

SMR.1656 - 31

School and Workshop on Structure and Function of Complex Networks

16 - 28 May 2005

Emergence and Resilience of Social Networks: A General Model

> George EHRHARDT the Abdus Salam ICTP Condensed Matter Section Strada Costiera 11 34014 Trieste ITALY

These are preliminary lecture notes, intended only for distribution to participants

Emergence and resilience of social networks: a general model

George Ehrhardt, Matteo Marsili

ICTP

Fernando Vega-Redondo

University of Alicante

General Model

- N nodes
- links: adjacency matrix $a_{ij} = a_{ji}$
- \bullet nodes have 'attribute' x_i

dynamics:

- ullet attribute x_i depends on neighbours of node i
- a_{ij} depends on attributes

The Model

- N nodes
- links: adjacency matrix $a_{ij} = a_{ji}$
- nodes have 'attribute' x_i , an integer from 1 to q
- nodes choose their attribute to align with neighbours' attributes
- ullet nodes form links with nodes of same attribute AT RATE η
- links decay at rate λ ($\lambda = 1$)

Attribute dynamics

Coordination Game

node i gets payoff 1 from interaction with j if $x_i = x_j$, 0 otherwise

total payoff for node i: $Payoff = \sum_{j} \delta_{x_i,x_j}$ at rate $\nu \gg 1$, nodes change their states:

 $x_i \to x_{inew}$ with probability 1 if $Payoff_{new} > Payoff_{old}$ with probability $exp(-\frac{1}{T}(Payoff_{old} - Payoff_{new})$ if $Payoff_{new} > Payoff_{old}$

Potts model.

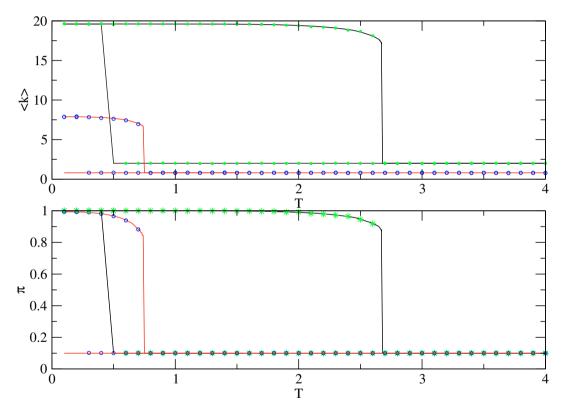
What Happens?

- 2 parameters:
- \bullet η link formation rate
- T noise, error rate, 'temperature'
- assume n large
- set q = 10, for q > 2, qualitative behaviour unchanged
- $\bullet \nu \gg 1$ i.e. coordination game played much faster than network rewiring

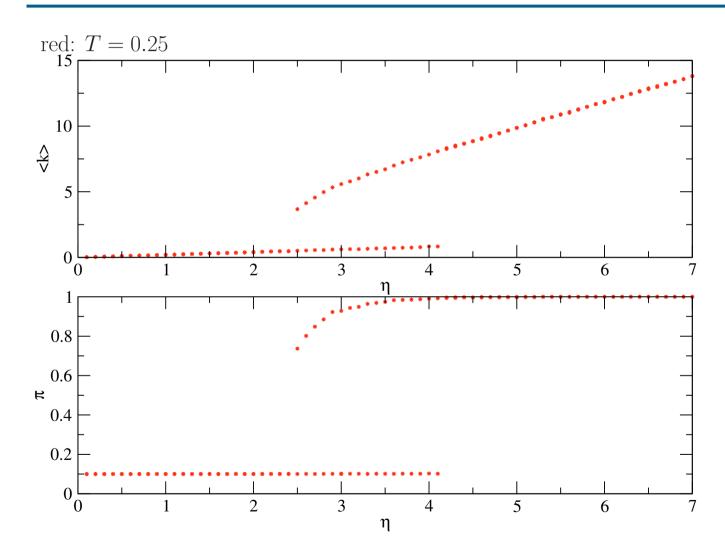
What Happens?

