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INTRODUCTION TO GRAPHS

FIGURE 1.1. An ancient picture of the city of Konigsberg. From MacTutor His-
tory of Mathematics archive (http://www-gap.dcs.st-and.ac.uk/~history)

His name was Leonard Euler and he was just a country boy who had never
seen Konigsberg before. Still the power of mathematics helped a young Swiss
mathematician in solving a puzzle about one of the most elegant cities of the
XVIII century. According to the current view, modern Graph Theory traces
back to the mathematician Leonard Euler! that has been the first scientist to
introduce the notion of graphs. The beginning of this story is very similar to a
joke, but eventually resulted in the creation of a new branch of mathematics.
Euler wanted to answer a popular question of his time. If we are in the center
of the city of Konigsberg (Prussian city in the first part of XVIII century) can
we do a stroll by crossing only once everyone of the seven bridges shown in Fig.
1.17

The situation was very similar to the simplified map in Fig. 1.2 apart that we
didn’t reproduce streets, buildings or the actual shape of the river borders and
islands. A brute force solution of this problem could be summarized as follows:
we start from a side, we check all the possible paths and we stop if we find the
one desired. Apart the lack of elegance of such a procedure, in this way we do

10ne of the greatest mathematicians of all times. Born the 15 April 1707 in Basel (Switzer-
land), he died the 18 Sept 1783 in St Petersburg (Russia). Here we discuss of his publication:
Solutio problematis ad geometriam situs pertinentis of 1736
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18 INTRODUCTION TO GRAPHS

FIGURE 1.2. On the left a very schematic map of the town center of Kénigsberg
at the time of Euler (1736). On the right the resulting graph

not provide a real solution. Indeed if we have a similar problem with a different
number of bridges we simply repeat the “exact enumeration” from scratch. Even
worst, if at a certain point the number of bridges is larger than seven, the possible
paths become so many that it is simply impossible to proceed like that.

General solution of the problem needs the abstraction of the mathematics.
The step ahead made by Euler was to condensate all the relevant information in
one map of Konigsberg even more simplified that the previous one. This map is
shown on the right of Fig. 1.2.

Here real distances do not matter any more. Different parts of the cities
(larges or small) are described by points that are called vertices. If they are
linked (through a bridge) we draw a line (called edge) between them. The map
of the city becomes a “graph”?2. Through this formalism now the original problem
translates in the more abstract request: ”Is it possible to find a path that passes
through all the edges exactly once?”

Now we have to consider if the problem is easier thanks to this formulation.
The answer is a mixture of yes and no. No because “essentially” (and hopefully)
the request remained the same, yes because now we restricted all the attention
on these new things we called vertices. All the parts of the city are drawn in
the same way (as a point). All of them are equal. Therefore a solution (if exists)
must refer to some intrinsic properties of such objects.

An immediate intrinsic quantity here is the number of edges per vertex,
hereafter indicated as the degree of the vertex. It is an integer number. Therefore
it is either even or odd. If it is even (to fix ideas let us start with 2) we realize that
the vertex is a crossing point. Indeed we can enter the vertex from one bridge
and we exit from the other. If the number of edges is even but larger than two
(i.e. 4,6,8 etc.), the same argument holds. To check that, just divide the edges
in couples. The degree will be a number m = 2% n, where n is the number of the

2]t is worth noting that the same trick is used today to draw the maps of the various stations
in the underground of the modern cities
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couples of edges. For every couple we get in through one edge and we get out
from the other. The vertex is visited two, three or in general n times. Conversely,
vertices with odd degree can only be starting or ending point of the path.

That is the solution of the problem! Our request to pass on every bridge
exactly once can be satisfied only if the vertices with odd degree are zero (starting
and ending point coincide) or two (starting and ending point do not coincide).
If you think a little bit and work it out on piece of paper, you realize that you
cannot have a graph with only one vertex with odd degree, so the above ones
are the only two possibilities (we see later that the sum of the degrees of the
various vertices is an even number, precisely it is twice the total number of
edges). Now we go back to the graph in Fig. 1.2 and we discover that none of the
above conditions are verified. Actually, all the four vertices have an odd degree.
Therefore the path is not possible.

Starting from such problem, graph theory became more and more elaborated.
Since the time of Euler many mathematicians have made important contributions
to it. We do not want to provide a formal course in graph theory. Rather, we
will focus here only on the basic notions allowing to study and describe scale-
invariant networks. For those who would like to start a detailed study on this
topic we can suggest (amongst the many resources available also in electronic
form) some introductory books (Bollobas, 1979; Bollobas, 1985; Diestel, 2000;
West, 2001).

In this chapter we will provide a definition of what a graph is. We
also introduce a way to represent graphs through matrices of num-
bers. This representation will make some computations particularly
easy. When graphs are of very large order (when they have many ver-
tices) the only way to describe them is by means of statistics. We will
provide here some mathematical instruments. Finally we present the
probability distributions we use in the rest of the book.

1.1 Graphs, Oriented Graphs and Weighted Graphs

The various networks present in this book are different realizations of the same
mathematical object known as graph?.

Graph theory is a branch of mathematics (in particular geometry). To de-
scribe it there is no other choice than a rigorous way. Therefore also the order
of notions has its own importance. A more traditional exposition of the basic
concepts is presented in Appendix B. Here we use only part of this series of
notions and I took the liberty to cut and paste from a more traditional list only
the quantities strictly necessary for the purpose of this book.

3In general one refers to networks as any real system that can be described by means of
a mathematical object called graph. Here in this book we will follow in a loose way this rule
and keep the name of graph whenever talking about mathematical properties. Nevertheless
sometime they will be used as synonymous
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Graphs are assigned by giving the set of the vertices and the set of their
connections. Vertices and edges are the technical terms used in graph theory
and we use preferably them, even if some author use also site, node or link
(whenever talking about graph theory we will use only the traditional notation
for the sake of clarity).

Edges can have arrows or not, that is they can be crossed in one direction
only (we see that this is the case of hyperlinks in a HTML document). In this
case the graph is an oriented graph.

A further generalization is also possible, one can think that every edge has a
different value assigned. In the case of transportation networks (a system of
pipelines or the Internet cables) this could represent for example the maxi-
mum load allowed. Whenever this extra information is provided we deal with
a weighted graph®. Further generalizations are possible and used, but for our
purposes we can restrict to that.

The mathematical symbol to indicate a graph composed by n vertices and m
edges is usually G(n, m). These parameters n and m are not independent each
other. Actually there is a bound in the number of edges we can draw. Each vertex
can establish an edge with (n — 1) other vertices. This holds for every one of the
n vertices. This give a total number of n(n — 1) possibilities where we counted
twice the same edge. The maximum number of edges is exactly one half of that
Mimaz = n(n —1)/2.

If the starting and ending vertices make a difference (as in the case of oriented
graph) then we do not have to divide by two the above quantity. In this case
the maximum number of edges is given by n(n — 1). Note here that under this
definition, regular grids (as for example the simple cube lattice) can be considered
as trivial examples of graphs.

1.1.1  Adjacency Matriz

The structure of the graph G(n, m) can also be represented by means of a matrix.
Matrices are tables of numbers very useful to solve problems of linear algebra. We
assume that the reader has a basic knowledge of them. Just to refresh memory
we list some of their properties in Appendix C. If needed, a good textbook must
be consulted (Golub and Van Loan, 1989).

In the case of graph we introduce the Adjacency Matrix A (n,n) whose
entries a;; are 0 if vertices 7, j are not connected and 1 otherwise. This is a some-
what extended nomenclature. Instead of listing only the edges actually drawn,
we decide to write down n? numbers that is more than twice the maximum num-
ber of edges (Mmar = n(n —1)/2) we can draw in a “simple” (i.e. non-oriented)
graph. The reason of this choice is given by the fact that through this extended
representation it is possible to derive analytically some results of a certain im-
portance.

For the moment let us proceed with this representation and consider the form
of this matrix. The diagonal elements represent the presence of a edge between

4 Almost everywhere in this book the weights of an edge will be a real positive number.
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FIGURE 1.3. On the left a simple graph whose Adjacency matrix is reported on
the right. Bold edge corresponds to bold entries.

a vertex and itself (whatever it could mean). Whenever differently specified we
consider those entries equal to 0.

Note that this matrix is symmetric (it means a;; = a;;) only in the case of
non-oriented graphs. For oriented graphs instead the elements a;; are generally
different from the elements a;;. For example in the case of only one edge going
from vertex 2 to vertex 3 we have that as3 = 1 and ass = 0°

Through this representation we can easily describe the case of the weighted
graphs. Now instead of giving only 1 and 0, we assign a real number (the weight)
to the entry a;;. We obtain then an adjacency matrix composed by real numbers
for the edges present and 0 otherwise. In the following we refer to this matrix
with the symbol A™(n,n). Its elements will be then indicated by aj

1.1.2  Quantities of interest

As written above, readers looking for an organic list of concepts must refer to
Appendix B. The following definitions are provided firstly for non-oriented and
non-weighted graph. After the simple case we also provide the definition for the
general case.

e The graph order is the number n of its vertices.

e The graph size is the number m of its edges.

SWe follow here the overwhelming convention to write the oriented edges of vertex i on
the it" row of A. Actually, it would be simpler to write the edges along the " column. We
see that when the adjacency matrix is transformed in a transition matrix (i.e. every entry is
divided by the degree of the vertex) we want AT A = I. This result can only be obtained by
writing the entries along the columns.
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FIGURE 1.4. On the left: Graph G(7,6). The order of the graph is 7; the size
is 6. The degree of vertex A is 4, the degree of vertex C' is 2. On the right:
An oriented graph of the same size. In this case the in-degree of vertex A is
1, the in-degree of vertex C' is 2 and its out-degree of vertex C'is 1.

We recall that in a graph of size n we can draw a maximum number
of edges given by Mg = @ This formula is easy to understand.
We have n possible starting points and for every one of them n — 1
destinations. Repeating this procedure we count twice the path from
one vertex to another.That is why we must divide by two. This factor
on the denominator disappears in a oriented graph where we care
about the difference between origin and destination of the edges.

Two immediate limits are present. If no edge is drawn then the graph is
empty and it is indicated by E™. If all the edges are drawn, the graph is
complete and it is indicated by K™.

e The vertex degree is the number of its edges. As mentioned before, the
sum of all the degrees in the graph is twice the number of the edges in
the graph. This happens because any edge contributes to the degree of the
vertex origin and to the degree of vertex destination.

A compact way to compute the degree consists in running on the dif-
ferent columns of a fixed row in the adjacency matrix A(n,n) looking
for all the 1’s present. This means that the degree k; of a vertex ¢ can

be computed as
k‘i = Z Ajj - (11)

g=1.m

x In oriented graphs this quantity splits in in-degree and out-degree for
edges pointing in and out respectively.
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Since the a;;’s are different from the aj;’s in the adjacency ma-
trix we have that a;; = 1 if and only if an edge goes from 7 to
j. This means that

= e (1.2)

1=1n

k;mt = Z Q5 (13)

j=1ln

x In the above definitions all the edges count the same. This is not the
case of weighted graphs.

In this case the weighted degree k;’ of a vertex ¢ is usually

defined as k" = .,  ai%. Note that, with this definition one

recovers the usual degree if matrix AW is replaced by A.

e The distance d;; between two vertices 4, j is the shortest number of edges
one needs to travel to get from i to j. Therefore the neighbours of a vertex
are all the vertices which are connected to that vertex by a single edge.

Using the adjacency matrix this can be written as

diy =min{ 3 au}=min{ 3 aikl} (1.4)

BAEPs k,lEP;;

where P;; is a path connecting vertex i and vertex j (Note that for-
mally both the sum the a;; and that of the inverse produce the same
result. This is because all the existing edges have a value of 1. For
the case of “simple” graphs one or the other definitions make equally
sense. In the following we see that when considering weighted graphs
according to the “physical” meaning of the weight one or the other
quantity have a different sense (and of course give different results).

x If the graph is oriented one has to follow the direction of the edges.
Therefore the distances are generally larger than in the homologous
non-oriented graphs.

x In the case of weighted graphs, instead of summing for every step
a distance of 1 we can assume that the distance is related to the
values of the weight. If the graph represents a distribution network
as a pipeline of water, the weight can represent the section of pipe.
Intuitively then one can think that two vertices related by a “strong”
edge (i.e. an edge whose weight is large) are nearer than two related
by a weak edge. In this case (as it could be the case of the Internet
where weight reports for example the load) we define the distance as
the sum of the inverse of the weights.
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FIGURE 1.5. The clustering coefficient of the central vertex is 1/3. This is be-
cause his degree is three and its neighbours can be connected each other in
three different ways. Of these possibilities (dashed line) only one is actually
realized (solid line) and therefore C' = 1/3. The three connected vertices form
the coloured triangle. For that reason, sometime the clustering coefficient of
a vertex is defined through the number of triangles it belongs to.

In formulas d;; = min{zkylep” w%z}

On the other hand, if the network is an electric grid and the weight
gives the resistance opposed by current flow on any edge, then the
larger is the resistance the larger is the distance between two vertices.
In this case the generalization of the above formula that makes more
sense is given by

In formulas d;; = mm{Zk,lePij W }

e The diameter D of a graph is in this book the largest distance you can find
between two vertices in the graph. Some other definition (as the average of
distance) are possible.

e The clustering coefficient C' is a basic characterization of clustering. C
is given by the average fraction of pair of neighbours (of the same vertex)
that are also neighbours each other. A simple example of that is shown in
Fig. 1.5. In this case the central vertex has three neighbours. These can be
connected in three different ways, since only one is actually present, this
gives C' = 1/3. For the empty graph E™ we have C' = 0. The maximum
value of C' = 1 is obtained for the complete graph K". In general we
may write the clustering coefficient as the fraction of actual edges over the
possible ones between the vertices 1, j, k.
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Using the formalism of the adjacency matrix we have that for a vertex

1
C;, = ( k} — 1 /2 Zazjazka]k (15)

x If the graph is oriented, the generalization is not straightforward. It is
more or less natural to consider the extension of the clustering coeffi-
cient only for the in- or out-degree, splitting therefore the contribution
one has for the non-oriented graph. The problem is then to consider
which direction of the edge between the neighbours has to be counted
(see Fig. 1.6).

In general one tends to join the two possible direction such that
the clustering coefficient takes the form

; 1 (ajk + ak;)
?’n = - = i1 7 — 1.
S D2 Zj -tk (1.6)
1 (ajk + ak;)
out __ E iy J J 1.
C (kout)(kiout _ 1)/2 — a JCL k 2 ( 7)

For the weighted graphs the situation is even more complicated. It is
easy to generalize the numerator of the expression above, but we do
not know an expression for the denominator. The point is that in a
non weighted graph we can always imagine to be in condition to draw
another edge if the graph is not complete. In this case the relative
entry in the adjacency matrix will be invariably one. This accounts
for the term (k;(k; — 1))/2 giving the total number of edges one can
draw. Here instead we also have to assign a weight on the missing
edge! Therefore the concept of total weight of triangles is ill-defined.
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FI1GURE 1.6. When dealing with oriented graphs it is not clear, how to close the
triangle at the basis of clustering coefficient definition. The same problem
holds for weighted networks.

Different choices are available in order to overcome such prob-
lem. Here we present this definition

1
cw

V= s e Sz 2 ke (18)
<av>% (k)i — 1)/2 4

where the quantity < a¥ >= 1 Y _i; G35 is the average weight of
an edge in the graph.

Other choices are possible especially in some real situation
where fluctuations from average plays a crucial role (i.e. the
average is not a representative measure of the set). A. Barrat et
al. (Barrat, Barthélemy, Pastor-Satorras and Vespignani, 2004)
introduced for example the following definition

O = D Y ) (09

where 0(x) is the step function equal to 1 when the argument
is larger than 0.

In general, according to the particular case one or another definition
can have more sense.

One important quantity is given by cliques. A bipartite clique consists of
two sets of vertices such that every vertex of one set is connected with every
vertex of the other set. The same concept can be generalized for tripartite
cliques when we have three sets. More generally cliques can be composed by a
number n of sets. This quantity is usually very difficult to measure and visualize.
Empirically the number of bipartite cliques bc(m,n) for two sets of order m,n
decays very fast (exponentially) for large m,n in almost any network of interest.
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Simpler methods to describe quantitatively such systems have been introduced
to compute the presence of communities.

This very schematic list closes the first part of description of graph quantities.
Other definitions of centrality are possible and are used in graph theory, but for
the moment we stop here.

It is important to understand that real networks are different each other. They
happen to share some statistical properties with the others, but in general they
display also intrinsic characteristics for which specific quantities are necessary.
For example, let us focus on a very important case of study, that of the World
Wide Web. Here the graph is oriented, the vertices are the html documents and
edges can point in or out a certain page. Given the meaning of the graph, it is
very likely (and therefore fair to assume) that vertices (i.e. web-pages) with a
large number of outgoing edges are pages specifically suited (i.e. Yahoo) to reach
as many other pages are possible.

On the other hand, if one page has a large number of ingoing edges, it is
because its content is probably very important (i.e. an on-line newspaper). The
larger the number of edges the more recognized is this importance.

This calls for a new division of vertices, valid only for oriented graphs and
justified only by the specific character of the case of study (Kleinberg, 1998;
Kleinberg and Lawrence, 2001)

e hubs are those web pages that point to a large number of authorities (i.e.
they have a large number of outgoing edges).

e authorities are those web pages pointed by a large number of hubs (i.e.
they have a large number of ingoing edges).

From that example we understand that a new set of quantities is needed on
top of the general ones. Sometime they can be used for more than one system,
sometime they are indeed rather particular as in the above case.

1.2 Centrality measures, Betweenness and Robustness

As we see in the following, all scale-free networks are characterized by a Degree
Density Distribution whose tail goes to zero very slowly.

This means that for large values of the degree the distribution function
is power law shaped, that is

P(k) < k77. (1.10)
For the moment we can consider that the above information means that the
structure present few vertices (later called “hubs”) with many edges and many
vertices with few edges. In some sense, the vertices with the largest degree are
the “most important” in the graph. This concept is particularly clear in the case
of the Internet. Whenever hackers want to interrupt the service, they attack the
routers with the largest number of connection. One could then fairly assume
that the largest the degree the largest the importance of the vertex in the graph.
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A

FIGURE 1.7. A particular graph where we can disconnect the system acting on
the circled vertex with degree 2.

Interestingly, some special cases show that this not always true. Therefore the
concept of importance (or better centrality) can be improved.

Sometime the situation is rather different. If the graph is the one shown in
Fig. 1.7 the hacker should attack the central vertex even if it has a small degree.
The notion of importance then depends upon the actual shape of the graph and
upon the particular physical meaning of the services provided on the graph. For
that reason different measures of centrality of a vertex have been presented.
These concepts have been mainly used in the field of social science (Freeman,
1977). We describe them here because they can play a role in some cases of
scale-free networks.

The most immediate way to define the most central vertex is to look for the
vertex whose average distance from all the others is the minimum one.

That corresponds to say that centrality c(i)

1

c(i) = P

(1.11)

Many graphs present a characteristic average distance (this phenomenon is
called small world effect). This means that also this quantity will show a typical
average scale.

Another measure of centrality comes from the dynamical properties of the
graph. Whenever the graph is supposed to represent a transportation network
(water, electricity, information etc.) then a flux is present on the edges of the
graph. It makes then sense to ask how this flux is distributed along the vertices.
We start from the simplest choice. We assume that on every edge there is a
uniform load. That is to say, any edge has the same capacity of the others.
Under this hypothesis, a sensible measure of centrality is given by the number
of times that we cross one vertex k in going from one vertex i to another j
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following the path of minimal length (distance d(i,7)). This quantity is called
site betweenness b(i) and in formulas is given
. Dji ()

b(i) = - 1.12

() B (112

J =1l i

i#j#

where Dj; is the total number of different shortest paths (distances)
going from j to [ and Dj;(k) is the subset of those distances passing
through 4. The sum runs over all pairs with ¢ # j # [.

An immediate generalization of this quantity is given by the edge between-
ness where now the number of paths considered are those passing for a certain
edge.

On large graph one has to use some care in order to compute this quantity
along the graph. Simple algorithms tend to increase the time of computation
very easily, so that in some cases a series of methods to have an approximate
value of the betweenness have been produced.®

A particular interest for application is to check whether a particular graph
can resist to a certain number of deletion of both edges and vertices. Traditionally
such deletions are divided into two classes (Albert, Jeong and Barabdsi, 2000;
Albert, Jeong and Barabasi, 2001). The random failure where a vertex is removed
regardless its importance (degree) or centrality in the network and the attack
where a vertex is removed with a probability related to its importance (usually
the degree). The key quantity to monitor to check if the properties of the network
are unaffected is the change in the value of the diameter D or of the average
distance with respect to the fraction f of removed vertices.

1.3 A Simple Subset of Graphs: the Trees

There is one general case in which the networks have a particular characteristic
shape. In the case of a distribution network (as for example water supply, but
in principle anything), the good is delivered to all clients trying to avoid to pass
on the same vertex twice. The class of graphs without closed paths are called
trees. A more formal definition is the following:

e For our purposes we can informally define a cycle as a closed path that
visit only once the vertices (apart the end-vertices that coincide).

o A set of vertices connected each other without cycles is a tree.

o A set of disconnected trees is a forest.

e For the oriented trees the vertices with (out-)in-degree equal to one (the
peripheral vertices of the tree) are called leaves. Sometime it is needed to
define a special vertex that is called root. In the case of river networks (as
shown in Chapter 8) the root is the vertex (always present) for which the

6 Actually very recently a fast and efficient algorithm to compute exactly such quantity has
been presented in Ref. (Brandes, 2001). We sketch the idea of the algorithm and the structure
of a routine in language C in the Appendix.
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FIGURE 1.8. Two example of special vertices in a tree. On the left (as in a real
tree) nutrients flow from the root (dark) to reach the leaves (light). Root
and leaves are defined through their in-degree. On the right the case of river
networks. Here light vertices represents the highest zone in the basin (no

points uphill). The dark vertex is the outlet of the whole basin. Root and
leaves are defined through the out-degree.

out-degree is zero. In food-webs instead people prefer to define as root the
vertex whose in-degree is zero (see Fig. 1.8).

In a non-oriented tree there is always a path between any couple of vertices.
For oriented trees instead, it is possible that some of the vertices are isolated
from the others because the direction of the edges does not allow to join them.
Therefore distance are generally larger as it happens in the oriented graphs. Some
graph quantities as the degree or the betweenness can be computed also in the
case of the trees. Instead, by construction the clustering coefficient is zero. We
remember here that in the definition given in eqn (1.5) the clustering coefficient
is related to the number of triangles (cycles of order 3) present in the graph.
Since the tree is an a-cyclic graph, we see immediately that this quantity does
not have any sense in the case of trees.

