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General Model

e N nodes

e links: adjacency matrix a;; = aj;

e nodes have "attribute’ x;

dynamics:

e attribute x; depends on neighbours of node @

e a;; depends on attributes



The Model

e N nodes

e links: adjacency matrix a;; = aj;

e nodes have "attribute’ x;, an integer from 1 to g

e nodes choose their attribute to align with neighbours’ attributes

e nodes form links with nodes of same attribute AT RATE n
e links decay at rate A (A =1)



Attribute dynamics

Coordination Game
node ¢ gets payoff 1 from interaction with j if z; = x;, 0 otherwise

total payoff for node @: Payoff = ;0,4
at rate v > 1, nodes change their states:

> PaYOHOId
if Payoft

XTi — Tinew With probability 1 if Payoff
with probability exp(—(Payoffq — Payoff

new

> PaYOﬁold

new ) new

Potts model.



What Happens 7

e 2 parameters:
e 1) - link formation rate

e 7' - noise, error rate, 'temperature’

e assume n large
e set ¢ = 10, for ¢ > 2, qualitative behaviour unchanged

e > 1| ie. coordination game played much faster than network rewiring



What Happens 7

low n: low connectivity. high n: high connectivity and Giant Component.
high T": no coordination. low T": coordination.

e for ordering (coordination), need to have a Giant Component

e positive feedback:
e ordered state enhances link formation — more connected network

e highly connected network enhances ordering



What Happens
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black and green: 1 = 10 theory and simulation.

red and blue: 7 = 4 theory and simulation.
n=1000



What Happens
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phase diagram. simulations
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THEORY

need to know p(k)

need to know 7, the probability 2 nodes are in the same state - by solving
Potts model to find magnetisation
L L L

0.1 —

p(k)

simulation results
so p(k) NOT poissonian
< m; > depends on k;



Potts model on random graph

Dorogovtsev, Goltsev, Mendes. Eur. Phys. J. B. 2004
GE and M. Marsili ~ J. Stat. Mech. 2005

from p(k), for a given T: find magnetisation

use local tree-like nature of the network
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for Giant Component only !



Find magnetisation

Hamiltonian

H=—-J % s, — b by

<4,7>
Partition function
Z =Y exp (K > Opo +HY 5%1)
{o} <i,j> ’ i

Magnetisation of site ¢
q <50i,1> —1
q—1

m; =

Solve iteratively

— Z 6Z<l,m> K(SUZ,Um"‘K(;UO,U@'""H 21 50171

{o1}

91,2'(00)

Z =Y el ] g1.:(00)

00 1=1



Recursion relation for g, ;(o,_1)

ki1
Ko +Hé :
gr,i(ar—l) — ; et toror—1 or,1 Hl gr+1,j(07’)
T ]:

ky; is the degree of node (r, 7).

gm(Oé)
Ty = — : a>1
" gna()
H K\ pfri—1
e’ + (q —2+e )szl Lr41,j
Zlfm = i1 .



Change of variables h, ; = —In(z, )
Distribution density of h,.; with k,; = k

o k=1 k=1
) = [T ) - () )
j= j=
Y(s)=1 10
)= ] (10)
Distribution of h on the neighbours of a node
i) = 3 P()o.(hlk) (1)

Distribution of fields at the neighbour of a node

j:

00 = P00 [ T angpatips -y (S]] 2



Find magnetisation: population dynamics

population h;, 2 =1,..., M of M > 1 values of h. Evolve the population by
iteration with the following procedure:

e Draw at random & from the distribution P(k)

e Draw k£ — 1 values of h at random from the population {h;} and sum them
to get Agum.

e replace a random member of the population by

hnew =Y (hsum) (13)

[terate until convergence. The magnetisation is then found by averaging the
local magnetisations on many nodes,

e draw k from P(k)

e draw k values of h from p(h) and sum them to get hgy,,, and insert this into

(my) = exp(H) — exp(—hsum)
! exp(H) + (g — 1) exp(—hsum)

[terate many times and average the results to get M (T).

(14)



Find p(k) given magnetisation

p(k) = Ak + )p(k + 1) + 2np(k — V)m(k = 1) — 2np(k)7 (k) — Akp(k)

(k) =L+t < m(k) ><m > (1 —ub)

q

e

u = Prob( link does NOT lead to the Giant Component )

__ oo kplk), k-1
U= s U



Find p(k) given magnetisation

so, find iteratively:
p(1) = 2np(0)m(0)

p(k) = 1 (2np(k — Dm(k — 1) + (k — Dp(k — 1) — 2np(k — 2)m(k — 2))

SO:

e given p(k), find m(k) for Giant Component, and then (k)
e given m(k), find p(k)

iterate to find stable solution.
start from:

high connected, ordered state
low connected, disordered state



phase diagram. simulations and theory
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ok, so theory is pretty good
fails near transition - this is particularly noticeable for T close to zero
this is because p(k) is not (quite) a full description of the network



Conclusions

Simple(ish) model gives:

e sharp transitions
e 'resilience’ - equilibrium coexistence

due to interplay between network dynamics and attribute dynamics

e theory in good agreement with simulations

see physics/0504124



