School and Workshop on

 Structure and Function of Complex Networks16-28 May 2005

Structural Correlations and Critical Phenomena of Random Scale-Free Networks: Analytic Approaches

[^0][^1]Strada Costiera II, 34014 Trieste, Italy - Tel. +390402240 III: Fax +39040224 I 63 - sci_ info@ictp.it, www.ictp.it

Structural correlations and critical phenomena of random scale-free networks: Analytic approaches

DOOCHUL KIM (Seoul National University)

Collaborators:
Byungnam Kahng (SNU), Kwang-Il Goh (SNU/Notre Dame), Deok-Sun Lee (Saarlandes), Jae- Sung Lee (SNU), G. J. Rodgers (Brunel) D.H. Kim (SNU)
I. Static model of scale-free networks
II. Vertex correlation functions
III. Number of self-avoiding walks and circuits
IV. Percolation transition
V. Critical phenomena of spin models defined on the static model
VI. Conclusion

I. Static model of scale-free networks

$$
a_{i, j}=\text { adjacency matrix element }(0,1)
$$

$$
G=\left\{a_{i, j}\right\}
$$

$$
i, j=1, \cdots, N \quad(N \text { fixed })
$$

1. Degree of a vertex i : $\quad k_{i}=\sum_{j=1}^{N} a_{i, j}$
2. Degree distribution: $\quad P_{D}(k) \sim k^{-\lambda}$

* We consider sparse, undirected, non-degenerate graphs only.
* Ensemble of graphs: $\quad\langle O\rangle=\sum_{G} P(G) O(G)$
* Various equilibrium ensembles for SF networks
* Grandcanonical ensemble is for G with fluctuating number of link
\rightarrow Static model: Goh et al PRL (2001), Lee et al NPB (2004), Pramana (2005, Statpys 22 proceedings), DH Kim et al PRE(2005 to appear)

Precursor of the fitness or hidden variable model [Caldarelli et al PRL (2002), Soederberg PRE (2002) , Boguna and Pastor-Satorras PRE (2003)]

* Construction of the static model

1. Each site is given a weight ("fitness")

$$
P_{i}=i^{-\mu} / \sum_{j=1}^{N} j^{-\mu} \quad(i=1, \cdots, N), \quad \sum_{i} P_{i}=1, \quad(0<\mu<1)
$$

2. In each unit time, select one vertex i

$$
=1 /(\lambda-1)
$$

with prob. P_{i} and another vertex j with prob. P_{j}.
3. If $i j$ or $a_{i j} 1$ already, do nothing (fermionic constraint). Otherwise add a link, i.e., set $a_{i j} 1$.
4. Repeat steps $2,3 N K$ times $(K=$ time $=$ fugacity $=\langle L\rangle / N)$.

$$
\begin{aligned}
& \because \operatorname{Prob}\left(a_{i j}=0\right)=\left(1-2 P_{i} P_{j}\right)^{N K}=\mathrm{e}^{-2 K N P_{i} P_{j}}=1-f_{i j} \\
& \because \operatorname{Prob}\left(a_{i j}=1\right)=f_{i j}=1-\mathrm{e}^{-2 K N P_{i} P_{j}}
\end{aligned}
$$

\rightarrow Such algorithm realizes a "grandcanonical ensemble" of graphs $G=\left\{a_{i j}\right\}$ with weights

$$
P(G)=\prod_{b \in G} f_{i j} \prod_{b \notin G}\left(1-f_{i j}\right)=\prod_{i>j} f_{i j}^{a_{i j}}\left(1-f_{i j}\right)^{1-a_{i j}}
$$

Each link is attached independently but with inhomegeous probability $f_{i, j}$.

Some basic properties:

$$
\begin{aligned}
& P\left(k_{i}\right)=\text { Poissonian with mean }\left\langle k_{i}\right\rangle=2 K N P_{i}, \\
& \langle k\rangle \equiv \sum_{i=1}^{N}\left\langle k_{i}\right\rangle / N=2 K, \\
& \left\langle k^{2}\right\rangle \equiv \sum_{i=1}^{N}\left\langle k_{i}^{2}\right\rangle / N=<k>+\langle k\rangle^{2}\left(\sum_{i=1}^{N} N P_{i}^{2}\right), \\
& P_{D}(k)=\text { Scale-free with } \lambda=1+\frac{1}{\mu}
\end{aligned}
$$

Vertex correlations

II. Vertex correlation functions

$k_{\mathrm{nn}}(k)=$ average degree of neighbors of vertices with degree k.
$C(k)=$ clustering coefficient of vertices with degree k

Related work: Catanzaro and Pastor-Satoras, EPJ (2005)

Vertex correlations

TRIESTE Workshop on Structure and Function of complex Networks (May 22-28, 2005)