Anyway, for this sub-class of graphs we can define a new quantity given by
the structure of the tree. As shown in Fig. 1.9 we have that a tree can be defined
as a set of (sometime) nested sub-trees. In the picture proposed we have the
sub-basins A, B, C' whose order (number of vertices) is respectively 4,5,6 (note
that in a tree of n vertices, the total number of edges is n— 1, so whenever talking
about trees the size and order of these graphs differ only by one).

The Probability Distribution P(n) of the size n for the various nested
subtrees. According to the different systems this quantity takes several names.
It is called ”in-degree component” for a general oriented tree as well as drained
area in the language of river networks. In this particular case the vertices cor-
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FIGURE 1.9. Three different sub-basins nested: A is composed by 4 vertices, B
is composed by 5 vertices, C' is composed by 6 vertices.

respond to area of Earth surface where water is collected from rainfall. The
edges represent the directions along which the water flows in the system. For the
present system n represents the total amount of points “uphill” in the tree.

To compute this quantity one can repeat the natural process of water collec-
tion in the basin.

e We start by identifying the root of the tree.

e We assign an oriented direction to the edges such that a path exists from
any vertex to the root (in the case of River Networks we see that different
height values in the basin areas makes these choices rather natural).

e We start from a leaf (light vertices on the right of Fig. 1.8) that are sub-
basin of area A = 1.

e We follow the direction of the edges and we compute for the destination
vertex how many points are uphill.

The various values of n along the tree give the frequency distribution of n.
The latter one tends to the probability function P(n) in the limit of infinite trials
(that is to say an infinite tree).

Some of the trees we present in this book are of some importance for their
functional properties, that is to say they are shaped in a particular way in order
to perform a specific task (as it is the case of transportation networks). Some
other trees arise naturally from the process of classification. The most intuitive
example of this phenomenon is given by natural taxonomy of plants or animals.
Starting from field observation generations of naturalists recursively grouped
together in larger and larger groups the real species around us. Note that real
species as the laurel (Laurus nobilis) or the domestic cat (Feliz Feliz) are the
“experimental data”. The larger categories in which they are grouped instead



32 INTRODUCTION TO GRAPHS

FIGURE 1.10. Left, the taxonomy tree of an Argentinian ecosystem. Right, a
minimal spanning tree obtained with the procedure explained in the text.
The key quantity in this latter example is the correlation in price returns of
the different stocks (the vertices of the graph). This tree will be discussed in
great detail in Section 13.2 of Chapter 13

are product of men activity and cannot be recorded in any field observation.
These two classes of trees are intrinsically different. In one case we have vertices
with a similar nature (as the houses to be connected by a water pipeline) in the
other the vertices are very different each other (a vertex corresponding to an
actual species and a vertex corresponding to a human classification). This fact
produces some interesting feature as shown in Chapter 7. For the moment let us
see how these structure can arise from classification procedures.

1.3.1  Graphs from Classification

Taxonomic or classification trees appears naturally in a series of different real
situation, practically whenever it is crucial to organize the information. The best
and more efficient structures of taxonomy are therefore one of the open problems
in data mining. In any example of trees the starting point is given by the physical
correlations between the agents in the systems. Agents or class of them become
the vertices of the tree and the correlations become the edges.

In the case of botany or zoology, this is very easy. We start from species
and we cluster them according to their morphology. Classes of species can be
clustered in the same way. Step by step we form a tree composed by different
layers.

We can follow this procedure in several different ways. For example we can
fix from beginning the number of layers we want to use. To reduce a little bit this
freedom of choice we present here another procedure called Minimal Spanning
Tree.
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To fix the ideas let us consider as an example a financial system. More par-
ticularly, let us consider the price oscillations of a stock traded in the market.
Usually, the price of different stocks is correlated in such a way that different
stocks might have a similar price history. For our purposes price correlation is
a real number measuring the similarity of two vertices. Now one can decide to
use this measure of similarity to cluster stocks in the same way as species in a
taxonomy. The passages in this procedure are the following

e Define a set of entities that will be represented as vertices in a graph
and define an interaction between them that will give the edges (in the
specific case we have stocks as vertices and price correlation as interaction.
Technically correlation can be negative so in order to have something like
an edge strength it is customary to define a distance from correlation).

e Now we have a complete n x n set of measures of similarity of any of the
n vertices with all the other n — 1 vertices. This form a complete graph
with different edges strength. If requested the graph can be transformed in
a non complete one. T'wo choices are now possible.

x We can assign a threshold on this weight saying that only the edges
with a similarity larger than the threshold are drawn.

x Otherwise we can classify the different vertices by means of a different
procedure. For example with the minimal spanning tree procedure
we can obtain a tree in the following way. Rank all the similarities
between different vertices. Then draw the first two vertices in the list.
Then proceed on the list and draw the second pair. If in the second
pair there is one vertex already present in the first one we have the
situation in Fig. 1.10. Now if by drawing the third pair we close a
loop then forget about this entry in the list and proceed further. Stop
when all the vertices have been drawn.

1.4 Network Motifs

One possible reduction of the complexity of graphs can be done by simplify-
ing the graph structure into basic building blocks (Milo, Shen-Orr, Itzkovitz,
Kashtan, Chklovskii, and Alon, 2002). We already know some of the structures
shown in Fig. 1.11. The graph number 9 is a cycle of order three, but other
configuration are possible even if they are not closed paths. In general for three
vertices it turns out that thirteen possible basic configuration are available (if
the edges are oriented). These configurations are called motifs and can help in
characterising the shape of the different real networks. In some lucky case the
hope is that understanding the function of each motif would allow us to under-
stand the entire network behavior. This is because certain recurring motifs can
witness a particular function required to be accomplished. They can be regarded
as functional units important to whatever function the network was designed or
evolved to perform.

We can in principle study the various motifs arising when considering four,
five or in general a larger set of vertices. It is easy to understand that this
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FiGURrE 1.11. The basic 13 elementary motifs that can be drawn in an oriented
graph of three vertices. The table made for four vertices motifs has 199 entries.

F1GURE 1.12. A possible way to rearrange edges keeping the same size, order
and degree sequence.

procedure will produce an exponential number of motifs. For that reason people
usually stop very soon and consider only the presence of the smallest motifs
in the network. Particularly interesting is the fact that in many real networks
some motifs are far more frequent than “expected”. Let us see what it means
“expected”. We start with the graph we are studying (graph origin). After that
we build a set of all the possible graphs with the same order (number of vertices),
the same size (number of edges) and the same degree sequence (i.e. any vertex of
the graphs in the set has the same degree it had in the original version). Edges
are instead rearranged in the vertices as shown in Figure 1.12

Interestingly, in the networks analyzed (Milo, Shen-Orr, Itzkovitz, Kashtan,
Chklovskii, and Alon, 2002; Mangan and Alon, 2003) some motifs are constantly
repeated. In particular, their abundance is more than 10 standard deviations
from the mean expected in randomized graphs. The feed-forward loop, or filter
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motif, for example, is common in networks of neurons, but is relatively rare in
food webs. A feed-forward loop consists of network vertices x, y and z, in which
x has connections to y and z, and y also has a connection to z. In food webs,
where vertices are animals, this pattern is carried out only by omnivores (z)
that bot eat another animal (y) and the food (z) that that animal eats. Instead
in (Milo, Shen-Orr, Itzkovitz, Kashtan, Chklovskii, and Alon, 2002) it is shown
that at least in seven different food webs we can find the same two motifs. Those
motifs are a chain, where one type of prey eats another, which eats another, and
a diamond-shaped pattern, where one type of prey eats two others, which both
eat a fourth type of prey.

Not surprisingly a relative abundance of motifs is also present in the infor-
mation process network, where these modular structures can act as logic circuits
performing “and” and “or” operations.

1.5 Statistical Distributions

The above graph quantities refer to the properties of a single vertex (or in the
case of motifs of a small group of vertices). Since many networks of interest are
composed by thousands of vertices, the above information for all the elements
would be practically intractable. That is the reason that forces to give a statistical
description of the system. Focusing on the degree for example, we can consider
to average of the various degrees and study its mean value. Even better, we
can consider the frequency distribution of the various values of the degrees. This
means that we compute how many times (with respect to the total number of
vertices N) we find one vertex with degree 1,2, 3, .. etc.

It is enough to remember here, that as the number of measures becomes really
large (we need infinite measurements), the values of these frequencies become
very similar to their probabilities. Actually this procedure provides one of the
possible non rigorous definition of probability (the limit of the frequency value
when the number of observation goes to infinite). This series of frequencies (that
we can call probabilities from now on, hoping in good quality measurements) is
usually the first quantity checked in most of the cases of study.

Before proceeding further there is an important thing to discuss. We should
consider the properties of this discrete series of values P4(1), P%(2), P%(3) etc.
(giving the probability to find a vertex with degree 1,2, 3... respectively) People
instead use (almost universally) continuous function P (k) where k is a real num-
ber. This means that P(k) is defined also for non integer values of its argument
k. In this book we also follow this approximation because it helps in obtaining
some analytical results and is in general “easier” to use.

An example of this approximation is represented in Fig. 1.13 where the his-
togram of the various discrete probabilities is fitted through a suitable continuous
function. It is important to understand that P?(k) is a Probability Function or
Probability distribution. If we have P%(k) = 0.1, this means that on average
10% of the times we find a degree equal to k.
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F1GURE 1.13. The histogram of a discrete probability function and its approx-
imation through a continuous function. The relative error is i—k = % that in

the limit of large k tends to zero.

Instead the real function P(k) has not the meaning of a probability. This
happens because the probability to extract exactly a precise real number (as it
is now k) is always zero. The correct approach is to define a quantity that gives
the probability that the degree k is within an interval dk around the expected
value. This quantity is indicated as P(k)dk and the P(k) is called Probability
Density Function or Density of Probability Distribution.

The name “density” states for the fact that one recovers the meaning of
probability only by multiplying it for a suitable interval. Turning to the above
example, the P(k) can now assume non-zero values like for example 0.1. In this
latter case this means that on average we find 10% of times a degree whose value
is between k and k + dk.

Note also that the axes of the plot in Fig. 1.13 are in logarithmic scale. The
reason of such choice of scale is related to the topic of this book. In almost all
the cases of interest the histogram of the discrete probabilities P?(k) and also its
fitting continuous function P(k) are distributed according to a power law. This
corresponds to say

P(k) o< k™. (1.13)

The symbol o« means “proportional to” and we shall use this relational concept
very often in this book. Probability Density and Probability Functions obey the
normalization condition. That is to say we have to be sure (probability =1) that
we will find at least one value of the degree whatsoever.
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In this specific case this means that the frequency distribution is in fact
P(k) = Ak~7. The proportionality constant A is however not impor-
tant. It is fixed by the requirement that the sum of all the frequencies
is equal to one. This means

/P(k)dk: = /Ak‘”dk =1 (1.14)
1

A= —"
T 0T Tkovdk

(1.15)

Some care must be used with the extremes of integration. While the
upper limit can be considered infinite, in the lower limit if £ = 0 the
integrand diverges. Therefore in computing A we have to remember
to restrict ourselves to the connected part of the system, that is where
k > 1. Whenever extremes of integration are not explicitly indicated
we assume the above conditions apply.
The knowledge of the distribution function is particularly important. Through
this quantity we can compute a couple of other interesting quantities. For exam-
ple we can compute what is the typical (or better “mean”) value that the degree
assumes in the graph. This value will be indicated by (k), where the symbol (...)
indicates an average over all the possible outcomes.

A measure of the typical error we make if we assume that every vertex has
degree (k) (thereby neglecting values fluctuations in our system) is given by the
variance 2.

These two quantities are given by definition by

(kY = / kP (k) dk (1.16)
o2 = /(k:— (6))2P (k) dk (1.17)

1.6 Working with Statistical Distributions
1.6.1  Some Important Exzample

It is easy to understand that if the integral of the P(k) must be equal to one and
k can variate between 1 and infinite at a certain point this function P(k) must
decrease fast, otherwise its integral would diverge.

Amongst all the possible function obeying such requirements the real distri-
bution probabilities are remarkably few. Here we will further restrict this choice
to the ones that are more frequent.

e A discrete Probability distribution is the Poissonian distribution Pp(k)
(where k is integer) behaving as
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k, —k
Pp(k) ="~ Ij! (1.18)

e Whenever the argument of £ the function can assume also real values we
have a series of different possible distribution function. For our purpose it
is enough to mention:
the Gaussian (or normal) density function Pg(k)

1 _k=w?
f(k) = Pa(k) = e =7 (1.19)
2wo
The log-normal distribution
1 (In(k)—pw)?
k) = Prn(k) = e 202 1.20
F(k) = Pon(k) = —— (1.20)
the power law distribution Py (k)
f(k) = Py(k) = Ak™". (1.21)

The Gaussian distribution has mean p and variance o2, the log-normal instead
is more skewed with mean e#*°°/2 and variance e2'+o (e"2 — 1). power law
distribution is the only one that may have no finite mean and variance.

We see in Fig. 1.14 a snapshot of the normal, the Poissonian and the power-
law distributions. Note that the first two functions increase to a maximum after
which they decade. The third has a smoother character always decreasing as k
grows. Note also that while normal and Poissonian distribution depend upon the
choice of some parameter, their qualitative behaviour does not change. Note that
the area dashed in the three plot of Fig. 1.14 has a value of 1. That is another
way to say that the three distributions are normalized.

Interestingly (we return on this point), while it is easy to distinguish between
a Gaussian and a power law distribution, it could be difficult to spot the difference
between a power law function and a log-normal function. Most of the times even
eye inspection can help in determining which function is best suitable for the
data. A power law distribution will look as a straight line whenever plotted on a
logarithmic scale (or that is to say whenever considering the logarithms of both
sides). Unfortunately, in some conditions this can be true also for the log-normal
distribution.
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FIGURE 1.14. A The plot of a Gaussian Distribution. B The plot of a Poissonian
Distribution. C The plot of a power law distribution. In the inset of C the
same plot on a logarithmic scale. Note that the power law function is not
defined in k£ =0

Taking the logarithm of eqn (1.21)

log(f(k)) = log(A) — ylog(k) (1.22)

plotting log(f(k)) vs log(k) we have a linear relationship with slope —~.
Now making the same for eqn (1.20) we have

log(f(k)) = —log(V2r0) — log(k) — W

= (L5 + 10g(VERo)) + (24 ~ Dog() - 2L

(1.23)

where the term —(% + log(2mo)) has the same role of the log(A) in the
above equation representing the constant term.

Whenever the log-normal distribution is characterized by a value o2 >>
(In(k) — u)? then the behaviour becomes very similar to that of a power law
function.

The apparent slope in this case it is given by

Vapp = (% ). (1.24)
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FiGure 1.15. A comparison between log-normal distributions with different
variances and a power law whose exponent is minus 1 (in this example the
average p is equal to 4, so that the very first part should decay as k=9,
Note that the range of k is typical of many datasets available. Therefore the
true tail of a log-normal distribution could not be noticeable in some cases
of study. Note also that the bending is that slow that even the intermediate
region reminds the behaviour of a power law of larger slope (about —1).

Of course as we go along the tail, the logarithm of k grows and the quadratic
term becomes less and less negligible. Nevertheless, since the logarithm is a
slowly growing function, one may need many and many decades in order to
clearly distinguish between the two functions.

This is an important point, and it is worth to discuss that for a moment. We
are particularly interested in the power law because of its scale-invariant or
scale-free properties. This means that if we change the scale of observation (that
is to say we consider a change of scale of the kind k£’ = ak) the only distribution
that maintains unaltered its analytic form is the power law. As explained in the
next chapter this property can be the signature of a particular evolution of the
systems as well as the signature of some correlations between the parts.

Strikingly, all the networks around us seem to have a scale-free distribution
of the degree. The topic of this book is to present the experimental evidence of
this fact and try to provide an explanation for such feature.
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1.6.2 Finite sizes

Recalling the discrete nature of these function and their physical meaning we
would like to stress here that even for a scale-free function (see inset of Fig. 1.14
C) a typical scale is always present. This is given by the finite size of our samples.
In the specific case of networks we must have a minimum degree that is one (you
cannot have less than one edge) and a maximum degree that is the size of the
network (you cannot have more than n — 1 edges). Hoping that (as in the case
of the WWW) the graph is very large we can shift the upper cutoff as far as we
want on the x axis. Still, we must expect a deviation from power law behaviour
whenever k is similar to the size of the system.

In the case of a power law form of the P(k) we obtain for the normalization
condition

[ kdk

TEodk (1.25)

(k) = A/kk—wk =

Since for the real world we never find one degree exactly infinite we must stop
integration at a large value kp,qz (Kmaz of the order of V). The above equation
becomes then

k
[Eman 1= g
R v ——— (1.26)
[Fmes b=k

That is finite (i.e. does not grow as ky,q, grows) for v > 2.

In order for the P(k) to be a probability function it must be integrable,
or in other words the A must be finite. This gives a first condition
~ > 1. We see now that there are two possibilities, let us consider the
result of eqn (1.26), that is

flkmax kl_Fde _ (]‘ B 7) k’?n_az:‘ — 1 (1 27)
JEmes k=rdk (2= ) kiab — 1 |

(k) =

e 7 < 2 In this case the above expression eqn (1.26) grows as
ket — .

max
e ~ > 2 In this case instead the above expression as k4, increases,
tends to the constant value ;:—:’Y The average (k) stays finite no

matter how large is the cutoff.

An analogous behaviour holds also for the variance. This quantity remains
finite whenever the exponent ~ is larger than 3. It instead diverges as the cut-off
kmas increases.
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This can be seem with computation similar to those made for the
variance, in this case we find

o2 = /(k: — (k)2 P(k)dk = A/kz_”dk — (k)? (1.28)
The above equation has therefore solution

o2 = E; - z; (Z?ﬁ% - 1) — (k)2 (1.29)

Again we have that in the case of v < 3 the variance grows as

o? = % (k3.7 —1) — (k)2 (1.30)

Instead for v > 3 the variance tends to a constant value regardless
the value of the cutoff k,,,,.. In all these cases it makes little sense to
describe the system by means of average values.

We see in the following that almost every scale-free network is characterised
by a power law degree distribution with a value of v between 2 and 3. This means
that even if it would be possible to define a finite average the standard error for
this value is of the order of magnitude of the size of the system.

1.7 Statistical properties of Weighted networks

As we see in the second part of the book, in most real situations the networks
that one finds are weighted (Barrat, Barthélemy, Pastor-Satorras and Vespignani,
2004; Yook, Jeong, Barabasi and Tu, 2001). While the generalization of the
concept is straightforward, we have already seen that sometime it is not very
easy to generalize the definition of the quantities, as in the case of the clustering
coefficient. Whenever these quantities are defined, anyway, we are interested in
their statistical distributions. Also in this case the weighted degree is in most
of the case power law distributed. This is what we have already found in the
“simple” network analysis, interestingly, in the case of weighted networks new
scale-free relations arise.
This means that if we consider the degree k;” for a vertex ¢, where

kY= al (1.31)
j=1

the P(k™) is power law distributed. Incidentally note that since the value of k%
is a real number, we have a continuous probability function P(k").

As pointed out in Ref. (Barrat, Barthélemy, Pastor-Satorras and Vespignani,
2004) also for the strength density function, we find a behaviour similar to that
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of the degree. This is not surprising since the same authors measure a connection
between the two quantities given by the scaling relation

s(k) o< kP (1.32)

where now s(k) is the average strength for vertices whose degree is k. In the case
of absence of correlation between the two quantities one is allowed to take the
averages on both sides of eqn (1.31) finding

LN
s(k) = I Z a;zk = (w)k (1.33)

1,7=1

where m is the total number of edges in the network and (w) is its average
weight. In this case the value of 3 is equal to one. Ref. (Barrat, Barthélemy,
Pastor-Satorras and Vespignani, 2004) find for their cases of study values of 3
between 1 and 1.5.
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GRAPH STRUCTURES

2.1 Introduction

”And - and - what comes next?” ”Oh, yes, yes, what the dickens does come next?
C’est la question, ma trés chére demoiselle!” As in the first lines of Thomas
Mann’s Buddenbrooks is there something more to say about graphs? We have
seen in the previous chapter the basic quantities describing a network. Those
quantities are in general directly related to the state of a single vertex (or few
of them like in the case of motifs). In this chapter we instead present quantities
that depend upon the shape of a large set of vertices”. When considering a set
of vertices, they might have similar “properties” (i.e. the same neighbours), so
that we can cluster them in the same “class”. Sometime a whole series of vertices
might be connected each other with a number of edges larger than in the rest
of the graph. In the first case we have what is probably a “community” in the
sense that different vertices have the same “preference” in their connections.
In the second case we have a clustering of vertices. These two concepts are
very closely related. A subgraph particularly clustered can witness almost in all
cases the presence of a community. Communities in principle do not need to be
particularly clustered, but in practice result in a clustered subgraph.

These quantities are important not only to characterise topologically the
graph. Actually they can give some information both on the formation of the
network and on its functionality. This is because (as is the case of Web) in
most of the cases we know that the whole network is built by merging different
subgraphs. In other cases the communities select only particular edges among
all the possible ones. This helps in determining the traffic or the robustness of
the network.

After that we also present the state of the art in the methods to compute
communities and clustering. They can be divided approximately in two ways:
edge detection and the spectral analysis.

Finally, we present some experimental evidence on the scale-free properties
of a series of networks.

“Technically, also a statistical distributions of local properties (as the degree) is a way to
characterize globally the shape of a graph. But we want to describe here another way to quantify
these global properties.

44
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In this chapter we study some properties of the structure of graphs.
We characterize quantitatively the presence of communities and the
clustering present in the structures. In this chapter we also use the
matrix representation of graphs in order to compute the community
structure. Finally we present some experimental evidence of the sta-
tistical properties of scale-free networks.

2.2 Correlation in Graphs, Assortative Mixing

Most of the global properties of clustering and/or community presence can be
recovered from the analysis of the correlation inside the graph. Correlation here
means that vertices with similar properties tend to be connected each other in
the network. As usual, since the most immediate properties of a vertex is the
degree we look for the presence of a correlation between vertices with similar
degree. In general there is no reason to expect a particular correlation. Actually,
in some situations there is a tendency for high-degree vertices to be connected
to other high-degree vertices. In this case the network display what is called an
assortative mixing. The opposite situation when high-degree vertices attach
to low degree ones is referred as disassortative mixing (Newman, 2002).

