# School and Workshop on Structure and Function of Complex Networks 

16-28 May 2005

## Search in Structured Networks

Lada A. ADAMIC
HP Laboratories
1501 Page Mill Road
MS 1139
Palo Alto CA 94024 U.S.A.

[^0]
## Search in structured networks

## Lada Adamic



School on the Structure and Function of Complex Networks, Trieste, 2005

## Small world experiments then



Milgram's experiment (1960's):
Given a target individual and a particular property, pass the message to a person you correspond with who is "closest" to the target.

## Milgram's small world experiment

Target person worked in Boston as a stockbroker.
296 senders from Boston and Omaha.
$20 \%$ of senders reached target.
average chain length $=6.5$.
"Six degrees of separation"

## Small world experiments now

email experiment
Dodds, Muhamad, Watts, Science 301, (2003)

18 targets
13 different countries
24,163 message chains 384 reached their targets average path length 4.0

image by Stephen G. Eick http://www.bell-labs.com/user/eick/index.html (unrelated to small world experiment...)

## Small world experiment at Columbia

Successful chains disproportionately used

- weak ties (Granovetter)
- professional ties (34\% vs. 13\%)
- ties originating at work/college
- target's work (65\% vs. 40\%)
. . . and disproportionately avoided
- hubs ( $8 \%$ vs. $1 \%$ ) (+ no evidence of funnels)
- family/friendship ties (60\% vs. 83\%)

Strategy: Geography -> Work

## Why study small world phenomena?

Curiosity:
Why is the world small?
How are people able to route messages?
Social Networking as a Business:
Friendster, Orkut, MySpace
LinkedIn, Spoke, VisiblePath

## Six degrees of separation - to be expected

Pool and Kochen (1978) - average person has 500-1500 acquaintances Ignoring clustering, other redundancy ...
$\sim 10^{3}$ first neighbors, $10^{6}$ second neighbors, $10^{9}$ third neighbors
But networks are clustered: my friends' friends tend to be my friends
Watts \& Strogatz (1998) - a few random links in an otherwise clustered graph give an average shortest path close to that of a random graph


## But how are people are able to find short paths?

How to choose among hundreds of acquaintances?

## Strategy:

Simple greedy algorithm - each participant chooses correspondent who is closest to target with respect to the given property

## Models

geography
Kleinberg (2000)
hierarchical groups
Watts, Dodds, Newman (2001), Kleinberg(2001)
high degree nodes
Adamic, Puniyani, Lukose, Huberman (2001), Newman(2003)

## Reverse small world experiment



Killworth \& Bernard (1978):
Given hypothetical targets (name, occupation, location, hobbies, religion...) participants choose an acquaintance for each target
Acquaintance chosen based on (most often) occupation, geography only $7 \%$ because they "know a lot of people"
Simple greedy algorithm: most similar acquaintance
two-step strategy rare

## Spatial search

Kleinberg, 'The Small World Phenomenon, An Algorithmic Perspective' Proc. 32nd ACM Symposium on Theory of Computing, 2000.
(Nature 2000)

nodes are placed on a lattice and connect to nearest neighbors
additional links placed with $\mathrm{p}_{\mathrm{uv}} \sim d_{u v}^{-r}$

## no locality

When $\mathbf{r}=\mathbf{0}$, links are randomly distributed, ASP $\sim \log (\mathbf{n}), \mathrm{n}$ size of grid When $\mathbf{r}=\mathbf{0}$, any decentralized algorithm is at least $\mathbf{a}_{\mathbf{0}} \mathbf{n}^{\mathbf{2 / 3}}$


When $\mathbf{r}<\mathbf{2}$, expected time at least $\alpha_{\mathrm{r}} \mathrm{n}^{(2-\mathrm{r}) / 3}$

Overly localized links on a lattice
When $\mathbf{r}>2$ expected search time $\sim \mathbf{N}^{(r-2) /(r-1)}$

$$
p \sim \frac{1}{d^{4}}
$$



## Links balanced between long and short range

When $\mathbf{r}=\mathbf{2}$, expected time of a DA is at most $\mathbf{C}(\log \mathbf{N})^{\mathbf{2}}$