Vertex correlations

Our method of analytical evaluations:

$$
k_{\mathrm{nn}}(i) \equiv\left(\frac{\sum_{j \neq i} a_{i, j}\left(\sum_{m \neq i, j} a_{j, m}+1\right)}{k_{i}}\right) \approx \frac{\sum_{j \neq i} f_{i, j}\left(\sum_{m \neq i, j} f_{j, m}+1\right)}{<k_{i}>}
$$

For a monotone decreasing function $F(x)$,

$$
\int_{1}^{N} F(x) d x+F(N) \leq \sum_{m=1}^{N} F(m) \leq \int_{1}^{N} F(x) d x+F(1)
$$

Use this to approximate the first sum as

$$
\begin{aligned}
\sum_{m \neq i, j} f_{j, m}= & (\lambda-1) \Lambda^{(\lambda-1)} \int_{\varepsilon}^{\Lambda}\left(1-e^{-x y}\right) y^{-\lambda} d y \\
+ & O\left(1-e^{-x \Lambda}\right) \\
& \left(\Lambda=N^{\mu} \varepsilon, \varepsilon \sim N^{-1 / 2}, x=\sqrt{<k>N} P_{j} \sim<k_{i}>/ \sqrt{N}\right)
\end{aligned}
$$

Similarly for the second sum.
TRIESTE Workshop on Structure and Function of complex Networks (May 22-28, 2005)

Vertex correlations

Result (1) $k_{n n}(k)$ for $\quad 2<\lambda<3$

$$
k_{n n}(k) \sim \begin{cases}N^{\frac{3-\lambda}{\lambda-1}} & \text { for } k<k_{c} \sim N^{\frac{\lambda-2}{\lambda-1}} \\ N^{3-\lambda} k^{-(3-\lambda)} & \text { for } k>k_{c} \sim N^{\frac{\lambda-2}{\lambda-1}}\end{cases}
$$

$$
C(k) \sim \begin{cases}N^{2-\lambda} \ln N & \text { for } k<k_{C} \\ N^{\left(-2 \lambda^{2}+8 \lambda-7\right) /(\lambda-1)} k^{-(3-\lambda)} & \text { for } k_{C}<k<N^{1 / 2} \\ N^{5-2 \lambda} k^{-2(3-\lambda)} & \text { for } N^{1 / 2}<k<k_{\max } \sim N^{1 /(\lambda-1)}\end{cases}
$$

TRIESTE Workshop on Structure and Function of complex Networks (May 22-28, 2005)

Finite size effect of the clustering coefficient:

$$
\begin{aligned}
& (\text { mean \# of triples }) \sim \sum_{i, j, k} f_{i j} f_{i k} \sim\left\{\begin{array}{cc}
K^{2} N & \lambda>3 \\
K^{2} N^{2 /(\lambda-1)} & 2<\lambda<3
\end{array}\right. \\
& \text { (mean \# of triangles) } \sim \sum_{i, j, k} f_{i j} f_{j k} f_{k i} \sim\left\{\begin{array}{cc}
K^{3} & \lambda>3 \\
K^{\frac{3}{2}(\lambda-1)} N^{\frac{3}{2}(3-\lambda)} & 2<\lambda<3
\end{array}\right. \\
& C=\overline{C(i)} \sim \frac{\ln N}{N^{\lambda-2}}
\end{aligned}
$$

TRIESTE Workshop on Structure and Function of complex Networks (May 22-28, 2005)

III. Number of self-avoiding walks and circuits

\checkmark The number of self-avoiding walks and circuits (self-avoiding loops) are of basic interest in graph theory.
\checkmark Some related works are: Bianconi and Capocci, PRL (2003), Herrero, cond-mat (2004), Bianconi and Marsili, cond-mat (2005) etc.
\checkmark Issue: How does the vertex correlation work on the statistics for $2<\lambda<3$?

The number of L-step self-avoiding walks on a graph is

$$
\sum^{\prime}\left\langle a_{i, j} a_{j, k} \cdots a_{l, m}\right\rangle=\sum^{\prime} f_{i, j} f_{j, k} \cdots f_{l, m}
$$

where the sum is over distinct ordered set of $(L+1)$ vertices,
$\{i, j, \cdots, m\}$. We consider finite L only.

