005
Modes of nuclear vibration

• Nucleus is considered as a droplet of nuclear matter with an equilibrium shape. Vibrations are modes of excitation around that shape.

• Character of vibrations depends on symmetry of equilibrium shape. Two important cases in nuclei:
 – Spherical equilibrium shape
 – Spheroidal equilibrium shape
Vibrations about a spherical shape

- Vibrations are characterized by a multipole quantum number λ in surface parametrization:

\[
R(\theta, \varphi) = R_0 \left(1 + \sum_{\lambda} \sum_{\mu=-\lambda}^{+\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}^*(\theta, \varphi) \right)
\]

- $\lambda=0$: compression (high energy)
- $\lambda=1$: translation (not an intrinsic excitation)
- $\lambda=2$: quadrupole vibration
Vibrations about a spheroidal shape

• The vibration of a shape with axial symmetry is characterized by $a_{\lambda \nu}$.

• Quadrupolar oscillations
 – $\nu=0$: along the axis of symmetry (β)
 – $\nu=\pm1$: spurious rotation
 – $\nu=\pm2$: perpendicular to axis of symmetry (γ)
Synopsis of IBM symmetries

• Three standard solutions: $U(5)$, $SU(3)$, $SO(6)$.
• Analytic solution for $U(5) \rightarrow SO(6)$ via $SU(1,1)$ Richardson-Gaudin integrability.
• Hidden symmetries because of parameter transformations: $SU_{\pm}(3)$ and $SO_{\pm}(6)$.
• Partial dynamical symmetries.
• Critical-point symmetries?
Classical limit of IBM

- For large boson number N, a coherent (or intrinsic) state is an approximate eigenstate,

$$\hat{H}_{\text{IBM}}|N;\alpha_\mu\rangle \approx E|N;\alpha_\mu\rangle, \quad |N;\alpha_\mu\rangle \propto \left(s^+ + \sum_\mu \alpha_\mu d^+\right)^N|0\rangle$$

- The real parameters α_μ are related to the three Euler angles and shape variables β and γ.

- Any IBM hamiltonian yields energy surface:

$$\langle N;\alpha_\mu|\hat{H}_{\text{IBM}}|N;\alpha_\mu\rangle = \langle N;\beta\gamma|\hat{H}_{\text{IBM}}|N;\beta\gamma\rangle \equiv V(\beta,\gamma)$$

Geometry of IBM

• A simplified, much used IBM hamiltonian:
 \[\hat{H}_{\text{CQF}} = \varepsilon_d \hat{n}_d - \kappa \hat{Q}^x \cdot \hat{Q}^x, \quad \hat{Q}^x_\mu = s^+ \tilde{d}_\mu + d^+_\mu s + \chi (d^+ \times \tilde{d})_\mu^{(2)} \]

• \(H_{\text{CQF}} \) can acquire the three IBM symmetries.

• \(H_{\text{CQF}} \) has the following classical limit:

 \[
 V_{\text{CQF}}(\beta, \gamma) \equiv \langle N; \beta \gamma | \hat{H}_{\text{CQF}} | N; \beta \gamma \rangle \\
 = \varepsilon_d N \frac{\beta^2}{1 + \beta^2} - \kappa N \frac{5 + (1 + \chi^2)\beta^2}{1 + \beta^2} \\
 - \kappa \frac{N(N-1)}{1 + \beta^2} \left(\frac{2}{7} \chi^2 \beta^4 - 4 \sqrt{\frac{2}{7}} \chi \beta^3 \cos 3\gamma + 4 \beta^2 \right)
 \]
Phase diagram of IBM

$\varepsilon_d = 0, \kappa \neq 0$

$\chi = +\sqrt{\frac{7}{4}}$

$\varepsilon_d = 0, \kappa \neq 0$

$\chi = 0$

$\varepsilon_d \neq 0, \kappa = 0$

$\chi = 0$

$\varepsilon_d \neq 0, \kappa \neq 0$

$\chi = -\sqrt{\frac{7}{4}}$

NSDD Workshop, Trieste, April 2005
Microscopy of IBM

• In a boson mapping, fermion pairs are represented as bosons:
 \[s^+ \Leftrightarrow S^+ = \sum_j \alpha_j (a_j^+ \times a_j^+)^{(0)}, \quad d^+_\mu \Leftrightarrow D^+_\mu = \sum_{jj'} \beta_{jj'} (a_j^+ \times a_j)^{(2)} \mu \]

• Mapping of operators (such as hamiltonian) should take account of Pauli effects.

• Two different methods by
 – requiring same commutation relations;
 – associating state vectors.
Extensions of the IBM

- Neutron and proton degrees freedom (IBM-2):
 - F-spin multiplets ($N_\nu+N_\pi=$constant).
 - Scissors excitations.

- Fermion degrees of freedom (IBFM):
 - Odd-mass nuclei.
 - Supersymmetry (doublets & quartets).