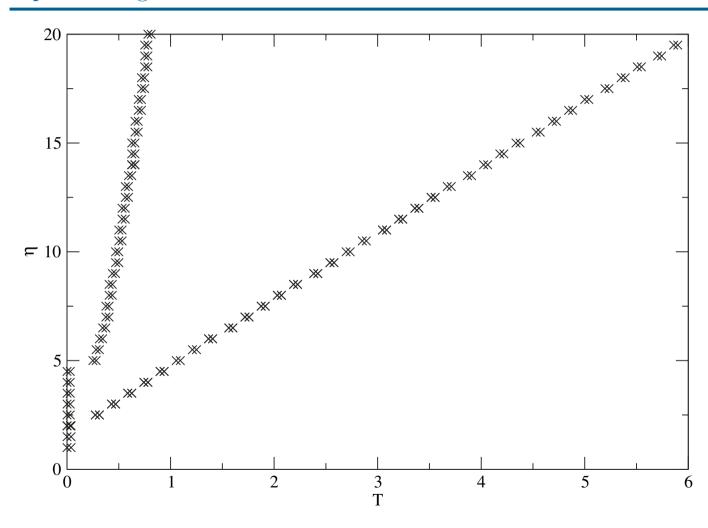
low η : low connectivity. high η : high connectivity and Giant Component. high T: no coordination. low T: coordination.

- for ordering (coordination), need to have a Giant Component
- positive feedback:
- \bullet ordered state enhances link formation \rightarrow more connected network
- highly connected network enhances ordering



black and green: $\eta=10$ theory and simulation. red and blue: $\eta=4$ theory and simulation. n=1000



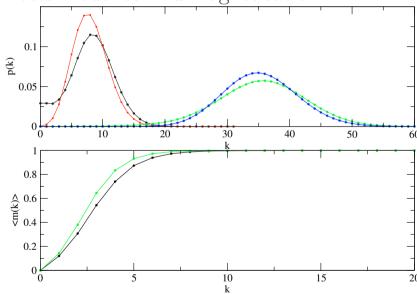


THEORY

need to know p(k)

need to know π , the probability 2 nodes are in the same state - by solving

Potts model to find magnetisation



simulation results

so p(k) NOT poissonian

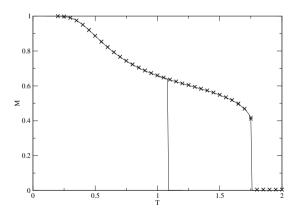
 $< m_i >$ depends on k_i

Potts model on random graph

Dorogovtsev, Goltsev, Mendes. Eur. Phys. J. B. 2004 GE and M. Marsili J. Stat. Mech. 2005

from p(k), for a given T: find magnetisation

use local tree-like nature of the network



for Giant Component only!

Find magnetisation

Hamiltonian

$$\mathcal{H} = -J \sum_{\langle i,j \rangle} \delta_{\sigma_i,\sigma_j} - b \sum_i \delta_{\sigma_i,1} \tag{1}$$

Partition function

$$Z = \sum_{\{\sigma\}} \exp\left(K \sum_{\langle i,j \rangle} \delta_{\sigma_i,\sigma_j} + H \sum_i \delta_{\sigma_i,1}\right)$$
 (2)

Magnetisation of site i

$$m_i = \frac{q \left\langle \delta_{\sigma_i, 1} \right\rangle - 1}{q - 1} \tag{3}$$

Solve iteratively

$$g_{1,i}(\sigma_0) = \sum_{\{\sigma_l\}} e^{\sum_{\langle l,m\rangle} K\delta_{\sigma_l,\sigma_m} + K\delta_{\sigma_0,\sigma_i} + H\sum_l \delta_{\sigma_l,1}}$$
(4)

$$Z = \sum_{\sigma_0} e^{H\delta_{\sigma_0,1}} \prod_{i=1}^{k_0} g_{1,i}(\sigma_0)$$
 (5)

Recursion relation for $g_{r,i}(\sigma_{r-1})$

$$g_{r,i}(\sigma_{r-1}) = \sum_{\sigma_r} e^{K\delta_{\sigma_r,\sigma_{r-1}} + H\delta_{\sigma_r,1}} \prod_{i=1}^{k_{r,i}-1} g_{r+1,j}(\sigma_r)$$

$$\tag{6}$$

 $k_{r,i}$ is the degree of node (r,i).

$$x_{r,i} = \frac{g_{r,i}(\alpha)}{g_{r,i}(1)}, \qquad \alpha > 1$$
 (7)

$$x_{r,i} = \frac{e^H + (q - 2 + e^K) \prod_{j=1}^{k_{r,i}-1} x_{r+1,j}}{e^{H+K} + (q - 1) \prod_{j=1}^{k_{r,i}-1} x_{r+1,j}}.$$
 (8)