The correct mathematical way to quantify such a measure is the conditioned
probability p(ki|ks) to have a vertex with degree ki at one side of the edge when
at the other site of the edge the degree is k.

We have two constraints on the conditioned probability. The first one
is given by normalization condition

> plka|ks) = 1. (2.1)
k1

For non oriented graphs the same quantity obeys the detailed balance
distribution (Boguné and Pastor-Satorras, 2002)

kgp(kl |]{72)P(k}2) = klp(kfgwﬁ)P(k}l) (22)

This balance equation simply states that the number of edges going
from vertex ki to vertex ks must be equal to the number of edges going
from vertex ko to vertex k.

A way to compute this quantity presented in (Pastor-Satorras and Vespig-
nani, 2004). The authors introduce a symmetric matrix E defined in such a way
that the elements Fy, i, give the number of edges between ki and ko. It is easy
to check that this matrix satisfies

ZEklkg = k1N,
ko
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F1GURE 2.1. The three possible behaviour of the average degree of the neigh-
bours (K,,,) versus the degree k of the vertex origin.

> Erk, = (B)N (2.3)

ki ko

where Ny, = NP(k;) is the number of vertices of degree k; and it is given by the
probability P(k;) that a vertex had degree k; times the number of trials N. The
above identities allow to define the joint probability

Ek, ks,

p(k1,k2) = TN

(2.4)

Note that the joint probability is a concept different from the conditioned prob-
ability. In the latter one we assume that one degree is given and check for the
other. Using the joint probability we can write the probability that an edge
randomly extracted connects two vertices of degree k; and ko. This is given by
(2 =0k, k5 )P(K1, k2). The above formula is essentially the joint probability with a
weight that is 2 when k1 # ko (because we are not interested in the order of the
degree and we can exchange ki with kg). The weight becomes 1 when ki = ko
(this is the only case when 0y, , is different from 0 and equal to 1.) because this
indetermination is resolved.
Finally we have that

Ek1,k2 _ <k>p(klak2)
ko Ny, koP(k2)

p(kilks) = (2.5)

The above expression can be simplified in the case of no correlation between
vertices. If this is the case, the term p(ki,k2) can be written as the product
P(k1)P(kz). Therefore eqn (2.5) becomes

1
p(k‘1|k‘2) = —kilp(k‘l) (26)
()
This expression has an immediate meaning: the probability that any given edge

points to a vertex of degree ki is proportional to the density of these vertices
times the number of edges.
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A less rigorous but more intuitive and simple approach (because the p(kq|k2)
can be very difficult to measure) has been introduced by ref. (Pastor-Satorras,
Vazquez and Vespignani, 2001). We start from a vertex whose degree is k and
then compute the average degree (K,,,) of its neighbours. This quantity (K,,)
is in general a function of the degree of the vertex origin and determines the
assortativity of the graph.

When plotting (K,,) versus k as shown in Fig. 2.1 we can have different
behaviour. If the average degree (K,,) grows for large k values then big hubs
are connected each other. In this case the network has assortative mixing. On
the other hand, if (K, ) decreases for large values of k this means that most of
the edges of the large hubs are with more or less isolated nodes. In this case the
network present the disassortative mixing.

2.2.1 Assortative coefficient

Another measure of assortativity can be obtained through the assortative coef-
ficient r. This number is a particular case of the Pearson correlation coefficient
(see 2.3.1.1). In other words is another measure of the correlation between the
degrees.

Following (Callaway, Hopcroft, Kleinberg, Newman and Strogatz,
2001; Newman, 2002) we define

P = % Z (p(k1|k2) — gk, ka) (2'7)

ki,k2

where

e gj is the normalized distribution for the “remaining degree” of
vertices. Remaining degree is the degree of a vertex without the
edge considered in the link. In formulas, this means that the
remaining degree of vertex ¢ is given by k; — 1. The normalized
distribution for such a quantity is then given by:
qg. = (k+1)P(k+1)/ Zi:LN iP(7).

e The o2 is the variance of the above quantity:

0% = Zi:l,N k2qx — (Zi:l,N kqy)?

Positive values of r signal assortative mixing. Disassortativity corresponds
to negative values of r. In table 2.1 we report some data analysis produced by
M.E.J. Newman (Newman, 2002). From this data we note that technological
and biological networks show disassortative behaviour while social networks are
assortative. The reasons for such occurrence are not completely understood.

The same qualitative behaviour can be determined by considering the clus-
tering coefficient of the neighbors of a vertex whose site is k. Also in this case
the correlation between different vertices has the immediate meaning given by
the assortativity.
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Network n T
Physics Co-authorship 52909 | 0.363
Biology Co-authorship 1520251 | 0.127

Mathematics Co-authorship | 253339 | 0.120
Film Actors Collaboration | 253339 | 0.208

Company Directors 7673 0.276

Internet 10697 | —0.189
Protein Interactions 2115 —0.156
Marine food web 134 —0.247
Little Rock Lake 92 —0.276

Table 2.1 Order and assortative coefficient for various networks

2.2.2  Correlations in Weighted Graphs

As reported in the previous chapter a weighted graph is given by assigning an
individual weight to the various edges. Using the Weighted Adjacency Matrix
A" we have that the strength of edge between vertices ¢ and j is given by the
entry aji. As usual, if the graph is not oriented the matrix is symmetric. Entry
i+ equal to 0 means no edge between ¢ and j.

In most of the cases the strength given by the edge weight aj and the degree
of the end vertices k;, k; are correlated. A large weight (denoting for example a
large amount of traffic on a Internet cable) is related to the degree of the vertices
(computers) connected. To measure such correlation we study the average <
a;; >8 versus the product kik;. Also in this case we find another power law (see

(Barrat, Barthélemy, Pastor-Satorras and Vespignani, 2004))

a

< CL%}- > (k’zk])e (28)

If correlation exists the value of theta must be different from 0. This is the case
of ref. (Barrat, Barthélemy, Pastor-Satorras and Vespignani, 2004) find a value
of # =0.5+0.1.

Interestingly the value of the exponent 6 is related to the exponent ( previ-
ously introduced. Indeed

s(k) o< kP ~< w > k ~ k(kk;)0 (2.9)
and therefore =1+ 6.

2.3 Communities in Graphs

As already discussed sometime the clustering in a graph can be put in relation
with the presence of communities. This is an important point, since in various
real networks the presence of communities give additional information on the

8In this quantity the average is computed on all the vertices i, j, such that their degree is
ki, k;.
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properties of the system. In the case of the WWW, a community individuates
people sharing similar interests and therefore linking each other. The knowledge
of community structure helps, for example, in exploring efficiently the net.

Two different approaches are possible. The first one selects suitable subgraphs
on the basis of special vertices or special edges present in the graph. For example,
if we spot few vertices with many edges in common, that is a natural signature
of a community. We call this method Edge analysis. The second choice (used
mainly by graph theorists and mathematicians) is based on a method called
Spectral analysis. This method select communities from the properties of the
eigenvectors of the adjacency matrix A(n,n) of the graph. In both cases we
can divide further the approaches using a beautiful nomenclature introduced
by M.E.J. Newman (Newman, 2004b). In one case we can build communities
by recursive grouping of vertices (bottom up process) and this process is called
agglomerative method. Otherwise we can operate a top down process with a
recursive removal of vertices and edges. This latter process is instead a divisive
method.

2.3.1 FEdge Analysis

2.3.1.1 Agglomerative methods Once the network is given, the similarity be-
tween vertices ¢ and j can be measured according to several formulas. In almost
all the case the similarity concepts can be defined by means of a suitable “dis-
tance” or vice-versa. Essentially if two vertices are similar they must be nearby.

There is no immediate choice between these various methods. Rather the
study of the actual real system represented by the graph is the only way to
determine which of these quantities is more sensible than the others.

e Structural equivalence Two vertices have a structural equivalence if
they have the same set of neighbours. This strong requirement can be re-
laxed defining a similarity measure between the two sets of neighbours.
Obviously, the smaller this similarity the greater the equivalence. Different
real situations call for different measures of such a quantity. We see in Chap-
ter 6 that a similar concept can be used for protein classification (Brun,
Chevenet, Martin, Wojcik, Guénoche and Jacq, 2003; Vazquez, Flammini,
Maritan and Vespignani, 2003). The simplest definition of similarity is
more or less equivalent to the Hamming distance® obtained by counting
the number n;; of similar neighbours between vertices ¢ and j.

In order to have a distance properly defined (i.e. non-negative) we can con-
sider the following quantity as presented in Refs. (Burt, 1976; Wasserman
and Faust, 1994)

1‘5 = Z (air, — aji)?. (2.10)

k#i,j

9named after the USA mathematician Richard Wesley Hamming (1915 - 1998) known for
his work in information theory
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F1GURE 2.2. The Union of the two sets is composed by 16 vertices. The inter-

section by 3. The numerator of x

s

7j 1s given by the vertices belonging only to

one or the other. In this case this number is 13. The distance xfj between the
two vertices 4, j is then =3 = 13 ~ (.68.

16+3 19

A similar approach to determine the similarity of two vertices is used in
(Brun, Chevenet, Martin, Wojcik, Guénoche and Jacq, 2003). They use
the set .S; of vertices neighbours to 7 and the set S; of vertices neighbours
to j. Denoting by N(S; ;) a function that gives the number of elements
(vertices) in sets S; j, we have that the quantity

s _ N(S;US;)—N(S;nS;)
K N(Sz U Sj) + N(Sl N Sj)

x (2.11)

has the desired property to be 0 when S; and S; coincide, growing instead
when the sets differ. An example of the application of this quantity is
reported in Fig. 2.2.

The above requirement can be put in the more complicated language
of the adjacency matrix. The x;s; is then given by

oS 2ok Gik + Dy Gk — 23 5, GikGk _ Dy, Gik + Gk — 20ikdjk

v Dok Gik + D ik ok ik + ajk

(2.12)

Correlation coefficient. In this case the distance between vertices is
computed by considering the mean and the variance of the values along
a row (or column) of the adjacency matrix. We use these quantities in
order to compute the correlation Ci]; , between vertices ¢, j. Correlation is
different from distance. Now if the two vertices are the same (i.e. i = j)
the value CZ-I; must be 1 while their distance is 0. If i, j are very different

they must have a large distance while their correlation is around 0.
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In formulas if mean and variance are given by
i = > aiy of= - > (ai; — i) (2.13)
J J

the correlation coefficient!V is defined as

% D op(@in — pi)(aje — )

0,03

P
Cij = (2.14)

that is equal to 1 when ¢ = j as expected.

Note that we always used the entries of the unweighted adjacency ma-
trix A(n,n) so that the quantity u; corresponds to the normalized degree
ki/n of the vertex i. When the matrix is oriented p; gives in-/out- degree
according if the sum is over the rows or the columns.

2.3.1.2  Divisive methods: The Algorithm of Girvan and Newman Instead of
grouping together vertices, we can decide to remove from the initial graph some
vertices (can be done with edges as well). If this procedure splits the graph in
definite subsets, these subsets are the communities we are looking for. M. Girvan
and M.E.J. Newman (Girvan and Newman, 2002) produced the following recipe.
Select the edge of largest betweenness in the graph and then remove it. Edges
have large betweenness if they connect parts of the graph that would be separate
otherwise. This seems a rather good heuristic method in order to detect separate
subsets. In other words this method selects and removes the bottleneck edges
separating different communities.

Note that this method work reasonably well for sparse graphs (that is a
frequent case). In this case just at the first edge removed it is clear how to
cluster the vertices. In case of dense graphs, this procedure can be a little tricky.
This powerful idea is the prototype of a class of edge-removing methods.

e The first and original approach (Girvan and Newman, 2002) is based on
edge-betweenness. This quantity is computed (see Appendix E) on all
the edges of the graph. Recursively the edge with the largest betweenness
is removed until no edge remains. Obviously at a certain point the graph
may become disconnected. This is a crucial point. We write all the vertices
in one subgraph on one side. On the other side we put the other vertices.
This is the first split in the dendrogram of Fig. 2.3. The determination of
the various communities proceeds until another split takes place (the same
procedure continues in the separate parts). If more than one edge share
the same value of betweenness one can choose either to remove all of them
or to select the first randomly. In this case the structure of communities

10T his coefficient is often named after Karl Pearson. English mathematician born in London
in 1857 and died in Coldharbour, Surrey, England in 1936. Founder of the journal Biometrika,
he mainly worked in the statistical studies of populations



52

GRAPH STRUCTURES

b4 nﬁ |

F1GURE 2.3. An example of a dendrogram computed from vertices properties.

By cutting it at a certain level we obtain the communities present at that
level.

can be represented by a dendrogram built in a top-down process. Starting
from the root of the tree, at the first division one places on one side all the
vertices in one of the community on the other all the others. This recursive
splitting ends at the leaves of the tree that represent the vertices of the
graph.

As discusses below, the main inconvenient of this method is that it even-
tually splits the graph in all the vertices, regardless the real number of
communities present. To partly overcome this problem M.E.J Newman
and M. Girvan (Newman and Girvan, 2003) introduced a quantity called
modularity in order to measure how good a particular division is. If we
divide the graph in g groups, we can define a matrix E whose entries e;;
give the fraction of edges that in the original graph connects group 7 to
group j. The modularity for such division is then

Q = Zeii — Zeijeki (215)
i ijk

Approximated edge-betweenness. Instead of computing the between-
ness by considering all the possible paths through an edge, one can approxi-
mate this quantity by computing only the paths from a random selection of
vertices (Tyler, Wilkinson and Huberman, 2003). With such approach we
have a substantial increase of speed a stochastic measure for the communi-
ties. The number of times we find a precise vertex in the same community
gives a measure of the reliability of such assignment.

Loops Counting Methods. This time the edges are selected according
to the number of small cycles they belong to. The idea is that edges joining
communities are bottlenecks and it is unlikely they belong to a cycle. If this
were the case another path would be present between the same commu-
nities (Radicchi, Castellano, Cecconi, Loreto and Parisi, 2004). Therefore
by measuring the number of small cycles (in this case triangles or cycles
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of order 3) one edge belongs to, we have a measure of centrality. We can
expect that the lower is this number, the greater the importance of the
edge in joining different communities. The key quantity is now the edge
clustering coefficient

Zij + 1
mm(k:z — 1, kj — 1)

Cij = (2.16)

where 4, j are two vertices of degree k;, k; respectively, and z;; are the
number of triangles an edge belongs to. The algorithm iteratively deletes
the edges with lowest values of C; and recompute this quantity for the
edges left.

All the structures formed with these procedures result in a tree of classifica-
tions or dendrogram (from the Greek ”tree-like image”) as the one shown in Fig.
2.3. Technically this procedure is rather different from all taxonomy processes
(described below). Whenever forming a taxonomy like for example in botany or
zoology, we put together different things according to some measure of correla-
tion they have. This is done without any reference to an underlying graph of
connections (existing or not).

Here instead, the dendrogram structure comes out from a process of cluster-
ing where the correlation between the two vertices is given by the actual links
between the vertices.

2.3.2  Spectral Analysis

This is a completely class of methods where the structure of communities is
determined by the eigenvalues and eigenvectors of suitable functions of the ad-
jacency matrix A(7, j) (Hall, 1970; Seary and Richards, 1995; Kleinberg, 1999).
The basic notion of linear algebra necessary to understand this approach are
presented in Appendix C. We nevertheless suggest to consult a basic text for
a more comprehensive background (Golub and Van Loan, 1989). Here we only
mention that in most approaches, referring to undirected networks, A is assumed
to be symmetric.

The main function introduced are the Normal matrix (actually a “normal-
ized”) and the Laplacian matrix.

2.3.2.1 Normal Matriz This matrix has the same entries of the adjacency ma-
trix, divided for the degree of the node. In linear algebra that can be written
as

N=K'A (2.17)

Where the matrix K is a diagonal matrix that has on the diagonal element k;;

the degree of vertex 7. | This corresponds to write k;; = d;; Zl]il afj. | Also note
that matrix product is not symmetric, so that K=1A # AK~1.
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g K= (8.10+5.10+7.54)=20.74

FIGURE 2.4. A simple example on a graph on which we compute N, NV, L, LW.

In practice if we are sitting on a vertex ¢ = 4 with a degree 3 and this vertex
is connected with vertices 1,2 and 3, this would correspond to have the " row

of the matrix given by
1/3,1/3,1/3,0,0,.....,0. (2.18)
These entries of the matrix can be regarded as the probabilities to pass di-
rectly from node i to one of the neighbours. In the case of a simple graph, one
assumes that any edge counts the same, so that it is equally probable to pass
from one vertex to any other of the neighbours. For this probabilistic property
this matrix is also known as Transition matriz.
Note that if the graph is oriented, the matrix NT obtained from N by
exchanging the rows with the columns corresponds to a graph with the
direction of the arrows exchanged. Coming back to the probabilistic
meaning, if N transfers from one vertex to another, we can come back
using NT. Therefore by recursively applying N and after that N7 we
must obtain the identity matrix. That is to say

NTN =1 (2.19)

Since the matrix product is not symmetric, all the above requirements
are fulfilled if against the standard notation entries in the adjacency
matrices are written along the columns (Servedio, 2004).

In the case of weighted graphs the probabilities can be assumed to be pro-
portional to the weights, so also in this case the i** row must give the list of
these probabilities. Following the above example we can show how to specify the
weights. For example we can say that the weight of edge (1—4) is 8.10, the weight
of edge (2 —4) is 5.10 and the weight of edge (3 —4) is 7.54 (see for example
Fig. 2.4). This would give a generalized degree £}’ = 8.10 4+ 5.10 + 7.54 = 20.64.
The resulting 4" row of the normal matrix

NY = (KV) 'AVY (2.20)

is represented by the following entries
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0.39,0.25,0.36,0,0, ....., 0. (2.21)

Note that by construction (as explained by the probabilistic argument above)
the sum of the entries along a row is equal to 1.

2.3.2.2  Laplacian Matriz  Another interesting function of the Adjacency Ma-
trix A is given by the Laplacian Matrix L. This matrix in the language of matrix
operations is given by

L=K-A. (2.22)

Where K is the degree matrix previously defined where the non-null elements
of this matrix are only on the diagonal and they are equal to the degree k; of
the vertex 1.

Using our previous little example this means that the i*"* row of the matrix
L (for unweighted graph) would be

~1,-1,-1,3,0,.....,0. (2.23)

while for the weighted graph as shown in Fig. 2.4 we have

—8.10, —5.10, —7.54, 20.64, 0...., 0. (2.24)

In general we can write

]{51 —a12 .... —A1n
L= —a21 kg oo —A2n, (225)
—ap1l —Qp2 .... kn

Where in the case of weighted of networks we substitute k; and a;;
with their respective correspondent k;” and a;}. This produces the new
weighted Laplacian matrix given by

LY =K% — AV (2.26)

The reason of the name “Laplacian” given to this matrix comes from the fact
that the i*” row of the matrix gives the value of the Laplacian operator on the
vertex 1.

As reported in section 77 the Laplacian operator is defined as

Po(x,y,2) | 9*¢(x,y,2) +32¢(m,y,Z)
0x? 0y? 022

VZp(x,y,2) = (2.27)

That is, a Laplacian Operator applied on a certain function (in this
case ¢(x,y,z)) returns the sum of the three second derivative with
respect to x,y, z.
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When the function is defined only on discrete values, we use the finite differ-
ences instead of derivatives. That is

a¢(x’ y7 Z)

O - ¢($ + 1,y,Z> - (b(x,y,z) = (b(x,y,z) - ¢($ - 1,y,2) (228)

In this case the Laplacian operator defined in eq.(2.27) takes the form

V2o(z,y,2) = Y 6(6n,C) — kd(x,y, 2) (2:29)
&:m,¢

where &, n, ( indicates the coordinate of one neighbor of z,y, 2. k is the total
number of such neighbours. By comparing this expression with any one line of
the matrix L we immediately see that the sum of the element along the row gives
exactly the Laplacian operator (with a minus sign).

2.3.3 Eigenvectors and Communities

Any matrix (See Appendix C for a brief explanation and (Golub and Van Loan,
1989) for a general view) is characterized by a set of quantities. These are the
eigenvalues \; and the eigenvectors x; that enter in the equation

AXi = >\iXi (230)

A matrix of size n (n rows and n columns) has n eigenvalues and related eigen-
vectors. Some of these n eigenvalues (in general complex numbers) can coincide.
In some particular cases (if the matrix is symmetric, if the matrix has a phys-
ical meaning (describing probability rate) etc.) some results are known on the
eigenvalue structure.

In the case of the normal matrix N the largest eigenvalue is equal to one and
it is associated to a trivial constant eigenvector. That can be easily demonstrated
using the property that the sum of the element along a row in N is equal to one.
To show that let us consider the first element of the vector Ax; where every
element of z;is constant and given by z; = x is given by

AXi =a11%1 + ... T @1nTyn = A11T + ... + AT = ( Z CLli).T =T = (231)

i=1,n

For the same reasons of normalisation valid for the matrix N, also in the case
of the Laplacian matrix M we have special eigenvalues. Formally, the existence
of the null eigenvalue can be immediately proved by noticing that all rows (and
thus columns) in L sum up to zero.

The normal matrix is so called because its row sum up to 1 (transition ma-
trix) and thus its eigenvalues lie in the range between -1 and 1. In particular,
the eigenvalue equal to 1 is always present, with a degeneracy equal to the
number of connected components in the graph (similarly to the 0 eigenvalue
of the Laplacian matrix), while the eigenvalue -1 is present if and only if the
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FIGURE 2.5. On the left a very simple graph, with three clear communities. On
the right the aspect of the related Adjacency matrix.

graph is bipartite. Although the normal matrix is not symmetric, it has real
eigenvalues because it possesses the same eigenvalues of the symmetric matrix
K~1/2AK~1/2. Because of row normalization, it can be immediately seen that
the the eigenvector associated to the unity eigenvalue is the trivial eigenvector
with constant components.

2.3.4 Divisive methods

Bisection methods

When the communities are made by separate and distinct subgraphs the
adjacency matrix (as well as the other matrices) is made of distinct blocks.
Every block represents the adjacency matrix for a particular subgraph. In this
situation, any of the subgraphs have a constant eigenvector. The eigenvector
resulting for the whole graph is given by composing the different eigenvectors for
the subgraphs.

