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Outline

Motivation
Power-law (PL) networks, social and P2P

Analysis of scaling of search strategies in PL networks

Simulation
artificial power-law topologies, real Gnutella networks

Comparison with existing P2P search strategies
Reflector, Morpheus

Path finding

Directed Search
Freenet
—> next lecture: Search in structured networks



How do we search?

Who could
introduce me to
Richard Gere?




# of telephone numbers

from which calls were made
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Gnutella network

power-law link distribution
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Preferential attachment model

Nodes join at different times

The more connections a node has, the more likely it is to acquire
new connections

Growth process produces power-law network

pmg ()

/9/
host cache



Gnutella and the bandwidth barrier

file sharing w/o a central index

queries broadcast to every node within radius tt/

— as network grows, encounter a bandwidth barrier
(dial up modems cannot keep up with query traffic,
fragmenting the network)

Clip 2 report
Gnutella: To the Bandwidth Barrier and Beyond
http://lwww.clip2.com/gnutella.html#q17



power-law graph







Search with knowledge of 2nd neighbors




Outline of search strategy

pass query onto only one neighbor at each step

OPTIONS

requires that nodes sign query
- avoid passing message onto a node twice

requires knowledge of one’s neighbors degree
- pass to the highest degree node

requires knowledge of one’s neighbors neighbors
- route to 2"d degree neighbors



Generating functions

M.E.J. Newman, S.H. Strogatz, and D.J. Watts

‘Random graphs with arbitrary degree distributions and their
applications’, PRE, cond-mat/0007235

Generating functions for degree distributions

Gy(x)= Zpkxk
k=0

Useful for computing moments of degree distribution,
component sizes, and average pathlengths



Introducing cutoffs

kmax < N —1 anode cannot have more connections than there are other nodes

This is important for exponents close to 2

o0 o0

21: Py :Z Cr

p(k >1000,7 =2)= > p, ~0.001

1000
Probability that none of the nodes in a 1,000 node graph has 1000 or more neighbors:

(1= p(k >1000,7 = 2))'°® ~0.36

without a cutoff, for t = 2
have > 50% chance of observing a node with more neighbors than there are nodes

1T 1 02:6

X

for t = 2.1, have a 25% chance



Selecting from a variety of cutoffs

k <N

max

P = Ck "e ™%  Newmanetal.

1 million websites (~ 1997)

_ /7
b = Ck™ k<(CN) % o
k= =
0 otherwise - ¢
5 %
Aiello et al. =
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Aiello’s ‘conservative’ vs. Havlin’s ‘natural’ cutoff

n(k)
cutoff where expected
number of nodes of degree
/ Kis 1
1
k
n(k)

cutoff so that
expected number of nodes
of degree > k is 1

N*p, =1
Ck*=N"

1



number of nodes with degree k
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The imposed cutoff can have a dramatic
effect on the properties of the graph
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Generating functions for degree distributions

Random graphs with arbitrary degree distributions and their applications
by Newman, Strogatz & Watts

k . . .
Go(x) — Z p, X is a generating function

is the probability that a randomly
chosen vertex has degree k

< Kk >= Z kpk = GO (1) is the expected degree of a randomly
P chosen vertex

G (X) _ GO (X) is the distribution of remaining
1 G (1) outgoing edges following and edge
0

A ' is the expected number of second
Z, = GO (1 )Gl (1) degree neighbors

assuming neighbors don'’t share edges



search with knowledge of first neighbors

CZ k
Generating function with cutoff
' 5 Average degree of verte
G ( ) C k1 T k-1 verag g \' X
° (’9x

| Kmax . ~ 1 ]
GO(1):<k>:cZ1:k1 i jk1 dk = 2(1 k2o )

max
T —

Gy(x) ¢ 0%

' 1- k 1
G1 (X) =— = Z K™ Average number of neighbors
GO (1) G, (1) OX following an edge
k 1 for 2<1<3, and k. ~N?, decreases
constantin N with N

G1(1)= 1 kria;(z- MDMT)

G, (1) (-2)(3-7)



search with knowledge of first neighbors (cont’d)

1 KT -2 K

Z,, = G' N0 — max  _ max__ [ k3—r
1B 1( ) GO(1) (3 _ Z') 1— kri;( (3 _ T) max
In the limit t->2, G,(1)0 Kmax
109 (Kryax)

Let’s for the moment ignore the fact that as we do a random walk, we encounter neighbors
that we’ve seen before
N

s = number of steps = —
Z1B



Search time with different cutoffs

N N
If k. =N, (7)) kﬁ,;;zN”: ,2<17<3
s(2.1)C
<7 Nlog(kmax)_ =2
kmax
If kmax = N1/(T-1)1 S(T) D IS,\{ - Izl_ - ,2 < T < 3
kmaj( %
Nr
s(2.1)[




search with knowledge of first neighbors (cont’d)

If Ky = N7, sukls\’f: f\l =N?3"2<7<3
max (NT)3_T

Sothe bestwecandois /Nor exponents close to 2

2nd neighbor random walk, ignoring overlap:

s = 22 (N) 15 2 r—2 k’7
S~ N Zyp = |:8_XG1(G1(X)):|X=1 = |:G1( ):| = |:1 B kri;( (3-7)
Z,5(N)