## Kleinberg, 'Small-World Phenomena and the Dynamics of Information'

## NIPS 14, 2001

## Hierarchical network models:

Individuals classified into a hierarchy, $\mathrm{h}_{\mathrm{ij}}=$ height of the least common ancestor.


$$
p_{i j} \quad b^{-\alpha h_{i j}}
$$

e.g. state-county-city-neighborhood industry-corporation-division-group

Theorem: If $\alpha=1$ and outdegree is polylogarithmic, can $\mathrm{s} \sim \mathrm{O}(\log \mathrm{n})$

Group structure models:
Individuals belong to nested groups $q=$ size of smallest group that $v, w$ belong to

$$
\mathrm{f}(\mathrm{q}) \sim \mathrm{q}^{-\alpha}
$$



Theorem: If $\alpha=1$ and outdegree is polylogarithmic, can
$\mathrm{s} \sim \mathrm{O}(\log \mathrm{n})$

## Sketch of proof



$$
k=c \log ^{2} n
$$

calculate probability that s fails to have a link in $\mathrm{R}^{\prime}$

## Identity and search in social networks <br> Watts, Dodds, Newman (Science,2001)

individuals belong to hierarchically nested groups


$$
\mathrm{p}_{\mathrm{ij}} \sim \exp (-\alpha x)
$$


multiple independent hierarchies $h=1,2, . ., \mathrm{H}$ coexist corresponding to occupation, geography, hobbies, religion...


## Identity and search in social networks

Watts, Dodds, Newman (2001)
Message chains fail at each node with probability $p$
Network is 'searchable' if a fraction $r$ of messages reach the target

$$
q=\left\langle(1-p)^{L}\right\rangle_{L} \geq r
$$



## Small World Model, Watts et al.

Fits Milgram's data well

more slides on this:
http://www.aladdin.cs.cmu.edu/workshops/wsa/papers/dodds-2004-04-10search.pdf

High degree search

Adamic et al. Phys. Rev. E, 6446135 (2001)


## Small world experiments so far

Classic small world experiment:
Given a target individual, forward to one of your acquaintances
Observe chains but not the rest of the social network

Reverse small world experiment (Killworth \& Bernard)
Given a hypothetical individual, which of your acquaintances would you choose

Observe individual's social network and possible choices, but not resulting chains or complete social network

## New data that's available

More and more social network information is available as a side-effect of people leading digital lives


## Testing search models on social networks

advantage: have access to entire communication network and to individual's attributes

Use a well defined network:
HP Labs email correspondence over 3.5 months
Edges are between individuals who sent at least 6 email messages each way

450 users
median degree $=10$, mean degree $=13$
average shortest path $=3$
Node properties specified:
degree
geographical location
position in organizational hierarchy

Can greedy strategies work?

## Strategy 1: High degree search

Power-law degree distribution of all senders of email passing through HP labs


## Filtered network

(at least 6 messages sent each way)
Degree distribution no longer power-law, but Poisson


It would take 40 steps on average (median of 16 ) to reach a target!

## Strategy 2: Geography



## Communication across corporate geography



87 \% of the 4000 links are between individuals on the same floor

Cubicle distance vs. probability of being linked



Email correspondence superimposed on the organizational hierarchy


## Example of search path


hierarchical distance $=5$
search path distance $=4$

## Probability of linking vs. distance in hierarchy


in the 'searchable' regime: $0<\alpha<2$ (Watts, Dodds, Newman 2001)

## Results

| distance | hierarchy | geography | geodesic | org | random |
| :---: | :---: | :---: | :---: | :---: | :---: |
| median | 4 | 7 | 3 | 6 | 28 |
| mean | $5.7(4.7)$ | 12 | 3.1 | 6.1 | 57.4 |



## Expt 2

## Searching a social networking website





## Profiles:

```
status (UG or G)
year
major or department
residence
gender
```

Personality (choose 3 exactly):
you funny, kind, weird, ...
friendship honesty/trust, common interests, commitment, ...
romance
freetime socializing, getting outside, reading, ...
support unconditional accepters, comic-relief givers, eternal optimists
Interests (choose as many as apply)
books mystery \& thriller, science fiction, romance, ...
movies western, biography, horror, ...
music folk, jazz, techno, ...
social activities ballroom dancing, barbecuing, bar-hopping, ...
land sports soccer, tennis, golf, ...
water sports sailing, kayaking, swimming, ...
other sports ski diving, weightlifting, billiards, ...