The situation remains similar if we introduce few edges to connect the sub-
graphs as indicated in Fig. 2.5. More generally, in a network with an m well
defined communities, matrix N has also (m — 1) eigenvalues close to one. The
eigenvectors associated to these first (m — 1) nontrivial eigenvalues, also have
a characteristic structure. The components corresponding to nodes within the
same cluster have very similar values x;. This means that, as long as the parti-
tion is sufficiently sharp, the profile of each eigenvector, sorted by components,
is step—like. The number of steps in the profile corresponds again the number m
of communities.

Let us see how this method works by means of a simple example. Consider for
example a graph made up of two disjoint complete subgraphs of order 3 and 4 as
depicted in Fig. 2.6. The rows of the Laplacian matrix can be arranged in order
to show the presence of these two independent blocks: one 3x3 block and one
4x4 block. The null eigenvalue is then present with twofold degeneracy and the
corresponding vectorial space may be spanned by two orthogonal eigenvectors of
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Ficure 2.6. Undirected network employed as an example, with two disjoint
complete graph of order 3 and 4. A small perturbation is then added by
means of a link between them.

the type:

and (2.32)

SO O = = =

— === O OO

0

Next we add one link (the dashed edge shown in Fig. 2.6) between two ver-
tices lying in two disjoint components. The result is a Laplacian matrix slightly
changed by a small perturbation. From matrix perturbation theory it can be
shown that this perturbation removes the degeneracy of the null eigenvalue (in
fact we have only one connected component in the graph now), while at the zero-
th order the previous two eigenvectors change into a linear combination of them.
The eigenvalues are now two. The first one is null and the other one is close to

zero (because the perturbation was small). Eigenvectors are given respectively
by:

and —b (2.33)

e T T = T S S

with a = 4 and b = 3 such to preserve orthogonality with the trivial eigenvector.
By observing at the structure of the first non trivial eigenvector we are able to
discern the community structure of the graph. Vertices are in the same com-
munity if their corresponding components in the eigenvector have the same or
almost the same value.
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FIGURE 2.7. A very simplified example of a characteristic structure of the World
Wide Web. The dark vertices are the hubs of the graph, the light ones are
the authorities.

The situation remains substantially unaltered if more than 2 clear commu-
nities are present. If we have m well defined communities in the graph, the
zero-th approximation is a linear combination of m vectors similar to those in
eqn (2.32). The m final eigenvectors have the structure of eqn (2.33). Vertices are
in the same community if their corresponding components in the m eigenvectors
have a similar value.

There are m eigenvalues close to the unity, indicating that there are actu-
ally m clear communities in the graph and the following eigenvalues would be
separated by these latter ones by a gap.

The method is substantially the same also with the matrix N except that
the null eigenvalue of the Laplacian matrix is replaced by 1. Furthermore the
eigenvectors in eqn (2.33) do not need to be orthogonal since the normal matrix
is not symmetric.

2.3.5 Agglomerative Methods

e Hubs and Authorities algorithm For a directed network, it is possible
to extract communities information from the link structure. This algorithm
was proposed on empirical bases in order to find the main structures in the
World Wide Web. Web pages are divided in two categories: the hubs and
the authorities (see Fig. 2.7).

Those quantities are defined in a self-organized way by the dynamics of the
World Wide Web. By the creation of a link from page p to g, the author
of page p increases the authority of ¢. So the first recipe in order to define
the authority of a site would be to consider its in-degree. This is only
an approximation; in the world wide web, many links are created without
specific reference to the authority of a page (i.e. the hyperlinks to return to
the home page). To partly overcome this problem we need to individuate
at the same time also the counterpart of the authorities site, that is the
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FIGURE 2.8. The definition of the hubs weight x,, and authority weight y,

hubs. A hub is defined as a site pointing to many related authorities. It can
be demonstrated that a specific relation exists between the two quantities.

The algorithm works starting with a subset of the web (obtained by means
of a text searching algorithm). On that subgraph we remove the internal

links and the links pointing to the webmasters. The iterative procedure
starts by assigning to every vertex p (a page) a non negative authority
weight 2P and a non negative hub weight y?. The idea is to solve simul-
taneously all the equations in order to find the set of values of x and y

satisfying the requirements.

The solution of the system is done numerically through an iteration pro-
cedure. That is, starting from fixed initial values one computes recursively

the new values according to the formulas

Tp = qu

q—p

Up = D g (2.34)

p—q

where ¢ — p runs on all the pages ¢ pointing to p and p — ¢ runs on all

the pages p pointing to ¢. Under specific mathematical conditions (verified
in this case) the value of the x,’s and y,’s does not change anymore from

one iteration to the other. This set of values is called “fixed point” of the
iteration and gives the solution of the system of equations. From the point
of view of linear algebra the solution of such problem consists in finding

the set of eigenvalues and eigenvectors of the matrices AAT and AT A
correspond to highly clustered nodes belonging to a single community.
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This can be shown arranging in a vector x the various z, for every
vertex p. Similarly, the various y, can be arranged in a vector y Then
the relation between x and y can be written as

x=ATyory=Ax (2.35)
substituting one equation in the other we simply find
x=(ATA)x andy = (AAT)y (2.36)

Therefore the solution of the conditions required is represented by the
eigenvectors of the matrix operator ATA for x. Similarly the eigen-
values of AAT give the solution for vector y.

Such algorithm efficiently detects the main communities, even when these
are not sharply defined. However, it becomes computationally heavy when
one is interested in minor communities, which correspond to smaller eigen-
values.

e Weighted algorithm The study of the eigenvectors profiles and the eigen-
values has practical use only when a clear partition exists, which is rarely
the case. In most common occurrences, the number of nodes is too large
and the separation between the different communities is rather smooth.
Thus communities cannot be simply detected by looking at the first non-
trivial eigenvector. One possibility is to combine information from the first
few eigenvectors, and to extract the community structure from correlations
between the same components in different eigenvectors (Capocci, Servedio,
Caldarelli and Colaiori, 2004). This method is then very similar to the ag-
glomerative methods already seen in the case of edge analysis. In this case
the various correlation measures are computed on eigenvector components
rather than directly on vertices.

2.3.6  Minimisation and communities

The eigenvalue problem can be reformulated in the form of a suitable constrained
minimisation problem. We consider the most general case and focus on the
weighted adjacency matrix A", whose elements a;} give the strength of the
edge between ¢ and j. Consider the following constrained optimization problem:
Let us consider the following function

Z (x; — .flfj)QCl:Ll-lj)- , (2.37)

4,j=1

where z; are values assigned to the nodes, with some constraint on the vector x,
expressed by

S
Z TiTjMy; = 1, (238)

4,j=1
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where m;; are elements of a given symmetric matrix M.
The stationary points of z over all x subject to the constraint (2.38) are the
solutions of
(KY — AV)x = uMx, (2.39)

where KW is the weighted degree matrix, AW is the weighted adjacency matrix
and p is a Lagrange multiplier.

Different choices of the constraint M leads to different eigenvalues problems:
for example:

e choosing M = KW leads to the eigenvalues problem
(KY) tAYx = (1 — 2p)x. (2.40)

e while M = 1 leads to
(KY — A%)x = pux. (2.41)

Thus M = K% and M = 1, corresponds to the eigenvalue problem for the
(generalized) Normal and Laplacian matrix respectively.

Thus, solving the eigenvalue problem is equivalent to minimizing the function
in eqn (2.37) with the constraint written in eqn (2.38). The z;’s are eigenvec-
tors components. The absolute minimum corresponds to the trivial eigenvector,
which is constant. The other stationary points correspond to eigenvectors where
components associated to well connected nodes assume similar values.

2.4 Optimized Graphs: Cost function and Transport

Sometime (and this is the most interesting case) the graph is a structure suitably
designed in order to accomplish some specific functions. This class of graphs are
called “economic” graphs. Trees are usually very good candidates as economic
graphs. Indeed in a tree we connect n vertices with the minimum possible number
of edges (n — 1). Whenever there is a cost to pay to form an edge, trees are the
most economic choice.

The concept of economic graph can be related to “dynamics” as a transport
along the edges of the graph. One immediate example of a transportation network
could be represented by a pipeline connecting different houses. Houses are the
vertices of the graph, while the pipes are the edges. Other examples can be cities
connected by railways or houses served by electricity cables. But probably the
most important and interesting case is just inside ourselves. It is represented by
the network composed by our cells fed through the blood vessels.

We show now that in this case this transportation network is optimised in
the sense that is the best possible to accomplish its function. More specifically
it delivers the nutrients to the body with the minimum possible amount of
matter transported. Not only blood vessels but also river networks and plants
channels deliver their contents in the most efficient way. We report here some of
the work done by Banavar et al. (Banavar, Maritan and Rinaldo, 1999; Banavar,
Maritan and Rinaldo, 2000) on transport optimisation. The results hold for a
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FIGURE 2.9. Left a fully connected network (for example a portion of a body
with its blood vessels). The gray portion indicates the region served by the
central vertex. On the right the tree obtained by measuring the distance from
supplying vertex. This distance is indicated in the centre of the vertex.

lattice of any Euclidean dimension D and we try to extend this result for true
graphs. The physical motivation for that research was aimed to explain the so
called Kleiber relation that states that the body mass M of every animal grows
with its metabolic rate with a specific exponent'!

B o M3/4 (2.42)

The value of this exponent is always the same for various species. This behaviour
is called “universality” and the explanation of such universality is currently un-
der debate (West, Brown and Enquist, 1999; Banavar, Maritan and Rinaldo,
1999). Here we do not enter this topic in detail, but we rather focus only on
the transportation properties of a network as found in (Banavar, Maritan and
Rinaldo, 1999; Banavar, Maritan and Rinaldo, 2000).

As far as we are concerned we consider here the various species as a volume
(the body) served by a network (blood vessels). The key point is to select one
source in the network (that can be regarded as the root of the transportation
tree) from which the flow proceed. An animal body is described as a system of
length L embedded in a space with Fuclidean dimension D = 3. This latter value
can change, the dimension of the embedding space is 2 for a river network since
water flows on a surface. It is almost 2 for a thin leaf that is the space within
where the nutrient flow. We have that every vertex v out of the total ones L? is
supplied with a flow F), at a constant rate.

It can be shown (we shall not do that here) that the metabolic rate of the
organism is given by

T For our purposes here we can think of the metabolic rate as the number of calories an
organism needs to survive.
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B=)F, (2.43)

This quantity B grows as L when the size L grows. This is because B is the
product of a nearly constant term F,, times the number L? of the vertices.

We can also compute the total volume of blood C' used in the organism (this
is the counterpart of M in eqn (2.43). If we denote by I. the flow of nutrient on
every edge we have that this quantity C' is given by

C=>1I (2.44)

where the sum runs on every edge e. The result of a general theorem (Banavar,
Maritan and Rinaldo, 1999) is that this quantity C' grows with L as LP*1! if the
graph is optimised, and as much as L?P if the graph is not.

We recover the Kleiber relation only in the case of optimised transfer

D
gO:(]I\/faLDJFl}_)B:MDLH (2.45)
That in the case of D = 3 gives exactly the exponent 3/4.

We do not demonstrate here that C' oc L is the best choice. We only note
that in order to feed every one of the L the blood has to travel at least the
mean distance (of order L). This gives exactly the exponent D + 1 claimed to be
the optimal one.

2.4.1 The constant flux

Let us consider a very specific case. The flow I, is constant to every “leaf” vertex
(those with only one edge). Without loss of generality we can consider this I,
unitary. It is easy to check that by recursion the role of the metabolic rate is
played by the area of the basin introduced in Section 1.3 of the previous chapter.

A, =) A (2.46)

This is because summing on all the unitary fluxes corresponds to sum on all
the points in the subbasin. We have already seen this quantity in the section
devoted to trees and we saw that one possible global measure for the shape of
such quantity is given by the probability distribution P(A).

Consider now the case of a subtree of area A. For every one of them we
can compute the quantity C. In the case of constant and unitary flux, the total

volume of blood (or water or whatever) is simply given by the sum of the values
A in the (sub)basin.
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FIGURE 2.10. Values of A (left) and C(A) (right) on a simple tree. Consider the
blue vertex in this tree. On the right for the computation of C'(A) we sum
all the values in the subtree, as reported on the left. This results in a value
5=3+1+1.

In formulas we can therefore write

C(A) =) A (2.47)

i€EA

where the sum runs on all the vertices i (of area A;) in the sub-basin
of area A.
The real meaning of these quantities is related to the particular case of study
of river networks and biology where they appear. As shown in the next chapters,
the real river networks are all characterised by the same shape of P(A). Similarly,
biological and other natural systems are characterised by the same C(A).

2.5 The properties of scale-free networks

Until now we have considered the technical structure of graphs, and how to
extract the quantities of interest for our analysis. This introduction has been
necessary to present the real topic of the book, that is the recent discovery that
almost every graph that you can find in nature has similar characteristic. Re-
gardless the area (biology, computer science, physics, geology, social systems,
finance and economics) all these structures display the same statistical prop-
erty (Barabdsi, 2002; Buchanan, 2002; Dorogovtsev and Mendes, 2003; Pastor-
Satorras and Vespignani, 2004). The Probability Distribution for the degree is
power law distributed.

The first striking experimental evidence is that the same mathematical form
holds in the different cases of study. This sort of “universality” (holding only
qualitatively) means that the shape of degree distribution remains constant.
As we are going to present in the next chapter a power law (scale-invariant)
relationship is a very specific request. This means that the system is the same at
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Network Order (k) 14 C 0%
1 Internet 3700 - 10500 | 3.6 - 4.1 | 3.7 |10.21 - 0.29 2.1
2 WWW 2108 15 16 — 2.1-77
3 Movie actors 225,226 61 3.65 0.79 2.3
4a Sex. Net (Males) 2810 22.63 — — 1.6
4b | Sex. Net (Females) 2810 6.3 — — 2.1
5 Co-authorship 56627 173 4 0.726 1.2
6 Protein Int. Yeast 1870 2.395 — — 2.4
7 | Protein Int. Drosophila 3039 2.40 9.4 — 1.26
8 Stock ownership 240 2.67 | 18.7 0.08 2.
9 Word Occurrence 460902 70.13 |2.67 0.437 2.7
10 Coliseum flora 282 14 2.65 0.28 2.6

Table 2.2 The general characteristics of several real networks. For each network
we indicated the number of nodes, the average degree (k), the average path length
¢ and the clustering coefficient C. As a general notice the value of the size of
the networks E (i.e. the number of edges) can be found from the definition of
average degree. The average degree is by definition two times the number of edges
E divided by the number of vertices. This gives E = N{(k)/2. In case of oriented
networks, we have in-degree and out-degree and one edge contribute only to one
of those in one vertex, so that the factor two is absent. The average length ¢ is
always taken in the largest connected component of the graph.

any level one looks at it. This could be in some cases the signature of a peculiar
and interesting past history of the system. In other cases this could be also the
result of the statistical noise. In this section we start by presenting the data
evidence. In the next two chapters we enter in detail in the study of power laws.
Universality is also present in the statistics of other quantities even if they are
not power law distributed. For example in a large variety of cases the distribution
P(d) of distance d is not scale-invariant. Rather the distribution is peaked around
small values like 4, 5, 6. This effect is known as Small World effect since in the
social graphs where vertices represent individuals, a little number of relationships
(edges) can connect two parts of the graph (Milgram, 1967). Similarly to the
scale-free properties, the small world effect has been tested carefully in a variety
of different situations. It appears in Internet, in the WWW, in the network
of sexual contacts between individuals (Liljeros, Edling, Amaral, Stanley and
Aberg, 2001), as well as in the network of co-authorship where different scientists
are linked if they write a paper together (Newman, 2001 a; Newman, 20015).
Data set 1 (Vazquez, Pastor-Satorras and Vespignani, 2002) refer to the In-
ternet as described by the Autonomous Systems. In Data set 2 (Broder, Kumar,
Maghoul, Raghavan, Rajalopagan, R. Stata and Wiener, 2000) we have a ¢ = 6,
if orientation is removed from the links; the diameter is as large as 500 in the
oriented case. As for the degree we have a clear power law for the in-degree
and an unclear behaviour for the out-degree. Data set 3 (Barabési and Albert,
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1999) have been collected from Internet Movie Database. Data set 4 (Liljeros,
Edling, Amaral, Stanley and Aberg, 2001) present probably a bias in the distri-
bution shape, so that the values of v as well as the average number of partners is
very different (statistically it must be the same when the size of sample goes to
infinite). Figures on the number of partners are computed from the plot of the
degree distributions. Amongst the possible and various datasets on co-authorship
we report in dataset 5 a collection of papers from high energy physics (Newman,
2001a; Newman, 2001b). Dataset 6 refer to one of the many analyses (Jeong,
B.Tombor, Albert, Oltvai and Barabasi, 2000; Jeong, Mason, Barabasi and Olt-
vai, 2002) made on Protein Interaction Network of Saccharomyces Cerevisiae.
The fitting function proposed has quite a number of free parameters being in the
form P(k) =. As for the data set 7 the only analysis we are aware of has been
published in December 2003 (Giot, Bader, Brouwer, Chaudhuri, Kuang, Li, Hao,
Ooi, Godwin, Vitols, Vijayadamodar, Pochart, Machineni, Welsh, Kong, Zer-
husen, Malcolm, Varrone, Collis, Minto, Burgess, McDaniel, Stimpson, Spriggs,
Williams, Neurath, Ioime, Agee, Voss, Furtak, Renzulli, Aanensen, Carrolla,
Bickelhaupt, Lazovatsky, DaSilva, Zhong, Stanyon, Finley, White, Braverman,
Jarvie, Gold, Leach, Knight, Shimkets, McKenna, Chant and Rothberg, 2003).
Protein interaction of fruit fly Drosophyla Melanogaster were detected with high
or lower confidence. Here we present data from high-confidence interactions.
Data set 8 were collected on the Italian Stock Exchange (Garlaschelli, Battis-
ton, Castri, Servedio and Caldarelli, 2005). The Word co-occurrence network
(Ferrer i Cancho and Solé, 2001b) in dataset 9 is one of the many way to define a
word network. Finally data set 10 refers to taxonomic trees obtained from plants
collection (Cartozo, Garlaschelli, Ricotta, Barthélemy and Caldarelli, 2005).
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SCALE-INVARIANCE

FIGURE 3.1. A fish made of other fishes (Circle Limit IT 1959), the concept of
self-similarity in the genius of Michael Cornelius Escher.

Many years later, as I faced the editor of this book I was to remember that
distant afternoon when my tutor took me to discover fractals. Even if this episode
is rather distant in time, I still remember the feeling of surprise and emotion in
front of these objects. This personal experience could maybe explain the success
of fractals in modern science.

It is almost impossible to present here a detailed analysis of the various
scale-invariant systems appearing in nature. Therefore we present here only a
brief overview of the successes achieved by using the concept of scale invariance.
Many of the same ideas can be applied directly on self-similar networks (and
that is the reason of such chapter) while other case are more specific.

Anyway, all the examples clarify the general interest in the self-similar prop-
erties of the networks.

The study of scale invariance has a long tradition. Among the first fields
where this property has been analysed we have the theory of critical phenomena
(Stanley, 1992), the percolation (Stauffer and Aharony, 1971) and the fractal
geometry (Mandelbrot, 1975). The first two topics are familiar probably only to
physicists, while fractals have certainly a larger audience. Fractal geometry is

68
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related to the activity of the mathematician Benoit Mandelbrot!? (Mandelbrot,
1975; Mandelbrot, 1982). The basic importance of such activity is the under-
standing that fractals represent an usual outcome of systems evolution and not
an horrible paradox (as believed by some of the mathematicians who developed
them in the 19" Century). Starting the publication of his book ”Les Objects
fractals” in 1975 (Mandelbrot, 1975), a great activity started in various scientific
fields. More and more phenomena have been described by means of this new
formalism.

One of the first example considered by Mandelbrot was the price fluctuations
of cotton in commodities market. The future price cannot be obtained with
arbitrary precision from the past series. Still these series have some form of
regularity. Indeed, the curves for daily, weekly and monthly price fluctuations
are statistically similar. This example is particularly interesting since clarifies the
degree of prediction that can be expected from fractal analysis. Actual prediction
is impossible, but we can measure the probability of some future events. The fact
that the same statistical features are found on different time scales is a typical
signature of fractal behaviour. Also in the case of coastline lengths we find fractal
objects. Strictly speaking, we always miss parts of the profile even if they are as
small as the grains of the sand. Regardless the scale of observation we will find
the same complexity whenever looking more carefully to the object.

Actually fractal behaviour might refer to different properties. In some systems
the scale-free structure is in the shape. In this class the fractal shape can be
“robust” as is the case of the branched patterns of dendrite growth, fractures
and electric breakdowns. We say robust because these phenomena happen for a
various range of external conditions. In the same class we have that other systems
are more “fragile”. Fragile in the sense that they arise after a very precise tuning
of some physical quantity. This is the case of percolation and critical phenomena.

A completely different class of phenomena is verified when the scale-invariance
is not geometrical but it is related to the dynamics or to the evolution. For ex-
ample the time activity of one system could display a self-similar behaviour.
Eye-inspection would not help now. The only possible signature of fractal be-
haviour is the mathematical form (power law) of the time series. This happens
for earthquakes, avalanches and species extinctions. Technically those power laws
regards the form of the probability distributions of energy released, duration and
size of avalanches respectively.

Finally the self-similarity can be present in the way the different parts of a
system interact each other. This is the case of self-similar graphs and the power
law scaling appears in the distribution of topological quantities like the number
of interaction per part of the system. To detect when and if this happens is the
main topic of this book.

12Born in Warsaw in 1924 he moved to France in 1936. He is currently Sterling Professor of
Mathematical Sciences Mathematics Department Yale University and IBM Fellow Emeritus at
TJ Watson Research Center
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FiGURE 3.2. The concept of self-similarity. On the light two similar triangles.
On the right the Mandelbrot set. In the latter some subset are similar to the
whole.

Here in this chapter we present some experimental evidence of
scale-free structures. The most immediate of them, are geometrical
objects that result from mechanical or electrical breakdown. They are
“traditional” fractals. Other scale-free relations present in Nature re-
gard completely different quantities as probability distributions or time
activity. All of them are characterised by the same shape and are some-
time are related each other or are caused by similar reasons. We show
how to measure fractal dimension and more generally how to plot
power laws.

3.1 Geometrical Scale-invariance: Fractals

Self-similarity describes invariance of some physical objects with respect to a
change of the scale of observation. From very basic geometry, we know that the
technical term “similarity” is introduced to describe objects (like for example
two triangles) whose respective edges are proportional. Whenever this happens,
we know that by enlarging the smaller objects by the factor of proportionality
we obtain a perfect copy of the second one.