- Other boson degrees of freedom:
 - Isospin $T=0$ & $T=1$ pairs (IBM-3 & IBM-4).
 - Higher multipole ($g,...$) pairs.
Scissors excitations

- **Collective displacement modes between neutrons and protons:**
 - *Linear* displacement (giant dipole resonance): \(R_\nu - R_\pi \Rightarrow E1 \) excitation.
 - *Angular* displacement (scissors resonance): \(L_\nu - L_\pi \Rightarrow M1 \) excitation.

Supersymmetry

- A simultaneous description of even- and odd-mass nuclei (*doublets*) or of even-even, even-odd, odd-even and odd-odd nuclei (*quartets*).

- Example of 194Pt, 195Pt, 195Au & 196Au:

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\hline
195_{\text{Pt}} t_{11/2}
\hline
\end{array}
\begin{array}{c}
\hline
196_{\text{Au}} t_{11/2}
\hline
\end{array}
\end{array}
\begin{array}{c}
\hline
194_{\text{Pt}} t_{11/2}
\hline
\end{array}
\begin{array}{c}
\hline
195_{\text{Au}} t_{11/2}
\hline
\end{array}
\end{array}
\end{array}
\end{array}
\]

NSDD Workshop, Trieste, April 2005
Example of 195Pt
Example of $^{196}_{79}\text{Au}_{117}$
Isospin invariant boson models

• Several versions of IBM depending on the fermion pairs that correspond to the bosons:
 – IBM-1: single type of pair.
 – IBM-2: $T=1$ nn ($M_T=-I$) and pp ($M_T=+I$) pairs.
 – IBM-3: full isospin $T=1$ triplet of nn ($M_T=-I$), np ($M_T=0$) and pp ($M_T=+I$) pairs.
 – IBM-4: full isospin $T=1$ triplet and $T=0$ np pair (with $S=1$).

• Schematic IBM-k has only S ($L=0$) pairs, full IBM-k has S ($L=0$) and D ($L=2$) pairs.
Algebraic many-body models

• The integrability of quantum many-body (bosons and/or fermions) systems can be analyzed with algebraic methods.

• Two nuclear examples:
 – Pairing vs. quadrupole interaction in the nuclear shell model.
 – Spherical, deformed and γ-unstable nuclei with s,d-boson IBM.

\[
\begin{align*}
U(6) \subset & \left\{
\begin{array}{c}
U(5) \supset SO(5) \\
SU(3) \\
SO(6) \supset SO(5)
\end{array}
\right\} \supset SO(3)
\end{align*}
\]
Other fields of physics

• Molecular physics:
 – $U(4)$ vibron model with s,p-bosons.

\[U(4) \supset \begin{cases} U(3) \\ SO(4) \end{cases} \supset SO(3) \]

 – Coupling of many $SU(2)$ algebras for polyatomic molecules.

• Similar applications in hadronic, atomic, solid-state, polymer physics, quantum dots…

F. Iachello, 1975 to now
The interacting boson model

P. Van Isacker, GANIL, France

Introduction to the IBM
Practical applications of the IBM
The IBM hamiltonian

- Rotational invariant hamiltonian with up to N-body interactions (usually up to 2):

$$\hat{H}_{\text{IBM}} = \varepsilon_s \hat{n}_s + \varepsilon_d \hat{n}_d + \sum_{l_1l_2l_1'l_2'} u^L_{l_1l_2l_1'l_2'} \left(b^{+}_{l_1} \times b^{+}_{l_2} \right)^{(L)} \cdot \left(\tilde{b}_{l_1'} \times \tilde{b}_{l_2'} \right)^{(L)} + \cdots$$

- Explicit forms of the hamiltonian: multipole expansion and “standard representation”.

NSDD Workshop, Trieste, April 2005
The IBM hamiltonian

- **Standard representation:**

\[
\hat{H} = c(1)\hat{N} + c(2)\hat{n}_d + c(3)\frac{1}{2}[[d^\dagger \times d^\dagger]^0] \times [\tilde{d} \times \tilde{d}]^0 \\
+ c(4)\sqrt{5}\frac{1}{2}[[d^\dagger \times d^\dagger]^2] \times [\tilde{d} \times \tilde{d}]^2 \\
+ c(5)\frac{3}{2}[[d^\dagger \times d^\dagger]^4] \times [\tilde{d} \times \tilde{d}]^4 \\
+ c(6)[[s^\dagger \times d^\dagger]^2] \times [\tilde{d} \times \tilde{d}]^2 + [d^\dagger \times d^\dagger]^2 \times [\tilde{s} \times \tilde{d}]^2 \\
+ c(7)[[s^\dagger \times s^\dagger]^0] \times [\tilde{d} \times \tilde{d}]^0 + [[d^\dagger \times d^\dagger]^0] \times [\tilde{s} \times \tilde{s}]^0 \\
+ c(8)\sqrt{5}[[s^\dagger \times d^\dagger]^2] \times [\tilde{s} \times \tilde{d}]^2 \\
+ c(9)[[s^\dagger \times s^\dagger]^0] \times [\tilde{s} \times \tilde{s}]^0.
\]