Change of variables $h_{r,j} = -\ln(x_{r,j})$ Distribution density of $h_{r,i}$ with $k_{r,i} = k$

$$\rho_r(h|k) = \int_{-\infty}^{\infty} \prod_{j=1}^{k-1} dh_j \tilde{\rho}_{r+1}(h_j) \delta \left[h - Y \left(\sum_{j=1}^{k-1} h_j \right) \right]$$
 (9)

$$Y(s) = \ln \left[\frac{e^{H+K} + (q-1)e^{-s}}{e^H + (q-2+e^K)e^{-s}} \right]$$
 (10)

Distribution of h on the neighbours of a node

$$\tilde{\rho}_r(h) = \sum_{k=1}^{\infty} \tilde{P}(k) \rho_r(h|k)$$
(11)

Distribution of fields at the neighbour of a node

$$\tilde{\rho}_r(h) = \sum_{k=1}^{\infty} \tilde{P}(k) \int_{-\infty}^{\infty} \prod_{j=1}^{k-1} dh_j \tilde{\rho}_{r+1}(h_j) \delta \left[h - Y \left(\sum_{j=1}^{k-1} h_j \right) \right]$$
(12)

Find magnetisation: population dynamics

population h_i , i = 1, ..., M of $M \gg 1$ values of h. Evolve the population by iteration with the following procedure:

- Draw at random k from the distribution $\tilde{P}(k)$
- Draw k-1 values of h at random from the population $\{h_i\}$ and sum them to get h_{sum} .
- replace a random member of the population by

$$h_{new} = Y \left(h_{sum} \right) \tag{13}$$

Iterate until convergence. The magnetisation is then found by averaging the local magnetisations on many nodes,

- draw k from P(k)
- draw k values of h from $\tilde{\rho}(h)$ and sum them to get h_{sum} and insert this into

$$\langle m_0 \rangle = \frac{\exp(H) - \exp(-h_{sum})}{\exp(H) + (q-1)\exp(-h_{sum})}$$
(14)

Iterate many times and average the results to get M(T).

Find p(k) given magnetisation

$$\dot{p}(k) = \lambda(k+1)p(k+1) + 2\eta p(k-1)\pi(k-1) - 2\eta p(k)\pi(k) - \lambda k p(k)$$

$$\pi(k) = \frac{1}{q} + \frac{q-1}{q} < m(k) > < m > (1 - u^k)$$

u = Prob(link does NOT lead to the Giant Component)

$$u = \sum_{k=1}^{\infty} \frac{kp(k)}{\langle k \rangle} u^{k-1}$$

Find p(k) given magnetisation

so, find iteratively:

$$p(1) = 2\eta p(0)\pi(0)$$

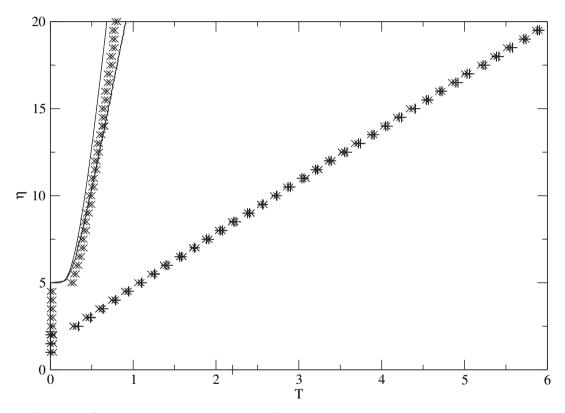
$$p(k) = \frac{1}{k}(2\eta p(k-1)\pi(k-1) + (k-1)p(k-1) - 2\eta p(k-2)\pi(k-2))$$

so:

- given p(k), find m(k) for Giant Component, and then $\pi(k)$
- given $\pi(k)$, find p(k)

iterate to find stable solution. start from: high connected, ordered state low connected, disordered state

phase diagram. simulations and theory



ok, so theory is pretty good

fails near transition - this is particularly noticeable for T close to zero this is because p(k) is not (quite) a full description of the network

Conclusions

Simple(ish) model gives:

- sharp transitions
- 'resilience' equilibrium coexistence due to interplay between network dynamics and attribute dynamics
- theory in good agreement with simulations see physics/0504124