Some other systems are very complicated and still similar to themselves. This
means that a little part of them when enlarged is a copy of the whole. It is then
natural to refer to such systems as self-similar. This is not yet a mathematical
definition for such entities. Empirically, we can define as self-similar (hereafter
“fractal”) all the objects that look the same, squeezing or enlarging the scale of
observation. Probably the most famous object of this kind is the Mandelbrot set
shown in Fig. 3.2. The shape of the set is determined by exploring which set of
complex numbers has the property to keep a certain function finite!® The region

13 Technically, the Mandelbrot set is the region of the complex space corresponding to the
numbers ¢’s such that the succession z, = thl + ¢, starting from zp = 0 remains finite.
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FiGURE 3.3. Starting on the left we have three steps of construction of the
Sierpinski gasket. After an infinite number of steps it looks like the last picture
on the right (actually only five steps of iteration).

of the complex space formed by such numbers form this incredibly complicated
lines of separation. Using this idea, we now try to build a fractal object trying
to provide step by step a more rigorous characterization of it.

3.1.1  Fractals by iteration

The procedure is shown in Fig. 3.3. We start with a triangle whose size is L;
we then divide it into four parts and we cut the central one. This produces the
second object in the figure. Now we iterate such recipe for all the three surviving
triangles obtaining the third object in Fig. 3.3. It is easy to check that any of
the subset with size 1/2 of the system resembles the original one at scale 1'%,
By abstraction we can think to repeat infinitely this procedure obtaining an
object that would look very similar to the last object in Fig. 3.3 (actually only
5 iterations).

This object is known as Sierpinski Gasket!'® and we now characterise it in a
more precise way. The striking difference with respect to the starting triangle
is the regular presence of empty regions between the black ones. This strange
distribution of filled and empty regions makes impossible to measure the area
(how much space is filled) of the objects. As first notation, we see that the area
of the compact triangle is an over-estimate the area of Sierpinski Gasket. Then
we must find quantity that in standard triangles is larger than in fractals. To
find the right measure we must generalize the usual concepts.

To measure something means to compare it with a sample object called “unit
of measure”. When we say that a building is ten meters high we mean that we
need to put ten times one meter over another in order to have the same height.
The same procedure holds also for surfaces: an area of 10 square kilometers is
covered by 10 replicas of a large square of 1 Km per side (even if this is not the
smartest way to actually make such a measure). A non trivial question arises
if we want to know how many unit measures of surface we need in order to
cover a Sierpinski gasket. For the first iteration we only need three triangles of

14Technically that is true provided one cuts off the scales of observation. I.e. considering only

sizes greater than 1/8 and smaller than 1

5named after the mathematician Waclaw Sierpinski born in Warsaw in the 1882 and died

in the same place in 1969
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i

F1GURE 3.4. The Koch curve, obtained by infinite recursion of kinks production
in the middle part of the segment.

side 1/2 (Note that for a whole triangle we would need four of them.) For the
second iteration we need nine triangles of side 1/4 (Note again that for the whole
triangle we would need sixteen of them). In general for the compact triangle the
number of triangles needed grows quadratically as we reduce the size.

More formally, if N (¢) is the number of triangles of size 1/e, then the quantity

_ InN(e)
~ Inl/e

B ln_4 . Inl6
~ In2 © In4

( ) (3.1)

is constant as € changes and it is equal to 2. This is a very complicated way to
say that a triangle has “Euclidean” dimension D = 2. Things are getting more
interesting by considering the fractal Sierpinski Gasket. By using the previous

formula we obtain
_InN(e) , In3 In9

e G % i) (3.2)

Again the value of D does not depends on the particular €, but now D is equal
to In(3)/In(2) ~ 1.58496..

This quantity called “fractal dimension” measures the difference of com-
pactness of a Sierpinski gasket with respect to a regular triangle. D it is lower
than 2 because the Sierpinski gasket it is less dense than compact figures. D
is also larger than 1 and that is reasonable because the gasket is denser than
a line. This is only an example, different objects can be produced in a similar
fashion. Here we produced a fractal by iteration, forming more and more empty
region in a compact truly two-dimensional triangle. We can produce fractals
with the opposite procedure. That is to say we can kink a single segment, a truly
one-dimensional object. In this way it becomes clear the etymology of the word
“fractal”. It comes from the Latin word fractus i.e. broken. Starting with a line
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FIGURE 3.5. A rough representation of the coast of Norway, even on such coarse
grained scale it is evident the fractal nature of the line

segment, we divide it into three different pieces and replace the inner one with
a reversed V shape as shown in Fig. 3.4. As usual we must imagine how the
system looks like after an infinite series of iteration. The final shape is somewhat
similar to the last picture in Fig. 3.4. By computing now the value of the fractal
dimension we find a value of

_InN(e) In4

= — =1.2618.. .
Inl/e  In3 018 (3:3)

Denser than the value expected for a simple linear object.

3.1.2  Statistical Fractals, Scaling and Self-Affinity

Passing from mathematics to applied sciences the situation changes a little bit.
Real data do not look so regular and nice as the pictures presented until now.
No iterative formula is given for the cases of study. Therefore, all the relative
information on fractal dimension must be extracted from the data. In many text-
books the difference between toy objects like Sierpinski gasket and real fractals
is sometime indicated as the difference between “Deterministic Fractals” and
“Statistical Fractals” respectively. That is not completely correct since you can
have statistically randomness also in the toy pictures as a Sierpinski gasket.
The situation is particularly clear by considering the coastline problem. In
Fig. 3.5 we present a plot of the Norway coastlines. It resembles for its kinky
shape a fractal of the type of the Koch curve. Yet we cannot expect that for any
small division exactly the same recursion takes place. The most probable case is
that on average the number of boxes needed to cover the structure is peaked
around a mean value having sometime oscillation on smaller or larger values.
Since we are interested in the limit behaviour when the linear size of the box
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tends to zero we have to infer the limit behaviour of this averaged quantity (see
next section).

Another important extension of self-similarity is given by the concept of self-
affinity. Affine transformation in usual geometry, mean that you apply differ-
ent magnifications on different directions. Eventually this result in stirring or
shrinking along a certain direction more than the other. This could result in
transforming a square in a rectangular object. Exactly as the self-similar objects
are figures that are similar to one of their subset, self-affine objects are “affine”
to their subsets. In the following we will have different example of quantities
whose magnification properties are different along different directions. We will
indicate by saying that they have different “scaling” properties with respect to
the unit measure we are considering. This means that if the object is doubled
along one direction it could be three time longer along another. The two different
direction also have a peculiar ”scaling” one each other.

A typical curve that shows self-affine characteristic is a typical price curve of
a stock. This curve is determined by plotting on the y-axis the price of a certain
stock at time ¢ reported on the z-axis. Since the function is single valued (it means
that for any value of time ¢ there must be one and only one price) oscillations are
allowed on the y-axis. In this case the concept of fractal dimension is no longer
appropriate. Rather the behaviour of oscillations with respect to time evolution
makes more sense. We will show in the following sections how power laws are
intimately related to fractals. In that perspective we can say that peculiar scaling
of quantities is still a signature of some fractal behaviour.

3.2 Measuring the Fractal Dimension

Having in mind that in the real world data the self-similarity can be expected
to hold only in a statistical sense (because at a certain scale you may have little
fluctuations in the size of the empty regions with respect to another scale) we
present here two of the most used methods to compute the value of the fractal
dimension.

The first one i.e. the “Box-counting” comes immediately from the mathemat-
ical definition of fractal dimension. It can be applied whenever we deal with a
picture or a spatial grid of data. Let us consider the case of Fig.3.6, where a
satellite image of a picture of a wildfire is given. The method counts the number
of units of measure (in this case boxes) needed to cover the structure. Of course
two limit situation are present. Boxes much larger than the whole set are unin-
teresting, the structure is in any case inside. This is called the “upper cut-off”.
will not give sensible information, because the definition will be so poor that we
cannot distinguish anything of the structure. This is the reason why the fractal
dimension is defined in the limit of the linear size of this units of measure going
to 0. Anyway there is also a lower cut-off given by the image resolution, so that is
not sensible to consider units smaller than a pixel of the image. Then one simply
plots the number of boxes occupied by the structure when the size of this boxes
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FIGURE 3.6. Above first steps of box-counting for a satellite image of a wildfire.
Every black pixel is an area of vegetation destroyed. Below the plot of N ()
Versus €.

passes from one (large as the whole set) to the size of the pixel of the image.
Different stages of this procedure are presented in Fig.3.6

3.3 A home-made fractal, the mass-length relationship

In some of the cases (as in the case of three dimensional objects) a picture of the
fractal set could not be available. To overcome such problem, one can use the
assumption that the density of mass on the fractal objects does not change, so
that fluctuations in the mass are only given by the geometry of the sample. In
such a way since for a compact object holds M = pL®? (where M is the mass and
L its linear size) we expect the same relation to hold also for a fractal (where
D is a non integer number). Therefore by measuring an object and weighing
its mass it is possible to compute its fractal dimension. This method is called
“mass-length relationship” and we can illustrate it with a little experiment.

Let us take two sheets of paper in the format A4. A good quality printing
paper weighs 80g/m?, so that an A4 (210mm x 297mm) weighs 4.9896¢. Take
one of the sheets and wrap it in a little ball. After this procedure it does not
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FIGURE 3.7. One realization of the experiment. A ruler in centimeters and inches
is available below.

look nice as before but still weighs about 5 grams. Then take the other sheet
and divide it in two. Now wrap one of the parts. It will form a ball of about 2.5
grams. Divide again in two the parts left. Wrap one of the two pieces. It will
form a little ball of about 1.2 grams. Continue like that for a couple of times.
Now you are left with 5,6 balls of different mass. If you now take a ruler and
you try to determine the linear size of the objects you will obtain very likely the
values reported on the left of Figure 3.7. Technically the best way to proceed is
to determine the diameter D from which we compute the radius R. Note that in
principle we could also plot directly the mass versus the diameter, since radius
and diameter differ only by a constant factor (1/2)”. Technically, using radius
we can reduce the size of error bars in our measurements. Generally though,
the error bars are better reduced by means of accurate observations and more
statistics; nevertheless for the sake of this little experiment, even with a rather
rough estimate the plot of points on the right part of Fig.3.8 looks quite nice.

3.4 Scale Invariance and Power Laws

The mathematical form of self-similarity is represented by power laws. A power
law is a special case of function y = f(z). Whenever the f(z) can be represented
as a power of the x then the relation between y and z is a power law. Simple
linear function y = x and quadratic function y = x? are the most immediate
example of power laws. Even if very simple, they are not at all trivial. Elastic
force grows with the distance r from equilibrium as a power law since F; o< r.
Gravitational and Electrostatic forces Fig g decay with distance as a power law
with exponent —2 since in both cases F o< 1/r? (i.e. F o< 772).

In the case of fractals we have just seen that their geometry can be identified
by considering the number of boxes N (e€) of linear size 1/€ needed to cover the
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F1GURE 3.8. The mass-length relationship for the wrapped sheets allow to de-
termine the fractal dimension of these objects.

structure. In particular,
N(e) x (1/€)P = N(e) x e P. (3.4)

That is, the number of boxes is a power law of the linear size whose exponent is
D. We already know that D is called the fractal dimension. The above formula
is a way to define D, but this quantity is usually measured by means of another
power law relation. This is the above mentioned mass-length relationship

M < LP (3.5)

As we will see in the following there is a large series of physical situations
where the objects are geometrically compact. Still their dynamics or their time
evolution obey a self-similar behaviour. In all these case we have power law
distributions for such quantities (very often with non integer exponents).

3.5 Plotting a power law

Once defined a suitable way to measure the fractal dimension we now turn our
attention on the procedure of fitting the experimental data in order to determine
the quantities of interest. As already clarified, these quantities as the fractal
dimension have the form of a power law. This means that whenever we put the
data on a logarithmic plot the shape we must expect is that of a straight line as
shown in Fig. 3.9.

Let us consider now the case shown in Fig. 3.10 A. This plot is very noisy
at the end of the distribution. This is a very general feature; very likely this is
what we must expect from a real experiment. That is not surprising when using
logarithms. The feature of a logarithmic plot (consider for example the base 10
logarithm) is that the same space is given on the x-axis between 10 and 100 and
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FIGURE 3.9. The plot of the function y = 272 in linear (A) and logarithmic
(B) axes. The scale is different in the two plots, because otherwise on the left
(linear scale) the curve would appear indistinguishable from the axes.

between 1000 and 10000. This happens because in both cases we have a change
of 1 in the exponent, and with logarithm axes we measure exactly these exponent
changes (we have 10 = 10! and 100 = 10% so that the exponent passes from 1
to 2; in the latter case we pass from 1000 = 102 to 10000 that is 10%, again
with a change of 1). If we realize N experiments, very likely we test in a very
accurate manner the interval between 10 and 100 if N is large enough. This is
less likely for the following decades (like the one between 1000 and 10000 where
9000 different results are possible) even if N is rather large. In general if N is
kept fixed (as it is always the case) we must expect a very noisy behaviour on
the tail of the plot.

Different solutions are possible to overcome this problem. We show them in
Fig. 3.10 B and Fig. 3.10 C. In the first case we applied the method of “binning”
while in the second case we used a cumulative distribution.

These methods both reduce statistical noise using the elementary property
that the sum of fluctuations from average must be zero'® Therefore when sum-
ming the data, fluctuations average out and we recover the average. Before pro-
ceeding further explaining these two methods, let us note an important difference
with Fig. 3.9. In Fig. 3.10 we simulate the values of an experiment. Therefore we
cannot have values of y lower than 1 (we cannot measure one event 0.3 times).
Dividing the number of observation by the total number of trials we have a lower
limit for the y given by 1/N. This cut-off will play a role of a certain importance
in the following.

16This is very simple to see, in formula the sum of fluctuations from average is given by
> im1n (@i = (2)) = N(z) = N(z) =0
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FIGURE 3.10. A The plot of a computer generated (with imposed power law
shape) frequency distribution of random numbers. B The plot of the same
Frequency distribution after a binning with sample of size exponentially grow-
ing. The first bin is between 1 and 1.2 (not shown), the second between 1.2
and 1.22. In general n — th bin collects data between 1.2”~! and 1.2". C The
cumulative distribution of the same data. Note the change in the slope.

3.5.1  Binning procedure

In this method the averaging is made by dividing the x-axis in interval and
summing the data within the intervals called bins.

e We divide the whole range of x in bins;

e we assign an average value for the x of the bin and an average value for
the y relative to the bin;

e finally we plot them.

For example, we can take the frequency of all the numbers between 1 and 10.
The bin is 10 units wide and (z) is 5. The sum of all the frequency divided by
10 will be the average value of the y. If the size of bins is constant we have a big
problem. For example in the decade between 100000 and one million, the points
would be so many to be hardly recognizable. Furthermore, as noticed above, as
the x grows, more and more trials would be necessary to test any single bin of
length 10.

The correct procedure is to use a logarithmic binning. For example take the
size of the first bin of two units (i.e. average all the point between 1 and 3), then
the second bin will have a size of four units (i.e. between 3 and 7), the third one
of eight units (i.e. between 7 and 15) and so on. In this case the size of the bin
is a power of 2 (i.e. 21,22 23...) but the basis can be any number larger than
1. In particular in Fig. 3.10 B we used a value of the bin given by powers of
1.2. The drawbacks of this procedure (Newman, 2004¢) are the following: this
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method does not completely reduce the noise and that the choice of the most
appropriate bin must be successive tentatives. For a noisy and not extremely
large set of data bins too wide will cut off any interesting behaviour in the tail of
the distribution. On the other hand, bins too narrow will not help in averaging
out the fluctuations.

3.5.2  Cumulative distribution

In this method, the averaging out of the fluctuations is made on all the data
set. Instead of asking the probability that a certain value x (or in the case of a
continuous formulation a value between x and x+dz) appears in the experiment,
we focus on the probability P~ (x) that the outcome is larger than x.

In formulas this correspond to consider a new probability distribution
P'(z)

P> (z) = /00 P(x)dx. (3.6)

In this case if the P(z) is a power law of the kind P(x) = Ax~" this
gives again a power law

P~ (z) = / P(z)dx = / Az™"Vdx = A
a8 az Y= 1
Results are shown in Fig. 3.10 C where most of the noise has been greatly
reduced and the slope of the distribution changed according to eqn (3.7). Note
that despite the widespread use of this method one can sometimes experience
catastrophic results.

7t (3.7)

e If the exponent v is near to one, the integral does not behave like a power
law but rather like a logarithm.

e More frequently, in almost all the cases of study the upper limit of inte-
gration is rather far from infinite and it is represented by a value of 2,4
The correct integration of equation 3.7 would then give

(x777 1 — ), (3.8)

max

Tmax
P~ (x) = / Ax " Vdr =
Now the P~ (z) will follow a power law more and more closely as the value
of Tyaee tends to infinite. If this is not the case, a likely effect would be
a bending of the distribution resulting in a very difficult estimate of the
value of gamma.

3.6 Scale-Invariance in Natural Sciences

The most impressive and known family of fractal structures in natural sciences
is given by the class of fractals related to the deposition phenomena. One of the
first examples of this class was studied by Brady and Ball (Brady and Ball, 1984).
They considered a particular form of growth of crystals in their laboratory. In
this phenomenon (called electro-deposition), a crystalline deposit of metal grows
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FIGURE 3.11. On the left a three dimensional crystal of copper made by elec-
tro-deposition. On the right a two dimensional mineral dendrite of Manganese
Oxide (Guyon and Stanley, 1991).

on one of the electrodes put in a solution of metal ions. This process takes place
when a difference of electric potential is applied to the electrodes. When the
difference of electric potential is reasonably low, ions can arrange their way to
the electrode and the deposition is rather ordinate. In these conditions we have an
highly packed sample. On the other hand when an higher potential is applied,
the growth is quicker and such optimal packing cannot be obtained. Samples
grown in the latter regime are like those presented on the left of Fig. 3.11. They
show a characteristic branching pattern very similar to that obtained in a model
called of “Diffusion Limited Aggregation” (see Appendix 77).

Even minerals present the same branched pattern (see Fig. 3.11 on the right).
In this case the process is generated by diffusion of Manganese ions in the cracks
of the rock. Whenever Manganese ions enter in contact with Oxide ions of the
rock they form a dark compound (MnO) that precipitates if the concentration is
larger than a certain threshold. Presence of the crystallized compound triggers
new precipitation as in the DLA irreversible attachment, thereby forming similar
patterns (Chopard, Herrmann and Vicsek, 1991).

Whenever the surface of the structure is smooth, all the portion of it are
suitable candidates to receive further growth. When little bumps start to form,
this “degeneracy” is removed. These bumps attract further growth in an accel-
erating process giving rise to branches. When branches appear, they restrict the
possible trajectories of next walkers. The net effect is that growth happens only
on the tips (see the red portion of Fig. 4.2). This basic mechanism takes place
in a variety of different physical scenarios. When considering electric discharge
for example, the situation is very similar. A dielectric is a material that usually
does not conduce electricity. When the field applied exceeds a certain threshold



82 SCALE-INVARIANCE

FIGURE 3.12. On the left the viscous fingering effect made by injecting air in
a glycerin solution. On the right growth of bacteria colonies (Guyon and
Stanley, 1991).

e
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FIGURE 3.13. On the left the familiar pattern of a lightning (picture taken
from http://teslamania.delete.org/frames/lichtenbergs.html), on the right
the computer realization of a Dielectric Breakdown Model.

this property is no longer valid. The dielectric breaks up and a discharge flow
through it. This is the phenomenon of lightnings. The electric field is so strong to
attract the electrons out of the atoms in the atmosphere. Assuming that break-
down takes place with a probability proportional to the strength of the applied
electric field (Niemeyer, Pietronero and Wiesmann, 1984), one can reproduce the
statistical features of real lightnings as shown in Fig. 3.13.

In this case the instability given by the first breakdowns, changes the future
history of the pattern, since the growth is irreversible. The same happens when
the driving field is represented by concentration pressure. The tip instability is
called Saffman-Taylor instability and it is at the basis of the viscous fingering
phenomenon. Finally even bacteria growth can be described in such a way. In
this case the gradient is given by the concentration of food (Matsushita and
Fukiwara, 1993).

On the same spirit we can approach the problem of fractures. Whenever
a solid object is subjected to an external load, it has a change of shape. The
situation is complicated by the vectorial nature of the problem. As it is evident
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FIGURE 3.14. On the left an example of a system where nodes are drawn with
a probability lower than the critical one p.. On the right at the critical value
of percolation, new sites are drawn and a percolating cluster with fractal
properties (that in white) appears in the system.

in the case of a rubber string, an elongation (i.e. a deformation along its length)
is very often'” coupled by a diameter reduction (i.e. a deformation orthogonal
to the force applied). When the force applied is too large, the solid eventually
breaks apart. Very often the line of fracture and the part damaged show a fractal
shape.

According to the particular character of the material the breakdown can
happen when the material is already damaged. In this case the deformation are
permanent. On the other hand other materials may break in their elastic regime
where the deformations disappear when the external load is removed. A large
activity is devoted to characterisation and modelling of these various cases and
we do not enter in the details of the fracture theory. Nevertheless by means
of very simplified models of breakdown we can spot a behaviour similar to the
electric breakdown. Also in the case of elastic deformations, the load on the
parts of the material are strongest on the neighborhood of the cracks. Also in
this case the future breakdown proceeds from former fractures as in the case of
the DLA-like structures.

3.6.1 Scale Invariant systems in Physics: Percolation and Critical Phenomena

3.6.1.1 Percolation Another way used by nature to produce fractal structures
is percolation. This model is one of the most ancient and elegant models of fractal
growth. It has been introduced to explain phenomenon of fluid penetration in a
porous medium. The idea is that the various points of the lattice can be occupied
or not with a certain probability p. When p = 0 no points are occupied, if p =1
instead Interesting phenomena happen for intermediate values of p. When this
occupancy probability grows from 0 to 1 small clusters of points appear in the

17with the notable exception of corks that can be stretched with no side deformation
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FIGURE 3.15. On the left a wildfire originated in Valle del Biferno (Italy) in
August 1988 destroying 56 square Km of vegetation. On the right a wildfire
on Mount Penteli that in July 1995 destroyed 60 square Km of vegetation.

system. At a precise value p = p. depending on the particular lattice considered,
a giant fractal cluster spans the system from one side to the opposite one. A
self-organised version of this model of growth has been introduced more recently
(Wilkinson and Willemsen, 1983) and it is called Invasion Percolation. It was
introduced in order to explain the patterns observed when pushing water in a
medium containing oil. The medium is represented by a series of links between
the sites of the lattice. Every link has assigned a random variable describing its
diameter. Since the capillarity effect, the invasion of water proceeds by selecting
the bond with the smallest diameter on the boundary of the region invaded by
water. This model self-organizes in a critical state forming a fractal percolation
cluster in the steady state. This features is particularly interesting since self-
organisation could represent a possible explanation for the ubiquity of fractal
structures.