The number of circuits or self-avoiding loops of size L on a graph is

Number of SAWs and Circuits

Strategy for $2<\lambda<3$: For upper bounds, we use

$$
\begin{aligned}
& \quad \sum_{j(\neq i, \cdots, m)} f_{i, j} \leq \sum_{j=1}^{N} f_{i, j} \leq \int_{1}^{N} f_{i, x} d x+f_{i, 1} \\
& =(\lambda-1) \Lambda^{\lambda-1} \int_{\varepsilon}^{\Lambda}\left(1-e^{-x y}\right) y^{-\lambda} d y+\left(1-e^{-x \Lambda}\right) \\
& \left(\Lambda=N^{\mu} \varepsilon, \quad \varepsilon \sim N^{-1 / 2}, \quad x=\sqrt{<k>N} P_{i}\right) \\
& \text { and } \\
& \quad 1-e^{-x} \leq L_{0}(x) \equiv\left\{\begin{array}{lll}
x & \text { if } & 0 \leq x \leq 1 \\
1 & \text { if } & 1 \leq x
\end{array}\right.
\end{aligned}
$$

repeatedly. Similarly for lower bounds with $\left(1-e^{-x}\right) \geq\left(1-e^{-1}\right) G_{0}(x)$
The leading powers of N in both bounds are the same.
Note: The "surface terms" are of the same order as the "bulk terms".
\checkmark For $\lambda>3$, straightforward in the static model \checkmark For $2<\lambda \leq 3$, the leading order terms in N are obtained.

Result(3): Number of L-step self-avoiding walks

$$
\begin{array}{ll}
\sim N\langle k\rangle\left(\frac{\left\langle k^{2}\right\rangle}{\langle k>}-1\right)^{(L-1)} & \\
\sim N>3) \\
\sim N<k>(0.25<k>\ln N)^{(L-1)} & (\lambda=3) \\
\sim N^{1+\left(\frac{3-\lambda}{2}\right)(L-1)} N^{\frac{(3-\lambda)^{2}}{2(\lambda-1)}} & \\
\sim N^{1+\left(\frac{3-\lambda}{2}\right)(L-1)}(\ln N)^{(L-1) / 2} & \\
(2<\lambda<3, L=\text { even }) \\
\sim=\text { odd })
\end{array}
$$

Results(4): Number of circuits of size $L(L \geq 3)$

$$
\begin{array}{ll}
\frac{1}{2 L}\left(\frac{\left\langle k^{2}>\right.}{\langle k>}-1\right)^{L} & (\lambda>3) \\
\sim(0.25<k>\ln N)^{L} & (\lambda=3) \\
\sim N^{(3-\lambda) L / 2} \ln N & (2<\lambda<3, L=\text { even }) \\
\sim N^{(3-\lambda) L / 2} & (2<\lambda<3, L=\text { odd })
\end{array}
$$

IV. Percolation transition

Lee, Goh, Kahng and Kim, NPB (2004)
\checkmark The static model graph weight $P(G)=\prod_{b \in G} f_{i j} \prod_{b \notin G}\left(1-f_{i j}\right)=\prod_{i>j} f_{i j}^{a_{j}}\left(1-f_{i j}\right)^{1-a_{i j}}$ can be represented by a Potts Hamiltonian,

$$
\begin{aligned}
\mathcal{H}=-2 K N & \sum_{i>j} P_{i} P_{j}\left[\delta\left(\sigma_{i}, \sigma_{j}\right)-1\right], \quad\left(\sigma_{i}=1, \cdots, q\right) \\
\mathrm{e}^{\square \mathcal{H}} & =\prod_{i>j}\left[\mathrm{e}^{-2 K N P_{i} P_{j}}+\left(1-\mathrm{e}^{-2 K N P_{i} P_{j}}\right) \delta\left(\sigma_{i}, \sigma_{j}\right)\right] \\
& =\prod_{i>j}\left[\left(1-f_{i j}\right)+f_{i j} \delta\left(\sigma_{i}, \sigma_{j}\right)\right] \\
& =\sum_{G} \prod_{b \in G}\left(1-f_{i j}\right) \prod_{b \in G}\left[f_{i j} \delta\left(\sigma_{i}, \sigma_{j}\right)\right] \\
& =\sum_{G} P(G) \prod_{b \in G} \delta\left(\sigma_{i}, \sigma_{j}\right)
\end{aligned}
$$

Percolation transition

Partition function: $\mathcal{Z}=\left\langle q^{\# \text { of clusters }}\right\rangle$
Order parameter $\xrightarrow[q \rightarrow 1]{ }$ giant cluster size $(S=m N)$
Susceptibility $\underset{q \rightarrow 1}{ }$ mean cluster size $\bar{s}=\sum_{s}^{\prime} s^{2} n(s) / N$
$\left.\frac{\partial}{\partial q} \mathcal{Z}\right|_{q=1}+\langle L\rangle-N=$ mean number of independent loops (ℓN)

Percolation transition

Exact analytic evaluation of the Potts free energy:

1. Vector spin representation \leftrightarrow \qquad

$$
\mathcal{H} \sim\left(\sum_{i} P_{i} \overrightarrow{s_{i}}\right)^{2}
$$

2. Integral representation of the partition function
3. Saddle-point analysis

- Percolation transition at $K_{c}=\left(2 N \sum P_{i}^{2}\right)^{-1} \leftrightarrow\left\langle k^{2}\right\rangle /\langle k\rangle=2$
- Explicit evaluations of thermodynamic quantities.

