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Homogeneous vs growing
complex networks

B. Waclaw (IF UJ, Poland)

Burda, Dorogovtsev, Samukhin, Khang, Lassig, Newman, Snijders, Vicsek

and many others




one adds new nodes to existing
network:

only causal labeling is
acceptable

J T T

Growing « Homogeneous

every nodes are equivalent — the
labeling has no meaning

N .

I

every permutation of labels is
equiprobable

the most known construction — the Erdos-
Rényi random graphs

-start from N empty nodes,

-add L links at random.

-Equivalent with some kind of
rearragement of initial network



Why homogeneous network?

« today many observed networks still grow

~ *» but there is another process —
: rearrangement

this can play important role in future

better to examine the structural propertie

(growing — for dynamical)
« for randomizing
~ » average case of algorithms




Statistical ensemble

bt

it is convenient to define statistical ensemble of homogeneous

networks: one can use classical statistical physics techniques
 partition function Z allows to calculate many quantities

e

Many possibilities, but the three most popular:

EhnCy

e microcanonical

Degrees g of all nodes are fixed, graphs differ in such properties like number of
triangles (— clustering), diameter, etc.

et

* canonical
Only number of nodes N and number of links L fixed, like in E-R graphs.

ot

* grandcanonical

N fixed, L may fluctuate, like in binomial graphs.

ot




Starting point — ER graphs

N nodes and L links chosen at random from N(N-1)/2 possible
* each labeled graph has the same weight (1/N! for convenience)

To get E-R graphs we take off the labels:

5%
S

three distinct labeled graph —weight 3/3!

one labeled graph — weight 1/3!



The partition function

Z(N,L)y= ) % = > w(a),

o’elg(N.,L) ' aeg(N.L)
the sum over all labeled graphs the sum over distinct
(with equal weights) unlabeled graphs

where w(a) = (# of labeled graphs equiv. to o.)/N!
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Example: binomial graphs

- we start from N empty nodes
- add a link with probability equal to p
- the weight of graph is:

p — probability of presence of link

P(L) <

N(N-1)/2
( ( L) ij(l_p)N(N—n/z—L

the weight of graph with N
nodes and L links

Zv =Y Y Ry -a-2OY () ¥ 5

L aclg(N,L) P cigN

o Zexp(—ﬂL) Z(N,L) x Zexp(—uL + S(N.L)).

(= In 1—;2. »chemical potential” Z for Erdds-Rényi graphs (can
be calculated very easy)




- Therefore we have: () (N) . .
Z(N,p) = Z e_‘"‘LNl( ) g(1+€_”)(2)

one can (L) = —9, I Z(N, )
calculate many (L2) — ()2 = aﬁ InZ(N,p)

quantities: D




Weighten graphs 1

4 3

W =p0)p3)p(2)p(1)p(1)p(3)

additional functional weight W(a) :

Z(N.L)y= Y (1/NYyW() = >  w@)W(a)

a’€lg(N,L) aEg(N,L)
the simplest non-trivial choice:

Wia) = H p(q;) p(q) is an arbitrary function of node’s degree

What p(g) should we take?

— such that the resulting network has interesting properties.




 the degree distribution n(q)ocq 7,
~+ inthe limit of N — oo:

m(q) = pé‘f)fxp(—ﬁq — B)

(g-1)! for tree
graphs

taking p(q)=<q!q ¥ and appropriate form of p(q) for small g’s, one can
set A=0 and then n(q)«<q 7,

finite size corrections for N <

the Barabasi-Albert model with m = 1 (tree graphs):

_ 4
ﬂ'(q)  qlg+1)(g+2)

4
. = (g-1)!
take p@=(@@q-D T D@D

 ifL=N,then <g>=2and A =B =0 = degree distribution is B-A (but
we have different graphs from those of B-Al)




A single network with N=10000 nodes and B-A degree distribution

_ 4
ﬂ-(q)  qlg+1)(g+2)
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m(q)
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7(q) averaged over the ensemble
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G(r)

G(r)

Node — node distance distribution G(7)
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Can we calculate anything?

* many results possible for tree graphs,
-+ for simple graphs — more difficult but still possible
numerical MC simulations possible — Markov process:
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A program for these simulations — almost ready.




Analytically: E-R graphs + more triangles

Z(N,ﬂ)=Zexp[—ﬂL(A)+S(A)]:ZGXP[_gTrAz+

sum over all possible

adjacency matrices o ,
similar to matrix models

1
Z o atrix = / dM exp (—ET?«(M?) + gTr(M?))

-~ =7, Z % <[TI”( A3 )]”> expansion around

E—-R the E-R model



Some results

10 :
<T> The number of triangles as a

function of coupling constant G=6

= E
i ] g.
1074 3 :
o E Plots for different average degree
101[ =2, _E o= 2,4,8.
o | | L | | ]

10 I 2 3 1 G5

1035 LA B B L
N T 2 N x clustering coefficient
v ]
Z | o

10° i

For E-R: C=ao/N
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To summarize:

= for the same 7(q) homogeneous networks may have different properties than
growing,

= statistical ensembles approach may be useful for static models,

= casy way of simulating (many newtorks — by changing only the weight)

For future works:
" ‘mixed model’: growing and rewiring,

= add triangles to increase clustering coefficient,
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"'test1‘.daf" |

"test2.dat"
"test3.dat"
"BA100m1.dat" using (exp($1)):(exp($2))

"BA200m1.dat" using (exp($1)):(exp($2)) ——
"BA400m1.dat" using (exp($1)):(exp($2)) — -
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