There are many real situations where percolation models can be used to
describe experimental results. Here we report the study of wildfires from satellite
images. From these pictures it is easy to note that after a wildfire the area of
vegetation burnt as a typical fractal shape (see Fig. 3.15). Various explanations
have been provided for such phenomenon, most of them closely related to the
idea of percolation.

Those particular data sets shown in Fig. 3.15, consist of Landsat TM satellite
imagery (30m x30m ground resolution) of wildfires, acquired respectively: over
the Biferno valley (Italy) in August 1988 and over the mount Penteli (Greece) in
July 1995. In all the cases the image was acquired a few days after fire. The burnt
surfaces were respectively 58 and 60 square Kilometers. Bands TM3 (red), TM4
(near infrared) and TM5 (mid infrared) of the post-fire sub-scene are classified
using an unsupervised algorithm and 8 classes. This means that in the above
three bands any pixel of the image is characterized by a value related to the
luminosity of that area. By clustering in classes those values one can describe
different type of soil, and in particular the absence or presence of vegetation.
In particular, the maps of post-fire areas have been transformed into binary
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FIGURE 3.16. A typical phase diagram for a pure substance, the red line is
giving the separation between liquid and solid at the various pressures and
temperatures. Notably water has a different (and much more complicated)
phase diagram. As an example in a certain range of the parameters the slope
of this line is negative rather than positive, so that at fixed temperature an
increase of pressure liquefies the ice (this phenomenon allows to skiing and
skating).

maps where black corresponds to burned areas. Time evolution of wildfires is
better described by a Dynamical version of percolation in which the probability
of ignition decades with time so that at the beginning the fire will grow almost
in a compact way leaving a fractal boundary at the end of the activity.

3.6.1.2  Critical Phenomena Percolation is not the only process that form a
fractal by a careful tuning of a physical quantity. Traditionally this is the case of
critical phenomena in Thermodynamics. Consider a typical pure (for our purpose
let us restrict to only one type of molecule of a simple chemical element) chemical
substance. Then plot on a graph the values of pressure and temperature at
which this substance changes its phase. This means when it becomes solid from
liquid (solidification) or vapor from liquid (evaporation) or vapor from solid
(sublimation)!®. In general, all the information can be reported in a chart like
the one presented in Fig. 3.16.

The fact that the vapor-liquid curve stops means that if we choose the right
path we can go from one phase to another without having a phase transition.
This is a peculiar situation. In the standard cases (liquid-solid or liquid-vapor
below the critical point) the passage between one phase and the other happens

18These transitions can happen at the same temperature and pressure also on the other
direction (in this latter case they take respectively the names of melting, condensation, depo-
sition)



86 SCALE-INVARIANCE

FIGURE 3.17. On the left the data collected for N earthquakes from 1700 to
2005. On the right the spatial distribution of epicenters in ...

somehow abruptly (we have a jump in some thermodynamical quantities like the
specific heat). As the critical point is approached instead, the system somehow
adjust itself on a microscopic level. At temperatures 1" nearby the one of the
critical point T, the quantities like the specific heat, the compressibility etc. are
power-laws of the quantity (7'—T.). Regardless the precise substance or variable
involved many systems approaching the critical present a similar behaviour.

3.6.2  Scale-invariance in Time Actiwvity: Avalanches and Extinctions

There are some physical situations (as in the case of networks) where the sys-
tems of interest do not follow the fractal geometry but we still have self-similar
behaviour. This is the situation of system whose time evolution is characterized
by bursts of activity separated by long periods of quiescence. In such cases the
dynamics of the system is characterized by series of causally connected events
called “avalanches”.

Two examples are biological evolution of species or distribution of earth-
quakes. In these case we find again a power law'?. In the case of biological species
the statistics is given by the number of species created from parent species. In the
case of earthquakes, the statistics is considered by collecting all the earthquakes
with a similar magnitude. A plot of the frequency observed for earthquakes of
a certain magnitude is shown in Fig. 3.17 This behaviour is well reproduced by
the law of Gutenberg and Richter (Gutenberg and Richter, 1956)

Poc M990 (3.9)

This power-law means that no characteristic scale for earthquakes must be ex-
pected. Furthermore, after a major event, a series of little other earthquakes
(aftershocks) are often present. This is a typical example of an avalanche and
in many case also the distribution of the time activity for such avalanches is a
power law. A plausible simple explanation for the above behaviour has not been
produced yet even if many models are successful in reproducing the Gutenberg-
Richter.

Coming back to avalanches, it has been thought that this peculiar dynamics
is at the basis of species differentiation between plants and animals. From fossil
records it appears that during particular moments of the Earth history as the
Permian (291 millions of years ago) or the Cambrian (570 millions of years ago)
many different species appear. In other periods a similar size of extinctions was
present. This led to the formulation of Punctuated Equilibrium Theory made
by Eldredge and Gould (Eldredge and Gould, 1972) where authors suppose that

19Note that in the case of earthquakes this is coupled with a fractal spatial distribution of
epicenters
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evolution takes place by means of intermittent bursts of activity rather by means
of progressive changes.

Many models have been introduced inspired to these ideas. Amongst them the
most famous is probably the Bak and Sneppen model (Bak and Sneppen, 1993).
Here a food chain in an ecosystem is represented by a series of species arranged
on a one dimensional lattice. A species i is represented by a real number 7; giving
its fitness. Species with a low fitness are unlikely to resist in the ecosystem. In
the model the species with the lowest value is removed together with its prey and
its predator. Their place is taken by three new species with randomly extracted
fitness values. This elementary process represents an avalanche of extinctions of
order 3. If one of the newcomer also becomes extinct then the avalanche lasts for
another time step. The process continues with new species entering the system.
The size of these avalanches shows no particular time scale, and big extinctions
event that sweep all the system are separated by long periods of small activity.

3.7 Scale-invariance in Economics and Social Science

As above mentioned, one of the first example of fractal geometry provided by
Benoit Mandelbrot was related to commodity prices. In particular a chart of the
different prices of cotton in a trading period looked similar to another chart with
a different time resolution.

Actually, power laws in economics were introduced even before, by the sem-
inal and pioneering work of Vilfredo Pareto®’. Pareto noticed that in a variety
of different societies regardless countries or times (Pareto, 1897) the distribution
of incomes and wealth follows what is called now Pareto’s law

NX >z)ocax™™ (3.10)

where N(X > x) is the number of income earners whose income is larger than
x.

A similar law can be derived in a completely different context. In linguistic
for example, one can be interested in the frequency of use of different words
in a text. Also in this case scale-invariance appears under the form of a power
law. This result called Zipf’s law (Zipf, 1949) after the name of George Kingsley
Zipf?! states that

focr™® (3.11)

where f is the frequency and r is the rank of the word (the most used, the second
more general, the third etc..). Since b is in most of the cases equal to one we
have that the frequency of a word is roughly proportional to its rank. Zipf’s law
is far more general than linguistic, the above case applies to cities population to
and to. More generally, Zipf’s law and Pareto’s laws are two ways to represent
the common formation of power laws in Nature. Indeed whenever we deal with a

20Ttalian economist Vilfredo Pareto was born in Paris in 1848 and died in 1923 in Céligny.
21Harvard professor of linguistic
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power law density distribution both Zipf’s and Pareto’s laws apply. We can link
the value of the exponents m and b (for a very clear derivation of the following
see Ref. (Adamic, 2002)). The idea is that when an object whose rank is r has
frequency vy, it means that r words appear more than y times exactly. This is
the prediction of Pareto’s law, apart the fact that axes x and y are inverted. So
that

focr™b — o foYY (3.12)

Now the frequency f is equivalent to incomes z as rank r is equivalent to the
number of people with income larger than x and therefore we can link the two

exponents
1/b=m (3.13)

In the original formulation of the Pareto’s law, we are considering the cumula-
tive distribution of incomes rather than the density. As we recall in the Appendix
of Basic Statistics the first is the integral of the second one. This means that
the frequency with which we have persons with income exactly (in the case of
continuous functions we need a dx) is

N(X =)oz ™ =372, (3.14)

So when considering the probability functions instead of the cumulative we have
the exponent relation

The validity of the above laws can be easily tested for two particular cases
of study in the case of Zipf’s law we report the analysis of the text of the
Odyssey and Iliad in this case the different forms one word can have in ancient
Greek (declination for nouns and adjectives and conjugation for verbs) have
been considered as different words. English has a much less limited number of
different forms a single word can have but nevertheless the same texts present a
similar frequency distribution. By using the data set provided by Forbes company
(http://www.forbes.com) we can test the law of Pareto for the 100 wealthiest
persons in the world in year 2000 — 2004. Apart the first 10 or so that seem to
deviate from the expected behaviour the others behave with a rather nice power
law behaviour as shown in Fig. 3.18.
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FIGURE 3.18. On the left the Zipf’s law for the Greek versions of Odyssey
and Iliad. On the right the Income Distribution for the first 100 wealthiest
persons in the world. We use here the Zipf’ form of the Pareto distribution
for a comparison between the two phenomena.
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THE ORIGINS OF POWER LAW FUNCTIONS

4.1 Introduction

All self-similar systems are power law alike. Each power law we see in Nature
is self-similar in its own way. The aim of this chapter is to present the reasons
for which things as different as the scale-free networks, the geometrical fractals
and avalanche phenomena behave all as power laws. These reasons are various,
and quite surprisingly amongst them there is also randomness. This mean that
difference of properties between the parts of the system in certain conditions
can produce power laws. In summary, these are the mechanisms we are going to
present in this chapter.

e Diffusion processes. Things tend to mix, so that particle of one kind diffuse
in particles of other kind, exactly as heat tend to be transferred from
one body to another. The mechanism of diffusion is a powerful power law
generator as we see in the following.

e Minimisation. Some recent trends in the research focussed on the idea
that self-similarity of any kind could be related to a common evolution-
ary process. The common mathematical form of power laws characterise
several different quantities arising from nature evolution. This is in some
sense related to other theories predicting that self-similarity arises from an
unknown minimisation principle (i.e. some kind of “energy” is minimised
through fractals).

e Dynamical Evolution Self-similarity can be related to a peculiar dynamic
evolution of the system. This explanation is known as Self-Organised Crit-
icality (Bak, Tang and Wiesenfeld, 1987). This method is actually an ex-
planation of the way in which a system could develop a fractal shape.
SOC does not clarify why the steady state is power-law and therefore the
question remains open. Nevertheless, this concept had quite a success in
statistical physics and biology and it is likely to play a role also in the study
of fractal networks. Very likely, this dynamical evolution can be driven by
minimisation principles and therefore this ingredient is closely related to
the above one.

e Multiplicative Processes For the importance of the above questions it is nec-
essary to point out that sometimes the power laws are not the signature
of something complicate and interesting going on in the system. Actually,
in many many cases the power laws come out from very simple and “un-
interesting” processes. Strictly speaking there is nothing “uninteresting”
in research. We only intend to say that in most of the cases one expects

90
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normal distributions and not power laws. This is because the central limit
theorem??, provides an excellent explanation for the ubiquity of normally
distributed quantities. We show in this chapter that by using this theorem
we find that in multiplicative processes (the value of a variable at time ¢ is
a percentage of its value at previous time ¢ — 1) we must expect variables
log-normally distributed. The log-normal distribution is awfully similar to
a power law one and therefore in most of the cases, due to the small size
we can easily confuse them (see for example see sectionl.6.1 in Chapterl).

The latter case produce false power laws that look like the real ones. Actually,
we can obtain also real power laws from exponential distributions if we introduce
thresholds or we sample the data in a peculiar way (Reed and Hughes, 2002).

Here we present the mechanism and models that produce power
laws. We start from the very traditional ones as the random walk.
We then present a brief expositions of minimisation principles. The
main part of the chapter is devoted in the discussion of multiplicative
processes. This phenomenon either produces true power laws or log-
normal distributions. In both case this is one of the most important
mechanism in the formation of scale-free networks.

4.2 Random Walk, Laplace equation and Fractals

The problem of the random walk was originated by the experimental evidence
about the motion of particles produced by the bothanist Robert Brown?? (Brown,
1828). The simplest possible model (see for example (Reichl, 1980)) is given by
a particle starting in y = 0 and constrained on a one-dimensional line (it can
move only to the left or to the right). If no particular preference is given the
particle moves on the left or to the right with equal probabilities p;, = pr = 0.5.
After some timesteps (as shown in Fig. 4.1 the walker starts to wander around.
The trajectories remains centered around the position x = 0 but the average
distance from this position grows with time. The net displacement m (it is an
integer number) after N steps will be given by composing all the moves ny, on
the left (let us assume they are negative) and all the moves ng to the right (let
us assume they are positive). That is

nr —nyp =1m
nR—i—nL:N (41)

221f we sum together different stochastic variable we obtain a new variable that is normally
distributed. This holds whatever is the distribution of the original variables, provided their
variance is finite.

23Born in Montrose (Scotland) 1773 and died in London in 1858. His accurate observations
started the problem of the motion of microscopic particles. The current explanation has been
given in the framework of kinetic theory by A. Einstein.



92

20 T T T T T

N
gg; \,;;;;;,n"w

- 20 1 I 1 I 1 I 1 I 1
0 100 200 300 400 500

FIGURE 4.1. Three different realizations of a one-dimensional random walk
made of 500 steps of unitary length.

For a large series of steps the probability distribution for the displacement will
be given by
2 2
e 2
VTN

3

P(m) =

Z

(4.2)

This is only a mathematical simplified model, in order to better describe the
property of the brownian motion we must define a similar model of walk but
in three dimension and with a variable step length. Let us proceed along this
direction and let us start by varying the step length. In the case of one step
of length [ (on average), the net displacement is now given by the real number
x = ml. Now let us also assume that the portion Az of trajectory observed is
much larger than the typical step size [ (this is the case of Brownian motion
where [ is the intermolecular free path, while Az can be of the order of the
millimeters) For a large number of steps the probability that the particle is in
the interval z, x + Ax is given by

1 _ =2
P(l’) = We 2N12 | (43)

In three dimensions this formula does not change very much apart the fact that x
represent now a three dimensional vector (and apart the normalization constant).
So that a particle moving of Brownian motion is characterised by a Gaussian dis-
tribution of the displacement around the mean. Surprisingly a small modification
of this process is one of the most studied fractal generator.
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4.2.1  Diffusion Limited Aggregation

This become clear coming back again to the microscopic dynamics of Brownian
motion. To study this motion in the eighties was introduced a cellular automaton
called Diffusion Limited Aggregation (DLA) (Witten and Sander, 1981). Cellular
automata are a bit like a board game like the chess. You have the elements of
the game (the chessboard, the pieces like the queen, the rooks etc.) and rules
of the game. In DLA the chessboard is made by a grid L x L (it is possible to
relax this assumption and take any portion of space as chessboard). The pieces
are particles that occupy the sites of this grid. In the middle of the grid we fix a
particle (“seed”).
The game then starts following these rules:

e Rule A: Birth of a particle. Particles are added on one of the sites
on the boundary of the grid. It will start to move as prescribed by the
following rule B.

e Rule B: Life of a particle. Particle move from their starting node by
means of random walk. For random walk we intend that the particle has no
memory of the past path. In any point of the walk the particle can (with
the same probability) proceed straight, come back or turn left or right.
Hereafter this particle will be also called “random-walker”.

e Rule C: Death of a Particle. This means that whenever the random
walker in its walk passes nearby a particle deposited, it sticks on it. At the
very beginning it will eventually sticks on the seed. When this happens a
new particle is added following rule A.

e Rule D End of game Stop when the arrest point of a particle is near
(i.e. L/4) to any of the boundaries.

At this point the name of the model is clear, we have a particle that has
a motion of diffusion. This diffusion is limited by the boundary of the grid and
above all by the aggregation of particles. For the first time in this chapter we note
that coupling thresholds and randomness in a dynamical process we can drive a
self-similar behaviour. These idea will appear again and again during this chapter
and it is probably the main ingredient in the formation of self-similar objects.

Despite the apparent simplicity of this model it gives rise to the very com-
plicated object shown in Fig. 4.2. This model of fractal growth is the prototype
of most of the deposition and corrosion processes observed experimentally.

A model of growth related to the Diffusion Limited Aggregation (DLA) is the
Dieletric Breakdown Model (DBM) introduced in 1984 by Niemeyer, Pietronero
and Wiessman (Niemeyer, Pietronero and Wiesmann, 1984). The basic idea is
to describe formation of structures like the natural lightnings or the artificial
ones as the Lichtenberg figures?*. These structures are formed by discharging
a high voltage inside an insulating material (dielectric). Insulating material do
not allow electric current to flow (i.e. electrons are bound to their atoms). If

24These are named after the German physicists Georg Christoph Lichtenberg (1742 — 1799)
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FIGURE 4.2. A cluster grown according to the model of Diffusion Limited Ag-
gregation (DLA). For this specific cluster, more than 30000 different walkers
have been sequentially sent from the boundary of the system. The last 5000
walkers have been drawn in lighter colour to show that time evolution of
the object happens by growth on the tips. This means that the inner part is
stable i.e. it will not be filled by successive growth.

the applied electrostatic potential grows above a threshold, this field is strong
enough to remove the electrons from the atoms and a discharge takes place. An
example of these figures is shown in Fig. 4.3 where a beam of accelerated electron
is shot on a transparent acrylic material.

This process is described by one of the Maxwell’s equations (Jackson, 1998)
relating the divergence of the electric field to the electrostatic charge p. This

equation tells us that (in standard units of Meter, Kilogram and Seconds, i.e.
MKS)

VE =2 (4.4)
€o

where € is the permittivity of free space. By using the definition of electrostatic
potential we can put this equation in the form of a Poisson equation

Vio(a,y,2) = L. (4.5)
0

In the case of dielectric the total charges in the medium are 0 so that the above
equation takes the name of Laplace equation becoming

V2¢(z,y,2) = 0. (4.6)

Maybe the symbols described in the above equations can be rather obscure to
some of the readers. The above equation only states to compute and sum the
second derivative of the function ¢(z,y, 2).
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FIGURE 4.3. On the left a picture of a lightning, on the
right a Lichtenberg picture. These pictures are taken from
http://teslamania.delete.org/frames/lichtenbergs.html

Po(a,y,z)  Po(x,y,2)  0*¢(x,y,2)
2 . IS IR IR
V q5(.’17,y,2’) - 81'2 + 8y2 + 822

=0 (47

Let us now consider the medium as a regular square lattice, so that the phys-
ical quantities are defined only on the vertices of a grid. Let us now compute the
value of the electrostatic potential on these points when an external electric field
is applied. For every point with coordinates (z,, z) it must be V2¢(z,y,2) = 0,
but since the coordinates are now integer numbers we have that derivatives can
be computed as finite differences.

W =o(zx+1,y,2) — o(z,y, 2) (4.8)
or alternatively

0

% - ¢($7y7 Z) —¢($— 17y7 Z) (49)

By applying firstly eqn (4.8) (forward finite difference) and then eqn (4.9) (back-
ward finite difference) we obtain that

2
% - %W =¢@+1y,2)+o(x—1,y,2) = 2¢(z,y,2) (4.10)

Therefore the condition V2¢(z,y, z) = 0 now reads
1
where (£,7,() is one of the six neighbours of (x,y, z). That is to say, the value

of the electrostatic potential in every point must be the average of the values
in the neighborhood (therefore the name “harmonic” potential). This is a very
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FIGURE 4.4. A pattern of DBM grown in cylindrical geometry.

complicated way to find that at rest the electrostatic field penetrates the medium
forming planes of different strength from on electrode to the other.

Situation becomes more interesting when breakdown occurs. We model the
breakdown stochastically. This means that we break out the bonds with a prob-
ability proportional to their electrostatic field. When bonds are burnt, the sites
involved drops at potential 0. Therefore with this new boundary condition we
need to recompute the values of ¢ on the sites left. Step by step the structure
grows, and the steady state of this process is presented in Fig. 4.4.

4.3 Power laws from Minimisation principles

One idea presented in order to explain the onset of self-similarity is the conjecture
of “feasible optimality”. Self-similar structures tend to be a shape that minimizes
some cost function or some generalized potential present in the system. This
can be better explained through the following example: consider the problem
of delivering water from the source to a series of different users. In this case a
reasonable cost function is to require the shortest possible number of pipelines.
Sometime this requirement is complicated by other requests as to link all the
clients in such a way to have them as near as possible to the source. As presented
in Fig. 4.5 we see that a good compromise between user benefits and global
optimisation is given by a fractal structure

In this class of phenomena the fractal shape does not correspond to the
absolute minimum of this potential. Absolute minimum is often obtained only
with a very precise and particular shape. This configuration is only one out of the
infinite possible ones. On top of that, this minimum configuration is usually very
difficult to reach during the evolution of the system. Fractal appear because self-
similar configuration with similar statistical properties correspond to relative
minima and occupy a relatively large region of configuration space. Therefore
they are not only minimising structures, but are also more easily accessible by
system evolution.
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FIGURE 4.5. Let us assume that this simple series of graphs represents a water
pipeline starting from the source to the various houses. Pipes have a linear
cost (also, a section cost that we shall not consider in this simple example).
To save resources one would like to minimize the total pipe length. On the
other hand any user wants to be as near as possible to the source; for example
to reduce failure risks or to have fresher water. Three classes of solutions are
possible from the interplay of these two requests of mimisation, one global
and the other local. A) On the left an egoistic approach. Everyone connects
to the source. Maximum of local benefit (everyone is directly connected) but
poor global optimisation. If the edge of the triangular lattice measures 1 we
need about 16.39 (i.e. 6(1++/3)) pipeline units. B) In the centre one minimum
of social costs. We need only 12 pipeline units, but distance from source for
the unlucky last user can be as large as the system size. C) Right a self-similar
structure that is a good compromise between the A and B. Distance increases
slowly and pipeline units needed are still 12.

Let us explain this statement through a specific example relative to the river
network case. As presented in Chapter 8 there is an hypothesis according which
river networks sculpted the landscape in such a way to minimise the dissipation of
total gravitational energy. In Fig. 4.6 we can see both a fractal relative minimum
and the configuration for the absolute minimum. The first picture represents
a computer evolution of a spanning tree designed in order to minimize such
quantity. After a long time the numerical analysis remains trapped in the local
fractal minimum. The second picture is the shape of the absolute minimum
represented by a very regular structure known as Peano curve.