TRIESTE Workshop on Structure and Function of complex Networks (May 22-28, 2005)

V. Critical phenomena of spin models defined on the static model

Spin models on SM

Spin models defined on the static model network can be analyzed by the replica method.
$H[G]=-\sum_{i<j} a_{i, j} J_{i, j} \overrightarrow{S_{i}} \cdot \overrightarrow{S_{j}} \quad$ with quenched bond disorder $\left\{a_{i, j}\right\}$
Free energy in replica method $=\lim _{n \rightarrow 0}\left\langle Z^{n}-1\right\rangle / n$
$\left\langle Z^{n}\right\rangle=\operatorname{tr} \prod_{i<j}\left[\left(1-f_{i, j}\right)+f_{i, j} \exp \left(\beta J_{i, j} \sum_{\alpha} \overrightarrow{S^{\alpha}}{ }_{i} \cdot \overrightarrow{S^{\alpha}{ }_{j}}\right)\right] \equiv \exp \left[-H_{\mathrm{eff}}\right]$
$-H_{\text {eff }}=\sum_{i<j}<k>N P_{i} P_{j}\left(\exp \left(\beta J_{i, j} \sum_{\alpha} \overrightarrow{S^{\alpha}{ }_{i}} \cdot \overrightarrow{S^{\alpha}{ }_{j}}\right)-1\right)+o(N)$

When $J_{i, j}$ are also quenched random variables, extra averages on each $J_{i, j}$ should be done.

Spin models on SM

We applied this formalism to the Ising spin-glass [Kim et al PRE (2005)]

$$
P\left(J_{i, j}\right)=r \delta\left(J_{i, j}-J\right)+(1-r) \delta\left(J_{i, j}+J\right)
$$

Phase diagrams in $T-r$ plane for $\lambda>3.0$ and $\lambda<3.0$

Spin models on SM

Critical behavior of the spin-glass order parameter in the replica symmetric solution:

$$
\begin{gathered}
q \equiv \sum_{i=1}^{N} P_{i}\left\langle S_{i}^{\alpha} S_{i}^{\beta}\right\rangle \sim \begin{cases}\left(T_{C}-T\right) & (\lambda>4) \\
\left(T_{C}-T\right) / \ln \left(T_{C}-T\right)^{-1} & (\lambda=4) \\
\left(T_{C}-T\right)^{1 /(\lambda-3)} & (3<\lambda<4) \\
T^{2} \exp \left(-2 T^{2} /<k>\right) & (\lambda=3) \\
T^{-2(\lambda-2) /(3-\lambda)} & (2<\lambda<3)\end{cases} \\
Q \equiv \frac{1}{N} \sum_{i=1}^{N}\left\langle S_{i}^{\alpha} S_{i}^{\beta}\right\rangle \sim \frac{q}{<k>T^{2}} \sim T^{-2 /(3-\lambda)} \\
\text { for } 2<\lambda<3
\end{gathered}
$$

To be compared with the ferromagnetic behavior for $2<\lambda<3$;

$$
m \equiv \sum_{i=1}^{N} P_{i}<S_{i}>\sim T^{-(\lambda-2) /(3-\lambda)}, \quad M \equiv \frac{1}{N} \sum_{i=1}^{N}<S_{i}>\sim T^{-1 /(3-\lambda)}
$$

VI. Conclusion

1. The static model of scale-free network allows detailed analytical calculation of various graph properties and free-energy of statistical models defined on such network.
2. The constraint that there is no self-loops and multiple links introduces local vertex correlations when λ, the degree exponent, is less than 3.
3. Two node and three node correlation functions, and the number of self-avoiding walks and circuits are obtained for $2<\lambda<3$. The walk statistics depend on the even-odd parity.
4. Kasteleyn construction of the Potts model is utilized to calculate thermodynamic quantities related to the percolation transition such as the mean number of independent loops.
5. The replica method is used to obtain the critical behavior of the spin-glass order parameters in the replica symmetry solution.

Static Model

\checkmark Walker algorithm
Efficient method for selecting intergers $1,2, \cdots, N$ with probabilities $P_{1}, P_{2}, \cdots, P_{N} .\left(\sum_{i} P_{i}=1\right)$

$$
N=3
$$

[^0]: Doochul KIM
 School of Physics
 Seoul National University, NS-59 BK21 Physics Research Division

 Seoul 151-747 REPUBLIC OF KOREA

[^1]: These are preliminary lecture notes, intended only for distribution to participants