## Finding correlations between user attributes

Are people who consider themselves funny also more likely to enjoy comedies?

## 518 funny users

74 \% of users overall like comedies
416 ( $80 \%$ of) funny users like comedies,
this is 3.4 standard deviations (=10) above expected (383)
Z score $=3.4$
$Z$ scores with absolute value $>2$ are significant at the $p=0.05$ level 3.4 is significant at the 0.0003 level
$\longrightarrow$ small differences (10\%) can be significant.

## Personality and tastes (just a few examples)

| creative | book |  <br> literature, classics |
| :--- | :--- | :--- |
|  | music | folk, bluegrass/rural, jazz |
|  | movie | art, documentary, independent |


| successful | book | business |
| :---: | :---: | :---: |
|  | landsport | tennis |
|  | other | weightlifting |
|  | social | barbecuing |
|  | watersport | boating, jet skiing, water skiing |
|  | free time | fulfilling commitments, catching up on chores and things |


| not <br> responsible | book | sex |
| :--- | :--- | :--- |
|  | movie | erotic \& softcore, gay \& lesbian, <br> independent |
|  | music | funk, jungle, reggae, trance |
|  | Other | skateboarding |
|  | social | raving |

## Major and personality

| personality (\% of total) | major |
| :--- | :--- |
| free time: learning (17\%) | Physics (46\%), Philosophy (37\%), Math (31\%), <br> EE (26\%), CS (24\%) |
| free time: reading (26\%) | English (55\%) |
| free time: staying at home (8\%) | History (24\%) |
| free time: doing anything exciting (52\%) | undecided/undeclared (62\%) |
| you: weird (12\%) | Physics (34\%), Math (28\%), EE (18\%) |
| you: intelligent (32\%) | Philosophy (59\%), CS (42\%) |
| you: successful (4\%) | CS (7\%) |
| you: socially adaptable (14\%) | STS (46\%) |
| you: attractive (16\%) | Political Science (29\%), International Relations (25\%) |
| you: lovable (12\%) | Political Science (24\%) |
| you: kind (25\%) | Public Policy (45\%) |
| you: funny (25\%) | Philosophy (6\%) |
| you: fun (26\%) | Human Biology (38\%) |
| you: creative (22\%) | Product Design (62\%), English (42\%) |
| you: sexy (8\%) | English (18\%), EE (2\%) |

## Association ratios

$\boldsymbol{p}=(\#$ users who like A)/(total \#users)
$L=\#$ connections A users have
$\boldsymbol{m}=$ expected number of links to other A users $=L^{*} p$
$r=(\#$ links between A users) $/ \mathrm{m}$

users who like A

## Interests and association ratios

|  | high association | low association |
| :---: | :---: | :---: |
| book | gay \& lesbian, professional \& technical, computers, teen, sex, sports | history, fiction \& literature, outdoor \& nature |
| movie genres | gay \& lesbian, performing arts, religion, erotic \& softcore, sports | drama, mystery, documentary, comedy |
| music genres | gospel, jungle, bluegrass/rural, heavy metal, trance | pop, classical, rock |
| land sport | lacrosse, field hockey, wrestling, cricket | tennis, martial arts, bicycling, racquetball |
| water sport | synchronized swimming, diving, crew | swimming, fishing windsurfing |
| social | raving, ballroom dancing, Latin dancing | partying, camping |

## Nexus Karma

Rank how 'trusty', 'nice', 'cool', and 'sexy' your buddies are on a scale of 1 to 4