4.3.1 Self-Organised Criticality

Closely related to this idea of evolution according to minimisation there is the
concept of Self-Organised Criticality (Bak, Tang and Wiesenfeld, 1987). In this
process, the steady state of the evolution for a dissipative dynamical system is
fractal. In order to better explain how this happens it was introduced a toy
model inspired to the evolution of the piles of sand. In this model a series of sites
can host different grains of sand until a certain threshold. At the threshold the
site becomes “critical” and gives the sand to the neighbours. At this point, these
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FIGURE 4.6. Two kinds of optimization. On the left a “feasible” configuration,
on the right the absolute minimum of total gravitational energy dissipation
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FIGURE 4.7. The basic mechanism at the basis of self-organized criticality in
sandpile models.

latter ones can become critical and this elementary process can create a large
scale avalanche. “Criticality” (i.e. a power law distributed series of avalanches)
is maintained by a feedback mechanism ensuring that whenever the system is
full of sand no more grain can be added (since you have to wait for the activity
to stop). On the other hand, whenever the system is empty, no activity occurs,
and then you have a lot of grain additions in a short time interval. As a result,
the amount of sand tends to oscillate always around a mean value. This is not a
minimisation mechanism, but rather a condition of dynamical equilibrium.

4.3.2  Optimisation of the Entropy

The example used by Mandelbrot refers to the distribution of words. Consider
that in a language you have a series of n words and the cost attached to the use
of j-word is C;. The cost of the transmission is given by the letter (even space)
used for the word, so that if d is the alphabet size, it is natural to think that
Cj o< loga(j). The average cost per word can be defined as C' = 3 ._, v C;p;.
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Suppose that language evolved in such a way to minimize the unit transmission
cost. The probability that a word j is used in a transmission is p;. In the case of
linguistic systems the role of the entropy is played by the information transmitted
in a text. We can define the entropy H as

H=- Y pjlog(p;) (4.12)
j=1,N

Optimisation of languages in this case means that the maximum amount of
information is transmitted with the minimum length of the word. At least loosely,
it makes sense to assume that languages evolved in order to transfer as much
information possible with the minimum cost. By imposing that the quantity
C;/H is the minimum, we can determine the form of the distribution of p;’s. In
formulas
min(C; /H) — ~(C,/H) = 0 (4.13)
dpj
To ensure that this is really a minimum, we should also check the second deriva-
tive. We do not do that here, but we ensure that the value of p; for which the
first derivative is zero is really a minimum. This value is
d CjH — Clogs(ep;)

(0 H) =

—>p-:2_ch/C e 4.14

If we remember our previous assumption that C' o logq(j) we get a power law
for the p;.

4.4 Multiplicative Processes and Normal Distribution

So far we considered what is the most exciting part, that is to say the ”complex”
origins about the ubiquity of scale-invariant systems. Here we show that instead
some system only appear to be scale-invariant but they are not (Goldstein, Morris
and Yen, 1982). Some other systems are truly scale-invariant but for reasons that
are not at all ”complex”.

These situations are characteristic of the system evolving according to the
so-called multiplicative process. We do not want to enter in the debate if
data observed can be best fit by power law or log-normal variables. Here it is
enough to note that the mechanism of multiplicative process is probably the most
immediate model for fat-tail pheonemena in nature since it naturally produces
both. Many textbooks and scientific papers deal with this topic. A beautiful and
complete description of the various approaches in different fields can be found in
(Mitzenmacher, 2004) and references therein. Also ref. (Newman, 2004c¢) can be
consulted on that.

Suppose you have an evolution process, where for an example an organism
transforms itself in time. As a general statement the state S; at time ¢ will be
determined by the previous states and by the external conditions. This consid-
eration does not help in predicting what will be the evolution. This prediction
becomes possible in a more restricted case.
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This is the case of the multiplicative processes where the effect of the
external shock can be written as in the following transition rule:

E% ZZEtS%_l. (4.15)

In other words the state at time t is proportional to the state at time ¢t — 1. In
biology this could represent the fact that the growth of an organism is ruled by
its body mass at the previous step. In the case of a city growth (Zanette and
Manrubia, 1997; Manrubia and Zanette, 1998; Gabais, 1999) this equation states
that the population at a certain time step is proportional to what it previously
was. In both cases the proportionality constant is given by the factor ¢; that can
change its value at any time step.

Turning back to eq.(4.15) we can immediately see that we the variable S; is
determined by the product of the various e, where 7 is between 0 and ¢

St == etSt—l == Etﬁt_lst_g == €t€t_1€t_2...€26150. (416)

At this point the distribution probability of the state is related to that of the
€’s.

As we see the relation is rather peculiar; regardless the precise form of the
distribution for the variables e, the S; is log-normal distributed?®. To show that
we can rewrite eq.(4.16) by taking the logarithms of both sides

log(St) = log(So) + ) log(er). (4.17)

T=1,t

In this way the product of the epsilon’s transforms in the sum of the logarithms.

This sum of the logarithms of the €, (under very mild conditions) is a normal
distributed variable regardless the distribtion of the e,. This result comes from
the application of the so-called “central limit theorem”. For the central limit
theorem, in certain very general hypothesis the sum of random variables is a
new stochastic variable normally distributed. As a result if log(S;) is normally
distributed, the variable S; is log-normally distributed.

This very simple mechanism has been rediscovered and explained over and
over many times since the definition of log-normal distributions in 1879 (McAl-
ister, 1879). As reported in (Mitzenmacher, 2004) this ideas traces back at least
to the economist Gibrat (Gibrat, 1930; Gibrat, 1931) who uses essentially this
model under the name of proportionate effect. On a different language a some-
what similar idea is introduced at the beginning of X X century for biological
problems (Kapteyn, 1903).

25We remind the shape of log-normal function is given by
In(k)—p)>
1 _Un(®) )

= e 20
V2rok

f(k) = PLn (k)
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All these log-normal distribution, as explained in Chapter 1 can be easily
confused with power laws. This happens whenever the log-normal distribution
is studied in a range of k for which 02 >> (In(k) — u)?. On top of that this
mechanism trigger also the formation of true power laws as shown in the next
subsection.

4.4.1 Power laws out of multiplicative process

A tiny modification of the above mechanism, namely the introduction of a thresh-
old, has a dramatic effect in the results (see Section 4.2.1). In particular when
multiplicative processes are coupled with fixed thresholds we have production of
power laws distributions.

The derivation here (as reported in (Mitzenmacher, 2004)) of the demon-
stration is essentially that followed by the economist Champernowne (Cham-
pernowne, 1953) who wanted to recover Pareto’s law in a simplified model of
economy. Pareto’s law states that if we rank the people in a society according to
their income we obtain a power law distribution.

In the simple model of the economy we use for the demonstration we assume
that there is a minimum income possible and that is m. The poorest people in
this artificial society are in class 1 and have an income between m and ym. Going
to the upper class (number 2) we have people with income between ym and v2m.
More generally a class j will rank indivuduals whose income is between 7/~ tm
and 77/m. Therefore we have a multiplicative process in which we move from one
class to the upper one changing the income of an amount . The threshold is in
the basal class where people cannot have an income lower than m.

In this economy we assume that individuals can do a change of class going to
the upper class or to the lower class with a probability p4 and p_ that remain
constant along the different classes i. This means that the probability to pass
from the poorest class 1 to class 2 is py and the same value characterise the
passage from class n — 1 to the richest one n.

We can assume to fix ideas that py = 1/3 and p_ = 2/3 and v = 2%,
Therefore every change of class correspond to doubling or halving the income. In
this case the equilibrium probability to be in class j is simply 1/27. Henceforth
the probability to be in a class larger than (or equal to) j is 1/27~1.

P(X >271m)=1/2"1 = P(X > ) =m/x. (4.18)
This multiplicative process therefore results in a power-law distribution.

4.4.2  Combination of Exponentials

We have already seen that the (Gaussian) normal distribution is widespread in
various phenomena, it is interesting to see that another way to produce power
laws is related to a simple idea. Consider a process that grows exponentially
and consider that we can observe it only at certain random times as explained

26When considering class 1 the p_ = 2/3 gives the probability to stay in this lowest class.
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in Ref. (Reed and Hughes, 2002). The latter situation is particularly clear for
geophysical processes like earthquakes where only the recent data started to be
recordered sistematically. The distribution of these observed state behaves as a
power law, even if the distribution in all the possible cases is not.

Let us see the simplest example of an exponential process of growth where
a variable (as example the size of a population in an environment with infinite
resources) grows exponentially with time z(t) = e*!. Individuals (or whatever
the x represents) have also an extinction probability given by P(t) = e~*" where
v > 1. The state X = e#T where T is extracted from the p(t) is power law
distributed with distribution

fx(z) = <Z> g E1 (4.19)

This is only a particular case where two exponential concurr to form a power
law. Let us see the general case as clearly and beautifully exposed in (Newman,
2004c¢). If the quantity y is exponentially distributed

P(y) =e™ (4.20)
and we are interested in another quantity x given by

1
r=e% - y= Bln:v. (4.21)

we find that this latter quantity x is distributed according the power law function
shown in eq.(4.19).

Let us see why: a basic property of distribution of probabilities is that the
probability is a measurable quantity and it must be recovered regardless the
distribution used, so that from conservation of probability (P(z)dx = P(y)dy)
it follows that the distribution of z’s is power-law.

In the above case from
P(x)dx = P(y)dy (4.22)
it follows

d e a/pB
P(z) = P(y) 2 = ;—j == %xa/ﬁ—l (4.23)

that is exactly eq.(4.19) where o = —v.

The application of that mechanism is very frequent and certainly plays a role
in some of the topic treated in the following.

4.5 Preferential Attachment, S. Matthew Effect, Richer gets Richer

This is the most successful mechanism adopted so far in the study of growing
network. Interestingly, the idea that we are going to explain has been indepen-
dently rediscovered several times in different fields and ages. Precisely for such
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reason it has also been called with several names. To name a few of them we have
Yule Process, San Matthew effect, Richer gets richer, Preferential Attachment.

In the community there is some agreement (Mitzenmacher, 2004; Newman,
2004c) on the fact that the first one to present this idea has been G. Yule
(Yule, 1925) in order to explain the relative abundance of species and genera in
biological taxonomic trees. As we are going to see in Chapter 7 when considering
set of biological species we have a classification (taxonomical) tree with scale-
free properties. Various explanation can be provided, none of which is totally
repodrucing the shape of the data. The null hypothesis consists in considering
that set of species comes out from evolution. Therefore starting fromn one parent
species we obtain a new one that will likely to be grouped in the same genus.
Every now and then though, speciated species (the new one) can be as different
from the parent one that can form a new genus on their own (or be grouped in an
existing different one). Probability to speciate will be larger for genera already
large, since mutation rate is constant for any individual.

This explanation allow us to focus on the two ingredients of the model. Firstly
you have to invoke a certain a priori dynamics (hereafter called growth). Sec-
ondly this dynamics select succesfull elements and make them even more succes-
ful (hereafter called preferential attachment).

In detail, take a set of elements each of which is characterized by a certain
number X;(t). As a possible example this could be the number of different genera
that have 7 species per genera. The set can also be a set of vertices in a graph
(i.e. the WWW) and the number X; can represent the number of pages whose
in-degree is 7. Now let us introduce a rule that introduces new elements in the
set, these elements will not be shared equally between the older ones, but rather
will be assigned more to those that already have many.

Let us consider that X;(¢) gives the number of pages with certain degree
i (the total number of vertices is t). The probability p; that the number
X;(t) increases by edge addition is given by two terms. The first one
correspond to a random choice of the edges and a selection of a page with
in-degree ¢ — 1. The second one correspond to a choice proportional to the
degree. A similar form holds also for the probability p_ that this number
X (t) decreases (pages with in-degree i become pages with in-degree i+1).

P+ = OéXZ'_l/t —+ (1 = Oé)(’l, = 1)Xi_1/t
p- =aX;/t+ (1 —a)(i)X;/t (4.24)

So that the balance equation can be written as

dX a(Xi1—Xg) + (1 —a)((i - 1) X1 —1X5)

& PP t

(4.25)

At this point we make the crucial hypothesis that in the steady state the
Xi(t) are linear in time i.e. X;(t) = ¢;t.
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Starting from the first one Xy for which
—=c=1—-——=1-ac (4.26)

we obtain the first value ¢y = 1/(14«). The successive values are obtained
through a recurrence equation

Gt+atil-a)=cilat(G-D)1-a) (420

For large values we have

- 2 — 2 — 1
Go_q- o - ( O‘) (—) (4.28)
Cj—1 l+a+j1—-«w) l—a/) \J

The result of the computation is that

cj ox jTTw (4.29)

Along this lines Simon (Simon, 1955; Simon, 1960) proposed this model not
only for species abundance, but also for distribution of population in the cities, of
words in documents, of papers published by scientists and incomes in a society. As
Simon model the same idea becomes then familiar also in the field of economics
after the biological sciences.

R.K. Merton (Merton, 1968; Merton, 1988) applied the same idea (even if
not at that level of mathematical formulation) in the field of scientific produc-
tion. The same author consider this principle, very reminiscent of one sentence
in the Saint Matthew Gospel. This sentence of the Gospel states: For to ev-
eryone who has, more will be given and he will grow rich [..] Matthew 25,29
(The New Testament, 2002). The idea of this work can be summarized by a
quotation by a Nobel laureate (from the first of the above cited papers): “The
world is peculiar in this matter of how it gives credit. It tends to give the credit
to the [already] famous people” (Zuckerman, 1977).

Interestingly, exactly this problem of the study of formation of scientific cons-
esus is at the basis of the work of D. J. de Solla Price (de Solla Price, 1965) that
few years before of Merton published another version of this “rich gets richer”
model.

The latest and most interesting formulation of this concept is explained in
great detail in the Chapter 5 where the Barabasi-Albert model (Barabdsi and
Albert, 1999) is presented and analysed. In this latter case the focus is on graphs.
Elements to be rewarded are the vertices and the measure of success is their
degree.
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GRAPH GENERATING MODELS

Christmas won’t be Christmas without any present and science will not be sci-
ence without any model. The scientific approach is based on the idea that phe-
nomena could be described quantitatively by means of a schematic, simplified
representation usually called “model”.

The very idea of graph is already a powerful schematisation for different
phenomena. Graph models are then introduced in order to describe how these
structure are originated and how they can evolve. Under this point of view, this
part of the modelization is rather similar to the task of assigning the rule in a
board game. The final goal is to find suitably rules such that the final outcome
of the game could be compared with real data. If we fail in such a goal, therefore
the basic hypotheses (rules) needs to be changed. By the use of a model we can
then reduce the complexity of the real world to a stage that we can understand
and get used to.

This line of proceeding has been introduced well before the beginning of
modern science. Presocratic Greek phylosophers like Thales, Anaximander, Her-
aclitus in their quest for the first principle made the first example of reduction
of the whole universe to a simple representation.

Sometime models work remarkably well against any expectation. One of the
major success of Newtonian mechanics (that is the study of motion) starts from
the very unrealistic approximation of no friction. Even so, we can predict with
great accuracy the time evolution of a body in motion.

In the field of network there has been a continuous feedback between data
properties and mathematical abstraction. This is at the basis of the activity in
this field and produced a variety of different models that we are going to present.
For all the models listed in this Chapter we give at least the information on
degree distribution, diameter distribution and clustering. Some models are more
likely to be treated analytically or computationally than others. Some others are
simply more used and for that reason more studies are available. Therefore in
particular cases we can present the description of more quantities.
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FIGURE 5.1. Two different realization of a Random Graph both with n = 16
and p = 0.125.

This chapter is devoted specifically to the model of networks. Some
of them produce scale-free network some do not. In general through
the modelisation we can understand the properties of real data. The
first two models presented that is to say the Random Graph model
and the Small World model do not form scale free networks. Starting
from the Barabasi-Albert model we present a series of other models as
the fitness or the copying model that instead produce scale-free degree
distributions.

5.1 Random Graph Model

The simplest model that has been introduced is due to the two mathematicians
Paul Erdés?” and Alfréd Renyi?® (Erdés and Rényi, 1959; Erdés and Rényi, 1960;
Erdés and Rényi, 1961).

One problem that can be addressed through this model is for example how
to wire with telephone cable different cities in the most economic way.

As a first action we take a fixed amount n of vertices in the graph. After
that we try to determine a rule in order to decide how many edges (cables) must
be drawn. The simplest of the possible choices is to say that all the edges have
the same probability to exist. This correspond to test every one of the possible
n(n — 1)/2 edges and drawing the edge with a certain fixed probability p.

A closely related model is obtained by assigning the number of vertices and
consider all the graph of order n regardless the number m of the edges (size of
the graph). Now every graph is a point in the probability space and we assign
to it the same probability to be extracted. Whenever differently specified in the

27Paul Erdés was born in Budapest in 1913 and died in Warsaw in 1996. He has been one
of the most productive mathematicians of his era, and was generally regarded by colleagues as
one of the most brilliant minds in his field

28 Hungarian mathematician, born in Budapest in 1921 and died in the same place in 1970.
He has been the founder and director of the Hungarian Academy of Science
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following we shall adopt under the name Random Graph a graph obtained
according to the first recipe.

In Fig.5.1 we present two different realizations of a random graph. Every
realization is different from the others. For that reason we instead focus on
their statistical properties that remains valid for the whole class. Since the ex-
traordinary amount of effort in this field, many quantities have been computed
analytically. Here we present only the very simple ones without devoting too
much space to formal derivation and proofs.

e A first trivial quantity that can be computed is the expected value of the
size of the graph. This value gives the total number of edges present at
the end of the graph construction. Since the probability is p and the total
number of trials is given by the n(n — 1)/2 possible edges, we have that
the expectation value is given by

n(n —1
E(n) = p%. (5.1)
Consequently, the probability to have at the end of the process a graph
G(n,m) is
m n(n—1) —m
P(G(n,m)) =p™(1—p) > : (5.2)

e Following a similar derivation the average degree value is given by
(k) =2m/n=p(n—1) ~ pn. (5.3)

e We can go a little bit further and computing the degree probability
distribution. To obtain a vertex whose degree is £k we must have have k
times a succesful event whose probability is p and (n — 1 — k) times an
unsuccesful event whose probability is (1 — p). Since this can happen in

(Z) = #]ﬁl)'k' combinations we have

n!

P = (Z) P = e e (5.4)
The probability density distribution is very well known in Statistics and it
is called Binomial Distribution. It accounts for processes where you have
two distinct possible outcomes mutually exclusive (in this case either you
draw a link or not). We remember that the k is an integer number, and
therefore the degree distribution is a discrete one. For our purpose we note
only that this distribution is bell-shaped and not self-similar.

This distribution is usually approximated by means of the Poisson Dis-
tribution in the two limits n — oo and p — 0.
n! i pn)te P"
Pk k(l—p)nlkz( )

D nl (5:5)
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e No extimates have been given for the clustering coefficient. Essentially,
if the graph is enough sparse we can say that the probability that two neig-
bours of a site are also neighbours each other (thereby forming a triangle)
is still p apart some correcting terms (we are neglecting the fact that they
have a common neighbour).

e Finally as regards the diameter, one can give a rough extimate of it.
Consider the number of neighbours of a vertex i. This number N!(i)(that
is its degree) is given on average by

N'(i) = p(n(n — 1)/2) = (k). (5.6)

Now consider the set N2(i) of the vertices that are at most two edges apart
from 7. We make an approximation, we say that this set is essentially those
of the neighbours of the first neighbour. In general that is false, because in
the latter one there will be counted twice all the first neighbours that are
connected each other. It is important to note that this an “upper” extimate
of the number of second neighbours. Through this extimate nevertheless
we obtain that

N*(i) < N (i){k) = ((k))*. (5.7)

In general through this approximation (that becomes more and more crude
as the distance from ¢ grows) we can say that for any distance d the number
of the vertices that are d — th neighbours grows as ((k))¢. This procedure
must end at least when d is equal to the diameter D (it can stop well
before). Since the sum of all the neighbours from d = 1 to d = D must be
equal to the total number n we have

NP(i)=n < ((k)P. (5.8)

Taking the logarithm of the above formula we obtain that

(5.9)

That is the diameter D grows at most with the logarithm of the size of a
random graph. Therefore if the number of vertices passes from 10000 to
100000, the diameter will simply pass from about 4 to 5. In the case of
sparse Random Graph, under the hypothesis that np — oo it has been
shown (Chung and Lu, 2001) that almost surely the diameter D goes as

(1 + o(1)) e

5.2 The Small-World model

The Small-World model (Watts and Strogatz, 1998; Watts, 1999) describes par-
ticular graphs whose diameter remains very small when the number of vertices
increases (small-world effect). Note that in general also in the Random Graph
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model the diameter remains very small. Actually in any graph model the diam-
eter grows more or less logarithmically with the number of vertices. The point is
that with the small-world model it is particularly simple to investigate how this
happens and to understand the onset of this feature.

In the Small-World model, one starts with a portion of an ordered grid?°.
The connections in this grid are increased by adding new edges to second, third
and in general j*" neighbours. Another way to see this process is to consider
that a site is connected with a first (nearer because we have a distance defined
in a grid) layer of neighbours. We can add connection also to neighbours of the
second, third and in general j'* layer. After this procedure the site of the grid
becomes directly connected with those sites as shown in Fig. 5.2

On top of that new random connections are also established between random
sites either by rewiring existing links (original formulation) or by adding brand
new ones (recent formulation) with probability p.

The structure obtained in this procedure is a Small-World Graph, where
the edges are represented by the bonds and the vertices by the sites in the lattice.
Hereafter we indicate as Small-World graph the one obtained with addition of
shortcuts rather than rewiring existing links.

The parameters of the model are the coordination number z and the shortcuts
probability p.

The coordination number z gives the number of vertices directly connected
in the regular structure. In a one-dimensional (d = 1) system with j = 3 (con-
nections arrive to the third layer) every vertex has connections with z = 6 other
vertices (three from one side and three from the other). This number of connec-
tions grows also with the dimensionality. In general we can write

2 = 2jd. (5.10)

In the above example in Fig. 5.2 j is 2 and therefore z = 4d, that is to say z = 4
for the one-dimensional system and z = 8 for the two-dimensional system. If
the initial number of vertices (order) is n, the size (i.e. the number of edges) is
m=nz/2.