Following the degree sequence

Go to highest degree node, then next highest, ... etc.

max

Zp=["" NK“dk ~Nak:

max

a ~ s = # of steps taken

2"d neighbors, ignoring overlap:

z,,G,(x) ~ Nak**™

S ~ k2(r—2) _ N2—4/T

ax

Siee N, 7=2.1)=N"



degree of neighbor -1

Ratio of the degree of a node to the expected degree of its highest
degree neighbor for 10,000 node power-law graphs of varying exponents
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Exponents t close to 2 required to search effectively

Gnutella

World Wide Web, T~ 2.0-2.3,

high degree nodes: directories, search engines

Social networks,

Actor collaboration graph
(imdb database)

1~ 2.0-2.2

number of actors/actresses
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AT&T call graph T~ 2.1

actors, t =2
actresses, 1t = 2.1
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10°

102 10°

number of costars
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Following the degree sequence




Complications

Should not visit same node more than once

Many neighbors of current node being visited
were also neighbors of previously visited nodes,
and there is a bias toward high degree nodes
being ‘seen’ over and over again



Status and degree of node visited
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proportion of nodes found at step

Progress of exploration in a 10,000 node graph knowing
2nd degree neighbors
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about 50% of a 10,000 node graph
is explored in the first 12 steps

seeking high degree nodes
speeds up the search process
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Scaling of search time with size of graph
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degree of current node

Comparison with a Poisson graph

— Poisson
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Gnutella network

90% of the files in a 700 node network can be found in < 8 steps

o
o0

o
o

©
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cumulative nodes found at step

0.2 —<—— high degree seeking 1st neighbors
—<— high degree seeking 2nd neighbors
O 1 I I 1
0 20 40 60 80 100

step



Required modifications to nodes

Maintain a list of files in their neighborhood
Check query against list.
Periodically contact neighbors to maintain list

Append ID to each query processed

Tradeoff

storage/cpu for bandwidth
(available) (limited)



Theory vs. reality:

- overloading high degree nodes

but no worse than original scenario where all nodes
handle all traffic

assume high degree -> high bandwidth
so can carry the traffic load

 fewer nodes used for routing,
=) system is more susceptible to malicious
attack

Partial implementation:

- localized indexing
e traffic routed to high degree nodes



Clip2 Distributed Search Solutions

© Clip2.com, Inc. 55
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Connection-preferencing rules

LimeWire, BearShare:
drop connections to unresponsive hosts
drives slower hosts to have fewer connections &
move to edge of network

Supernodes

Kazaa, BearShare defender, Morpheus SuperNodes

peer 1: file 1, peer 1: file 2, ..., peer 1: file n
peer 2: file 1, peer 2: file 2, ..., peer 2: file n
peer 3: file 1, peer 3: file 2, ..., peer 3: file n

ot Supernode
AL g
L ™

e
ﬂr".,ﬂ‘ -

file 1 file 1 file 1
file 2 file 2 file 2
file n file n file n

from Clip2: Morpheus out of the Underworld
http://www.openp2p.com/pub/a/p2p/2001/07/02/morpheus.html




Conclusions

Search is faster and scales in power-law networks

Networks intended to be searched, such as Gnutella,
have a favorable P-L topology

High degree strategy has partially been implemented in existing p2p
clients, such as BearShare, Kazaa & Morpheus



A PL link distribution shortens the average shortest path
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What about the shortest path discovered along the way?

B.J. Kim et al. ‘Path finding strategies in scale-free networks’, PRE (65) 027103.

O B each node passes message
/ to highest degree neighbor it

O hasn'’t
\< /O passed the message to
7[/,,0 \ previously
O \<4 O ‘cut off’ loops
olall
A



A high degree seeking strategy finds shortest paths whose average
scales logarithmically with the size of the graph
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av. path length found

10

10

Scaling of the path length found using a
* random strategy on a PL graph
* high-degree strategy on a Poisson graph
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NO.46

N0.48
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median search cost
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But...

Search costs are prohibitive, might as well do a BFS
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Freenet

Queries are passed to one peer at a time.
Queries routed to high degree nodes.
Has a power-law topology
Theodore Hong, ‘Performance’ chapter in O’Reilley’s

“Peer-to-Peer, Harnessing the Power of Disruptive Technologies”

Scales as N%275 with the size of the network, N.



Theodore Hong,
power - law link distribution of a simulated Freenet network
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median request pathlength Chops?

Theodore Hong,
scaling of mean search time

on a simulated Freenet network
100 : — : — . — . —

Freenet #
hezt—-Fit line Cexponent=0.28)

1 L M L 1 L L L 1 L L L 1 L L | L L L
10 100 1000 10000 100 le+0g

network size Chnodes)



Node specialization key to Freenet’s speed

Each node forwards query to node with “closest” hash key

Node passing back a match remembers the address the data
came from

Results in nodes developing a bias towards a part of the
keyspace

356
112 340
659 | 2267 — | 388
396
135
214

Queries are naturally routed to high degree nodes
Use keys for orientation



To find out more

Information dynamics group at HP Labs
http://www.hpl.hp.com/research/idl

Adamic, Lukose and Huberman,
“Local Search in Unstructured Networks”,
http://www.hpl.hp.com/research/idl/papers/review/




