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Search in Random Networks
Lada Adamic

School on the Structure and Function of Complex Networks, Trieste, 2005
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Motivation
Power-law (PL) networks, social and P2P

Analysis of scaling of search strategies in PL networks

Simulation
artificial power-law topologies, real Gnutella networks

Comparison with existing P2P search strategies
Reflector, Morpheus

Path finding

Directed Search
Freenet
next lecture: Search in structured networks

Outline

2
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Mary

Bob

Jane

Who could
introduce me to
Richard Gere?

How do we search?



Presenter Information--edit on Slide Master4

AT&T Call Graph

Aiello et al. STOC ‘00
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data
power-law fit 
τ = 2.07

Gnutella network

power-law link distribution

summer 2000,
data provided by Clip2
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Preferential attachment model

Nodes join at different times

The more connections a node has, the more likely it is to acquire
new connections

Growth process produces power-law network

host cache

pingping
pin

g
ping

pin
g

ping ping
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file sharing w/o a central index

queries broadcast to every node within radius ttl
⇒ as network grows, encounter a bandwidth barrier 
(dial up modems cannot keep up with query traffic, 
fragmenting the network)

Gnutella and the bandwidth barrier

Clip 2 report
Gnutella: To the Bandwidth Barrier and Beyond
http://www.clip2.com/gnutella.html#q17
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number of
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power-law graph
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93

number of
nodes found

1
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Poisson graph
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Search with knowledge of 2nd neighbors
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Outline of search strategy

pass query onto only one neighbor at each step

requires that nodes sign query
- avoid passing message onto a node twice

requires knowledge of one’s neighbors degree
- pass to the highest degree node

requires knowledge of one’s neighbors neighbors
- route to 2nd degree neighbors

OPTIONS
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Generating functions

M.E.J. Newman, S.H. Strogatz, and D.J. Watts
‘Random graphs with arbitrary degree distributions and their 
applications’, PRE, cond-mat/0007235

Generating functions for degree distributions

Useful for computing moments of degree distribution,
component sizes, and average pathlengths

∞

=

= ∑0
0

( ) k
k

k
G x p x
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Introducing cutoffs

< −max 1k N a node cannot have more connections than there are other nodes

This is important for exponents close to 2

τ τ

∞ ∞

= =∑ ∑
1 1

1 1kp C
x π=2 2

6C

τ
∞

∑> = =
1000

( 1000, 2) ~ 0.001kp k p

Probability that none of the nodes in a 1,000 node graph has 1000 or more neighbors:

τ− > = 1000(1 ( 1000, 2)) ~ 0.36p k
without a cutoff, for τ = 2
have > 50% chance of observing a node with more neighbors than there are nodes

for τ = 2.1, have a 25% chance
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# of sites linking to the site
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1000

Selecting from a variety of cutoffs

Nk <max1.

2. κτ /k
k eCkp −−= Newman et al.

3.
⎩
⎨
⎧

=
−

0

τCk
pk

( ) τ1CNk <

otherwise

Generating Function

( )
( )

k
CN

k

xkCxG ∑
=

−=
τ

τ
1

1
0

Aiello et al.

1 million websites (~ 1997)

N
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Aiello’s ‘conservative’ vs. Havlin’s ‘natural’ cutoff

τ

τ

− −

=

= 1

1

* 1

~

kN p

Ck N

k N

cutoff where expected
number of nodes of degree
k is 1

k

n(k)

k

n(k)

1

1

cutoff so that
expected number of nodes
of degree > k is 1

τ

τ

τ

∞

=

∞
− −

=

− −

−

=∑

∫

max

max

1

1 1
max

1
1

max

* 1

~

~

~

k
k k

k k

N p

ck N

k N

k N
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The imposed cutoff can have a dramatic
effect on the properties of the graph

degrees drawn at random, for τ = 2, and N = 1000
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∞

=

= ∑0
0

( ) k
k

k
G x p x

is the probability that a randomly
chosen vertex has degree k~kp k τ−

is a generating function

'
0 (1)k

k
k kp G< >= =∑ is the expected degree of a randomly

chosen vertex

( ) ( )
( )

'
0

1 '
0 1

G x
G x

G
= is the distribution of remaining

outgoing edges following and edge

assuming neighbors don’t share edges

( ) ( )11 '
1

'
02 GGz = is the expected number of second

degree neighbors

2
2

2

2 2

2

1

11

Generating functions for degree distributions
Random graphs with arbitrary degree distributions and their applications
by Newman, Strogatz & Watts
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search with knowledge of first neighbors

( )
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maxmax

max

max

0
1

' 1 1
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2
max( 1) (3 )
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Generating function with cutoff

Average degree of vertex 

constant in N
for 2<τ<3, and kmax~Na, decreases
with N

Average number of neighbors
following an edge
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search with knowledge of first neighbors (cont’d)

τ τ
τ

τ

τ
τ τ

− −
−

−

−
= =

− − −

3 3
' 3max max

1 1 max' 2
0 max

1 2(1)
(1) (3 ) 1 (3 )B

k kz G k
G k

In the limit t->2, 
' max
1

max

(1)
log( )

kG
k

Let’s for the moment ignore the fact that as we do a random walk, we encounter neighbors
that we’ve seen before

s = number of steps =
1B

N
z
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Search time with different cutoffs