- **Multipole expansion:**

\[
\hat{H} = EPS\hat{n}_d + A(0)\hat{P}^\dagger \hat{P} + A(1)\hat{L} \cdot \hat{L} + A(2)\hat{Q}_\chi \cdot \hat{Q}_\chi + A(3)\hat{T}_3 \cdot \hat{T}_3 + A(4)\hat{T}_4 \cdot \hat{T}_4,
\]
The U(5) vibrational limit

- **U(5) Hamiltonian:**

\[
\hat{H}_{\text{U}(5)} = \varepsilon \hat{n}_d + \sum_{L=0,2,4} c^L \frac{1}{2} (d^+ \times d^+)^{(L)} \cdot (\tilde{d} \times \tilde{d})^{(L)}
\]

- **Energy eigenvalues:**

\[
E(n_d, \nu, L) = \varepsilon n_d + \kappa_1 n_d (n_d + 4) + \kappa_4 \nu (\nu + 3) + \kappa_5 L (L + 1)
\]

with

\[
\kappa_1 = \frac{1}{12} c_0
\]

\[
\kappa_4 = -\frac{1}{10} c_0 + \frac{1}{7} c_2 - \frac{3}{70} c_4
\]

\[
\kappa_5 = -\frac{1}{14} c_2 + \frac{1}{14} c_4
\]
The U(5) vibrational limit

- Conserved quantum numbers: n_d, ν, L.

![Diagram showing energy levels and quantum numbers for U(5) vibrational limit]
The SU(3) rotational limit

• **SU(3) Hamiltonian:**

\[\hat{H}_{\text{SU}(3)} = a \hat{Q}_\lambda \cdot \hat{Q}_\lambda + b \hat{L} \cdot \hat{L} \]

• **Energy eigenvalues:**

\[E(\lambda, \mu, L) = \kappa_2 \left(\lambda^2 + \mu^2 + 3\lambda + 3\mu + \lambda\mu \right) + \kappa_5 L(L+1) \]

with

\[\kappa_2 = \frac{1}{2} a \]

\[\kappa_5 = b - \frac{3}{8} a \]
The SU(3) rotational limit

- Conserved quantum numbers: \((\lambda, \mu), L\).
The SO(6) γ-unstable limit

- **SO(6) Hamiltonian:**

\[
\hat{H}_{\text{SO}(6)} = a\hat{P}^+ \cdot \hat{P} + b\hat{T}_3 \cdot \hat{T}_3 + c\hat{L} \cdot \hat{L}
\]

- **Energy eigenvalues:**

\[
E(\sigma, \nu, L) = \kappa_3 [N(N + 4) - \sigma(\sigma + 4)] + \kappa_4 \nu(\nu + 3) + \kappa_5 L(L + 1)
\]

with

\[
\kappa_3 = \frac{1}{4} a
\]

\[
\kappa_4 = \frac{1}{2} b
\]

\[
\kappa_5 = -\frac{1}{10} b + c
\]
The SO(6) γ-unstable limit

- Conserved quantum numbers: σ, v, L.
Configuration mixing in shell model

- Example of platinum isotopes (Z=78, 82<N<126):
 - Regular configuration: 4 proton holes in 50-82 shell.
 - Deformed configuration: 6 proton holes in 50-82 shell and 2 protons in the 82-126 shell.
 - Neutrons always in 82-126 shell.

Configuration mixing in IBM

- **Example of platinum isotopes (Z=78, 82<N<126):**
 - Regular configuration: $N_\pi = 2$ proton bosons.
 - Deformed configuration: $N_\pi = 4$ proton bosons.
 - Always N_ν neutron bosons.

- **IBM-1: configurations with N and $N+2$ bosons.**

NSDD Workshop, Trieste, April 2005
Example: Coexistence in 186Pb

- Observation: triplet of differently shaped 0^+ states in 186Pb.
- Mean-field theory predicts three minima.
- IBM calculation for Pb isotopes yields
 - spectroscopy;
 - geometry.

Lead isotopes in the IBM

- **Hamiltonian for three configurations:**

\[
H = H_{0p-0h} + H_{2p-2h} + H_{4p-4h} + H_{\text{mix}}^{02} + H_{\text{mix}}^{24}
\]

\[
H_{ip-ih} = \varepsilon_i n_d + \kappa_i Q_i \cdot Q_i, \quad Q_i = \left(s^+ \tilde{d} + d^+ \tilde{s}\right)^{(2)} + \chi_i \left(d^+ \tilde{d}\right)^{(2)}
\]

\[
H_{\text{mix}}^{ii} = \omega_0^{ii} \left(s^+ s^+ + \tilde{s} \tilde{s}\right) + \omega_2^{ii} \left(\tilde{d} \cdot d^+ + \tilde{d} \cdot \tilde{d}\right)
\]

- Single parameter set for all Pb isotopes.
- Parameters for 2p-2h and 4p-4h configurations obtained from \(I\)-spin considerations.

Spectroscopy of lead isotopes

NSDD Workshop, Trieste, April 2005