446 users ranked 1735 different friends
correlations between scores given (users were ranked as ' $3,3,3,3$ ' more often than ' $1,4,2,3$ '
average scores: nice (3.37), trusty (3.22), cool (3.13), sexy(2.83)
trusty--nice and cool--sexy more highly correlated ( $\rho=0.7$ ) vs. trusty--sexy and nice--sexy ( $\rho=0.4$ )
negative correlation
no relationship between average score received and \# of friends between average score given and \# of friends

How users view themselves vs. how others view them

|  | trusty (3.22) | $\begin{aligned} & \text { nice } \\ & \text { (3.37) } \end{aligned}$ | $\begin{aligned} & \text { cool } \\ & (3.13) \end{aligned}$ | $\begin{aligned} & \text { sexy } \\ & (2.83) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| responsible | 1 3.36 |  | $\downarrow 3.02$ | \\| 2.67 |
| sexy | $\nabla 3.10$ | $\nabla 3.23$ |  | 13.03 |
| attractive | $\nabla 3.09$ | $\nabla 3.25$ |  | $\uparrow 2.93$ |
| kind | $3.34$ | $3.46$ |  |  |
| friendly |  | $\begin{array}{ll} \hline & 3.44 \end{array}$ |  |  |
| weird |  |  |  | V 2.67 |
| funny |  | $\downarrow \quad 3.31$ |  |  |

## Additional insights from Nexus Karma

Users receiving higher 'nice' scores give higher 'trusty', 'nice', and 'cool' scores ( $\rho=0.14-0.17$ )

If one user gives another user a higher 'trusty' or 'nice' score than their other friends, that same friend is more likely to reciprocate.

Users who share friends are more likely to give each other high scores ( $\rho=0.10-0.13$ )

## Differences between data sets

HP labs email network

- complete image of communication network
- affinity not reflected

Online community

- partial information of social network
- only friends listed


## Degree Distribution for Nexus Net

2469 users, average degree 8.2


## Problem: how to construct hierarchies?

Probability of linking by separation in years


Hierarchies not useful for other attributes:
Geography


Other attributes: major, sports, freetime activities, movie preferences...

## Strategy using user profiles

prob. two undergrads are friends (consider simultaneously)

- both undergraduate, both graduate, or one of each
- same or different year
- both male, both female, or one of each
- same or different residences
- same or different major/department

Results

| strategy | median | mean |
| :--- | ---: | :--- |
| random | 133 | 390 |
| high degree | 39 | 137 |
| profile | 21 | 53 |

With an attrition rate of $25 \%, 5 \%$ of the messages get through at an average of 4.8 steps,
=> hence network is barely searchable

## Search Conclusions

O Individuals associate on different levels into groups.
o Group structure facilitates decentralized search using social ties.
OHierarchy search faster than geographical search
OA fraction of 'important' individuals are easily findable
o Humans may be more resourceful in executing search tasks: making use of weak ties using more sophisticated strategies

## How do networks become navigable?

Aaron Clauset and Christopher Moore
arxiv.org/abs/cond-mat/0309415


$$
\begin{aligned}
& \text { In the limit } N \text {-> } \quad \infty \\
& \text { long range } \\
& \text { link distribution becomes } 1 / r \text {, } \\
& r=\text { lattice distance between } \\
& \text { nodes }
\end{aligned}
$$

## Applications to peer to peer networks

Adriana lamnitchi, Matei Ripeanu, Ian Foster
"Small-World File-Sharing Communities", http://arxiv.org/abs/cs.DC/0307036
create localized indeces for peers with similar download patterns
Foreseer:
Proposed P2P architecture with friend \& neighbor overlay
friend: has shared a file
neighbor: short ping time

Fletcher, George , Sheth, Hardik and Börner, Katy. (2004). Unstructured Peer-to-Peer Networks: Topological Properties and Search Performance. Third International Joint Conference on Autonomous Agents and MUltiAgent Systems. W6: Agents and Peer-to-Peer Computing, Moro, Gianluca, Bergmanschi, Sonia and Aberer, Karl, Eds., New York, July 1923, pp. 2-13.
http://ella.slis.indiana.edu/~katy/paper/04-fletcher.pdf


[^0]:    These are preliminary lecture notes, intended only for distribution to participants