0.18(2.1)s N

τ τ
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22
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33
max 1

( ) ,2 3NN Ns
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N
If kmax = N1/(τ-1), 
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N

0.1(2.1) Ns
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search with knowledge of first neighbors (cont’d)

2 3 /
13

3max

,2 3
( )

N Ns N
k

N

τ
τ

ττ

τ−
−

−

= = < <If kmax = N1/τ, 

So the best we can do is            for exponents close to 2 N

2nd neighbor random walk, ignoring overlap:

( ) 15.0~1.2, NNS =τ( ) ( )ττ 213~, −NNS
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= 2
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Following the degree sequence

a ~ s = # of steps taken

( ) 1.0
deg 1.2, NNS ==τ

2nd neighbors, ignoring overlap:

Go to highest degree node, then next highest, … etc.

τ τ− −

−
= ∫

max

max

1 1
1 max~

k

D k a
z Nk dk Nak

τ

τ τ

−

− −

max

max

' 2(2 )
1 1

2( 2) 2 4 /

( ) ~

~ ~
Dz G x Nak

s k N
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Ratio of the degree of a node to the expected degree of its highest 
degree neighbor for 10,000 node power-law graphs of varying exponents
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Actor collaboration graph
(imdb database) 

τ ~ 2.0-2.2

Exponents τ close to 2 required to search effectively

World Wide Web, τ ~ 2.0-2.3,
high degree nodes: directories, search engines

Social networks, AT&T call graph τ ~ 2.1

Gnutella
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es actors, τ = 2

actresses, τ = 2.1
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Following the degree sequence
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Complications

Should not visit same node more than once

Many neighbors of current node being visited 
were also neighbors of previously visited nodes, 
and there is a bias toward high degree nodes 
being ‘seen’ over and over again
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Status and degree of node visited
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seeking high degree nodes
speeds up the search process

about 50% of a 10,000 node graph
is explored in the first 12 steps

Progress of exploration in a 10,000 node graph knowing
2nd degree neighbors

12

degree sequence
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Scaling of search time with size of graph
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Comparison with a Poisson graph
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50% of the files in a 700 node network can be found in < 8 steps

Gnutella network
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• Maintain a list of files in their neighborhood

• Check query against list.

• Periodically contact neighbors to maintain list

• Append ID to each query processed

Required modifications to nodes

Tradeoff

storage/cpu
(available)

bandwidth
(limited)

for
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• localized indexing
• traffic routed to high degree nodes

Partial implementation:

Theory vs. reality:

• overloading high degree nodes
but no worse than original scenario where all nodes

handle all traffic

assume high degree ->     high bandwidth
so can carry the traffic load

• fewer nodes used for routing, 
system is more susceptible to malicious
attack
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Clip2 Distributed Search Solutions
http://dss.clip2.com
© Clip2.com, Inc.

Broadband user running
Reflector

Broadband user running
Gnutella

Dial-up user running
Gnutella
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LimeWire, BearShare:
drop connections to unresponsive hosts 
drives slower hosts to have fewer connections &
move to edge of network

Kazaa, BearShare defender, Morpheus SuperNodes

from Clip2: Morpheus out of the Underworld
http://www.openp2p.com/pub/a/p2p/2001/07/02/morpheus.html

Connection-preferencing rules

Supernodes
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Conclusions
Search is faster and scales in power-law networks

Networks intended to be searched, such as Gnutella,
have  a favorable P-L topology

High degree strategy has partially been implemented in existing p2p
clients, such as BearShare, Kazaa & Morpheus
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A PL link distribution shortens the average shortest path

1
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Poisson: α = z1
PL: α > z1
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A

B

What about the shortest path discovered along the way?

B.J. Kim et al. ‘Path finding strategies in scale-free networks’, PRE (65) 027103.

each node passes message 
to highest degree neighbor it
hasn’t 
passed the message to 
previously

‘cut off’ loops
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A high degree seeking strategy finds shortest paths whose average 
scales logarithmically with the size of the graph
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Scaling of the path length found using a
• random strategy on a PL graph
• high-degree strategy on a Poisson graph
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But…
Search costs are prohibitive, might as well do a BFS
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Freenet

Queries are passed to one peer at a time.

Queries routed to high degree nodes.

Has a power-law topology
Theodore Hong, ‘Performance’ chapter in O’Reilley’s
“Peer-to-Peer, Harnessing the Power of Disruptive Technologies”

Scales as N0.275 with the size of the network, N.
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Theodore Hong, 
power - law link distribution of a simulated Freenet network
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Theodore Hong, 
scaling of mean search time

on a simulated Freenet network
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Node specialization key to Freenet’s speed

Each node forwards query to node with “closest” hash key

Node passing back a match remembers the address the data 
came from

Results in nodes developing a bias towards a part of the 
keyspace

112
659 ?356?

340
388
396 
135
214

356
340
388
396 
135
214

Queries are naturally routed to high degree nodes
Use keys for orientation
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To find out more

Information dynamics group at HP Labs
http://www.hpl.hp.com/research/idl

Adamic, Lukose and Huberman,
“Local Search in Unstructured Networks”,
http://www.hpl.hp.com/research/idl/papers/review/