The shortcuts probability p, gives the probability per existing edge to draw
a new edge (shortcut) between two random vertices. This means that the total
number of shortcuts is given by

mp = nzp/2. (5.11)

Since the 2 in the formula is rather boring we follow the convention of various
papers (Newman, Moore and Watts, 2000) where the coordination number is
defined as 2z’ = z/2. In this way the total number of shortcuts is given by nz’p.

As regards the quantities of this model we assume to consider the situation
where p is so small that essentially we are considering a regular grid. In the

29In the original formulation it is used a d—dimensional simple cubic lattice



110 GRAPH GENERATING MODELS

XXX

FIGURE 5.2. On the first row a regular one-dimensional lattice on the left and
a regular two dimensional lattice on the right. In the second row the same
lattices with extra links increasing the local connectivity. On the last line we
have the small world lattices with shortcuts.

opposite limit of such many shortcuts to destroy the underlying structure we
obtain a Random Graph.

e We have that the degree distribution is a function peaked around the
fixed value z characteristic of the regular grid. With no shortcuts, this func-
tion is extremely peaked around z, being a delta function. When shortcuts
completely destroys the structure of underlying grid we must expect a be-
haviour similar to that of Random Graph. That is to say in this limit
we have a Poissonian distribution. It is easy to realize that also for in-
termediate values of p the Small-World model does not produce scale-free
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networks.

e Exactly the shortcut presence is the “active ingredient” at the basis of
the small-world effect. Even if these shortcuts are very few, their effect is
dramatic. Using numerical simulation we can compute the variation on the
diameter. It has been shown that a system with N = 1000 vertices (d = 1)
a coordination number z = 10 and a rewiring probability p = 1/4 = 0.25
has a diameter as small as d = 3.6. with no rewiring at all the diameter of
the same system is d = 50. Even with p as small as p = 1/64 = 0.015625
one still finds a small diameter d = 7.6.

In ref. (Newman, Moore and Watts, 2000) it is proposed an analytical

expression for the mean distance [

n
l= yf(npz’) (5.12)
where 2z’ = z/2 and the function f(x) is

fla) = -mg—tanh™ -~
r) = ————=tanh™ ———
2vx? + 2z Va2 + 2z
e The clustering coefficient is usually very high and it is reminiscent of the
regular connection of the underlying grid. As long as z stays reasonably
small and in particular z < %n (as it is the case when n — oo we have

(5.13)

o322 (5.14)

To understand why, let us start with the one-dimensional grid by counting
the triangles which a vertex belongs to. It is simpler to do such a compu-
tation if we can exclude that vertices on our left are connected to vertices
on our right. As shown in Fig. 7?7 this can be done if the network is such
large that we cannot close a triangle between a vertex on the left with a
vertex on the right. That is to say 3jd <n — 2jd < 2/3n — z < 2/3n.
Note that in the large z limit C' tends to 3/4.

5.3 The Barabasi-Albert model

The Barabasi-Albert model (Barabdsi, Albert and Jeong, 1999; Albert, Jeong
and Barabdsi, 2000) is specifically suited to reproduce one striking evidence
of some real networks, that is to say their growth in time. the final version
of the graph is built after successive time-steps. During any time-step one or
more vertices are added to the system. As new vertices are added they establish
edges with the old ones. The latter ones are chosen with a probability that is
proportional to their existing degree.

In Fig. 5.4 we present two steps of this construction. The two ingredients of
the model are the growth and preferential attachment. Growth implies that
new vertices enter the network at some rate. Preferential attachment tells that
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j _
FI1GURE 5.3. The computation of the clustering coefficient. On the left the con-
dition to have separate triangles between left and right sides.

FIGURE 5.4. Two steps in the construction of a Growing network with prefer-
ential attachment.

these new-comers establish their connectionse preferentially with vertices that
already have a large degree (rich-get-richer). Of course this latter rule is in the
spirit of the St. Matthew effect described in Section 4.5. Actually not only in
the spirit, but also in the formulation and in the onset of the scale-invariance
this model is in the spirit of the Yule process (Yule, 1925) described in the same
section.

Growth and Preferential Attachment are specifically suited to model the In-
ternet and the World Wide Web, two networks that in a relativley short time-
span (roughly fifteen years) have seen a huge growth of their elements. Further-
more new routers (for the Internet) and new webpages (for the WWW) tend
to connect with authoritative pre-existing routers and webpages, where author-
itativness is based on the consensus and can be weighted by the number of
connections.

e The degree distribution is scale invariant for a precise choice of the
preferential attachment rule, otherwise the degree is distributed according
to a stretched exponential function.
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e As regards the diameter D of Barabasi-Albert networks an analytical
computation (Bollobds and Riordan, 2004) shows that D o log(n)/log(log(n)).
e There is not extimate for the clustering coefficient

5.3.1 FEquations for the continuous degree

The mathematical derivation of the degree distribution is easily obtained de-
scribing the degree as a continous variable. If new vertices enter the network
at a constant rate, and each makes m connections to pre-existing nodes, the
corresponding equation for the degree of vertex i is

dk; - f (ki)
dt Y f(k)

(5.15)

where % is the probability that a new node entering the network at time
j J

t choses vertex i as a connection partner for one of its m edges. The f(k;) is a
growing function of k; in order to reproduce the preferential attachment rule.
eqn 5.15 can be solved by giving an explicit expression for f(k;). The simplest
form is f(k;) = k* with & > 0. eqn 5.15 then becomes
dk; k¢
— =M= (5.16)
dt > i K;
The above equation can be simplified by observing that the denominator on
its right hand side (rhs) grows linearly with ¢ for any « € [0, 1].

e If o =0 wehave ), k) = >_; 1 =mo+t where my is the number of vertices
of the network at time ¢ = 0. The coefficient of time is unitary because time
can always be rescaled so that one new node enters the network per unit
time.

o If a =1 wehave ), k;(t) = A+ 2mt where A = 377" k;(0) is the sum of
the degrees at time t = 0 of the vertices of present in the network at time
t = 0; the 2mt counts the degrees of all new vertices because every new
vertex adds m edges to the network, each of which accounts for an increase
of two of the total degree.

e Given that ) j k5 is a growing function of both ¢ and «, and that it is
linearly bounded in ¢ for both a = 0 and « = 1, it follows that > ik =
A(a) + p(a)t for 0 < a < 1.

Equation 5.16 can then be written
dk; k¢
— =m—— 5.17
at " AlQ) + p(a)t (5.17)
whose solution is

Al +p(el )™

() = |i—a (1—oz)mn
alt) = @ 1(

(5.18)
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which has been obtained with the initial condition k;(t;) = m where t; is the time
at which vertex ¢ has entered the network. Degree k; can be therefore labelled by
means of its entry time ¢; rather than by the vertex label i. We can then write
ki(t) = k(t,t;). Importantly, eqn 5.18 holds only for 0 < o < 1. The distribution
of degrees, P(k) can be obtained from eqn 5.18 by means of

1 t 1 Ok(t, ;)\ '
P(k) = mo+t/0 Sk — k() dty = ( o )

where t;(k, t) is the solution of the implicit equation k = k(¢,¢;). Using eqn 5.18
and eqn 5.19 we have

P(k,t) = W%k‘aexp {—% [k_(l_o‘) - m_(l_o‘)] } (5.20)

which in the ¢ — oo limit reaches a stationary state

(5.19)

ti=t;(k,t)

(@) (@) pi-a
Pk) = Meu_“a)ma Lo Toatm k' (5.21)
m

which in turn reduces to a simple exponential for a = 0. Solution in eqn 5.21 is
completely determined by

i(a) = %Zk?(t) ! / KO (¢, £ty (5.22)

_to

which becomes, in the infinite time limit, p(o) = [ k*P(k)dk, that is a self-
consistent equation for p(«), by using eqn 5.21.

Equation 5.21 predicts a stretched exponential distribution for any a < 1. In
the limit & — 1 eqn 5.21) becomes P(k) ~ k~3. Indeed a full solution of eqn
5.17 for a = 1 gives

A(1) —|—2mt>5 (5.23)

Bt i) =m (A(l) + 2mt;

from which it can be found, by means of eqn 5.19, that P(k) = 2m?k~3.

A linear preferential attachment rule (o = 1) is therefore the necessary in-
gredient to find scale-free networks in the Barabasi-Albert model. At first sight
the exponent v = —3 is not satisfactory, since most networks exhibit exponents
2 < 7 < 3 and in some cases even v > 3. Yet the good news are that the v
exponent of the Barabasi-Albert model is actually sensitive to the details of the
preferential attachment rule. If for example f(k) = a + k, with a a constant, the
resulting exponent is v = 3 + a/m, showing that any exponent v > 2 can actu-
ally be obtained. The Barabasi-Albert model endowed with a linear preferential
attachment rule defines therefore a class of scale-free networks of tunable degree
distribution exponent.
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One last comment is necessary for the case a > 1. In this case the solution
strategy used above is not amenable and it is necessary to use the complete
master equation for the probability distribution P(k,t). It is just important to
remark here that for a > 2 a winner-take-all situation emerges, where almost all
the vertices of the network are connected to single vertex.

The preferential attachment rule, although simple and nice, poses some prob-
lems: new nodes entering the network need to have a complete knowledge of the
network in order to make their connection choices. This is unlikely to be realistic,
casting a shadow on a direct interpretation of the PA rule. In the next section a
different model will be presented, likely to capture some real process behind the
formation of the WWW and of protein interaction networks, in which preferen-
tial attachment emerges as an effective law from microscopic rules where only a
local knowledge of the network is needed.

5.4 Copying or Duplication-divergence Models

Consider as a particular case of study that of the World Wide Web. If you want
to add your webpage to the graph (i.e. add a vertex and some links to the graph)
you are very likely to take as template one existing page therefore keeping all the
list of existing hyperlinks (Aiello, Chung and Lu, 2000). This copying procedure
is then followed by some specific change of the page to meet the interests of the
owner of the new page. Consequently some old hyperlinks can be lost and some
new ones acquired.

In the completely different context of protein interaction networks (Vazquez,
Flammini, Maritan and Vespignani, 2003), the same mechanism is in agree-
ment with the current view of genome evolution. When organisms reproduce,
the duplication of their DNA is accompanied by mutations. Those mutations
can sometimes entail a complete duplication of a gene. Since in this case the
corresponding protein can be produced by two different copies of the same gene,
point-like mutations on one of them can accumulate at a rate faster than normal
since a weaker selection pressure is applied. Consequently, proteins with new,
properties can arise by this process. The new proteins arising by this mechanism
share many physico-chemical properties with their ancestors. Many interactions
remain unchanged, some are lost and some are acquired.

This growth process works by replicating (with some tolerance) nodes and
relative edges already present in the graph. The duplication-divergence model is
governed by a local rule, where no global knowledge of the network is needed.

A possible formulation of the model is the following. At every time-step a
randomly chosen vertex is duplicated at random. Each of its m out-going con-
nections is either kept with probability 1 — « or it is rewired with probability «.
The rate of change of the in-degree of a node is then given by

(5.24)



116 GRAPH GENERATING MODELS

where the first term on the r.h.s of (5.24) is the probability that a vertex pointing
to vertex 7 is duplicated and its link toward 7 retained. The second term on the
r.h.s represents the probability that the duplicated vertex points toward ¢ by
one of its rewired out-going edges. For linearly growing networks we have that
N ~ t. The solution of Eq.5.24 is

ini(t) = 77— [(é)l_a = 1] (5.25)

where t; is the time when vertex ¢ has entered the network and k;y, ;(t;) = 0 is
the initial condition used to solve Eq.5.24. From Eq.5.25 it is possible to finally
show that P(kiy) ~ [kin + ma/(1 — 04)]_(2_0‘)/(1_0‘).

e Extensive numerical simulations of such models have shown that the result-

ing degree distribution is scale-free. The onset of such scale-invariance
is related to the preferential attachment mechanism of the Barabasi-Albert
model. This can be seen by considering that every time-step a vertex cho-
sen at random and its connections are duplicated. Since any vertex can be
chosen, the probability to be a neighbor of a vertex of degree k is k/N,
where N is the number of nodes in the network. Therefore the probability
that a vertex increases its degree (by a unit in a time-step) is proportional
to the degree itself. The preferential attachment rule emerges at an effective
level from local principles.
The case of undirected networks is more complex than the one of directed
ones. Indeed, in Eq.5.24 the first term on the r.h.s. does not change,
whereas the second term depends on the degree of the duplicated ver-
tex. The resulting networks are always characterized by heavy-tail degree
distributions, although not necessarily strictly scale-free.

5.5 Fitness Model

Although in some contexts preferential attachment can be a very reasonable
assumption, in many others it is certainly not. In particular, in some situations,
the information about the degree of each and every single vertex is not available
to newly added sites, neither in a direct nor in an effective way. Furthermore in
the case of many social interactions this information whenever available is likely
not to play an active role in the link connection.

Instead, it is reasonable that two vertices are connected when the link creates
a mutual benefit depending on some of their intrinsic properties (authoritative-
ness, friendship, social success, scientific relevance, interaction strength, etc).
Therefore, it is reasonable to expect that for some of these systems the P(k)
scale free behavior (when existing) could have an origin unrelated to preferential
attachment.

In order to explore this simple idea, Caldarelli et al. (Caldarelli, Capocci,
De Los Rios and Munoz, 2002) proposed the following network-building algo-
rithm:
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e Start by creating a total (large) number N of vertices. At every vertex
¢ a fitness x;, which is a real number measuring its importance or rank,
is assigned. Fitnesses are random numbers taken from a given probability
distribution p(z).

e For every couple of vertices, i, 7, a link is drawn with a probability f(z;,z;)
(f a symmetric function of its arguments) depending on the “importance”
of both vertices, i.e. on z;, x;.

It is clear from that definition that a trivial realization of the above rules
is the standard Erdés Rényi model (Erdds and Rényi, 1961). In this case the
f(zi,x;) is constant and equal to p for all vertex couples. While this particular
choice does not produce SF networks, as soon as random fitness are introduced
this triggers the onset of scale invariance.

Another feature of the model is that it can be defined as static as well as
dynamic. INdeed either the size of the graph is fixed, or by adding new vertices
at every time step we can link them to the old ones according to the above
attaching rule.

A general expression for P(k) can be easily derived. Indeed, the mean degree
of a vertex of fitness x is simply

) = | " fe w)p(y)dy = NF(2) (5.26)

(with z; € (0,00)). Assuming F'(x) to be a monotonous function of x, and for
large enough N, we have the simple relation

Pk)=p [F—l (%)] %F—l (%) . (5.27)

For finite values of N corrections to this equation emerge (7). As a particular
example, consider f(z;,z;) = (x;z;)/x%; where x is the largest value of x in
the network. Then

Nx [ <x >z
ba) = - | wplydy = N (5.28)
T Jo Tp
and we have the simple relation
x2 x2
P(k) = M M ). 5.29
(k) N<x>'0<N<a:>) ( )

A particularly simple realization of the model emerges if we consider power-
law distributed fitnesses. This choice can be naturally justified by arguing that
power-laws appear rather generically in many contexts when one ranks, for ex-
ample, people according to their incomes or cities according to their population,
etc. This is the so-called Zipf law which establishes that the rank R(z) behaves
as R(z) o< 7% in a quite universal fashion (Zipf, 1949). The reason for the
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ubiquitous presence of the Zipf law yields on the multiplicative nature of the
intrinsic fluctuations which generically leads to flat distributions in logarithmic
space and, consequently, to power-laws (Zipf, 1949).

Clearly, if p(x) ~ z=” (Zipf’s behavior, with 8 = 1 + 1/a (Zipf, 1949))
then, using eq.(5.29), also the degree distribution P(k) is a power-law and the
network shows SF behavior. In Fig.?? we show the degree distributions from sim-
ulations with § = 2.5, 3,4 (corresponding to Zipf exponents o = 2/3,1/2,1/3);
the asymptotic behavior is, in all cases, well described by eq.(5.29). This result
is hardly surprising: from SF fitnesses we generate SF networks, but still it pro-
vides a new generic path to SF networks and takes into account the widespread
occurrence of the Zipf’s behavior in nature. In order to extend this result and
check whether SF networks can be generated even when p(z) is not SF itself,
we consider an exponential distribution of fitnesses, p(x) = e™* (representing
a random, Poisson distribution) and f(x;,z;) = 0(x; + z; — 2), where 0(x) is
the usual Heaviside step function. This represents processes where two vertices
are linked only if the sum of their fitnesses is larger than a given threshold z.
Using these rules we obtain analytically (and confirm in computer simulations)
that P(k) ~ k=2 (?). This leads to the non-trivial result that even non scale-free
fitness distributions can generate scale-free networks (see Fig.??). Also different
implementations of the threshold rule, such as f(z;,x;) = 0(2] +27 —2") (where
n is an integer number) give rise to the same inverse square behavior (although,
in some cases, with logarithmic corrections).

In a future publication we will explore, in a more systematic way, the nec-
essary and sufficient conditions for the fitness distribution and attaching rule
under which well-behaved SF networks are generated.

Let us stress that the model, as defined, has a diverging average connectivity
in the large N limit, as can be easily inferred from Eq.(5.26); i.e. it is severely
accelerated (7). Nevertheless we can introduce in a rather natural way an upper
cut-off accounting for the fact that every site has a limited information on the
rest of the world and, therefore, connection is attempted with a finite number, m,
of different sites. Alternatively, vertices can be linked with the above rule and,
after that, links are kept with probability p (so that, for example, pN = m).
By including this modification, the N factor in Eq.(5.26), is substituted by m,
and the connectivity is finite in the thermodynamic limit. In order to generate
different accelerated networks (with the averaged connectivity not reaching a sta-
tionary value but growing with N in different possible ways (7)) other selection
rules can be easily implemented.

To have a more extensive picture of the nature of the networks under con-
sideration, we have studied the following topological properties (?), interest in
which has been triggered by recent studies on the Internet structure (?; 7):

e The average distance < d >, measuring the average minimum number of
arcs needed to connect two given sites.

e The average neighbor connectivity ky,(k), measuring the average degree of
vertices neighbor of a k-degree vertex.
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e The clustering coefficient c(k) that measures the degree of interconnectivity
of nearest neighbors of k-degree vertices. More specifically the clustering
coefficient ¢; of a vertex ¢, whose degree is k;, is the ratio between the num-
ber of edges e; in the subgraph identified by its neighbors and the maximum
possible number of edges in the subgraph. That is ¢; = 2e;/k; (ki — 1) (?).
c(k) is obtained by averaging ¢; for all vertices with fixed degree k.

e The probability distribution of the betweenness, b;, defined as the total
number of minimum paths between any couple of vertices in the network
passing through vertex i (7). This quantity gives a measure of the amount
of traffic passing through a vertex. We studied, as in the aforementioned
papers, both the probability distribution P(b) and its first moment < b >
/N.

Computer simulations of our model show that networks with power-law dis-
tributed fitnesses, and different values of /3, show nearly constant k,,(k)’s and
c(k)’s, just as occurs for the original BA model (?). The distribution of between-
ness decays as a power law with an exponent v, ~ 2.2 for v = 2.5 and v = 3,
and v, ~ 2.6 for v = 4. This is in good agreement with what conjectured in Ref.
(?): all networks with 3 > « > 2 can be classified in only two groups according
to the value of v, ( 75 = 2 and 7, = 2.2, respectively), while for larger values of
v, larger non-universal values of 7, are reported.

The exponential case behaves in a different way: for a network of size N = 104,
z=10,and m = N we find <d >=2, <c¢>~0.1and <b> /N ~ 0.1, but a
power-law behavior is found for the clustering magnitudes, i.e. < ky, >oc k=08
and c(k) oc k716, The betweenness distribution instead, shows an unexpected
behavior, giving a power-law tail with an exponent v, ~ 1.45 (see Fig.4). It is
worth remarking that our model having v = 2 is not included in the previously
discussed classification of betweenness exponents (7).

Having explored the most basic properties of the model and some particular
realizations, let us comment now on possible applications.

E-mail networks (?) are a good candidate to be represented by our model.
In this case growth may occur, but agents (e-mail senders) do not have any
access or knowledge of the degree of the receivers. Rather than preferential at-
tachment there should be some intrinsic feature of the receiver playing a role in
the phenomenon.

To further emphasize the utility of this new mechanism let us mention the
following possibility: one can imagine situations where a Poisson network is seen
as SF just because the exploration method implicitly implements a probabilistic
rule depending on the fitnesses (this applies for example when links are detected
by ”picking” them one by one, but not if the network is explored by crawling on
it). Let us think, for example, of the case with threshold type of attaching rule.
If only links with corresponding fitnesses over threshold are “seen” by the ex-
ploration method then, for example, an Erdos Rényi network with exponentially
distributed fitnesses can be seen as SF (with, obviously, a connectivity upper
cutt-off related to the maximum connectivity of the underlying network; in cases
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in which this connectivity is high, one can generate hubs in the “apparent” SF
network). In particular this scenario could be of relevance to protein networks.
Let us argue why.

The way comprehensive protein networks have been obtained to date is
through a bait-prey method, named ”two-hybrid” method: two proteins are hy-
bridized with two fragments of a transcription factor (a protein that binding
to a gene promotes its transcription into the corresponding RNA). The spliced
promoter does not bind to the gene, transcription is inhibited and the corre-
sponding RNA is absent. Yet, if the two proteins interact they bring together
the two promoter fragments allowing it to bind to the gene and transcription to
start. The presence of the corresponding RNA signals the interaction between
the two proteins. We can imagine that the interaction strength between the two
proteins has to be above a given threshold, else the typical promoter binding
time will be too short for the RNA polymerase to bind to the gene and initiate
transcription. In turn it is reasonable to assume that the interaction strength
is a function of some properties of the two proteins (such as, for example, their
hydrophobicity, or their Accessible Surface Area). This possibility has still to
be checked through an analysis of the detailed physics behind the two-hybrid
method.

In summary, we have presented an alternative model to justify the ubiquity
of SF networks in nature.

5.6 Networks from degree sequence

A definite degree distribution can be the result of some construction rules, as
showed above. A possible different approach is to use the degree distribution
as a starting ingredient, and build a network according to it. Once fixed the
number n nodes, we can draw a degree sequence from a given distribution P(k).
The edges are then added by joining pairs of nodes at random until all degrees
are satisfied. Of course there are very strict conditions to be considered in the
construction procedure. Firstly, the sum of the degree extracted must be an even
number, since it must give twice the number of edges. Secondly, if self and double
edges are forbidden®®, not all random sequences produce acceptable networks.
Therefore the procedure must be repeated until all the constraints are fulfilled.
We have to note that for scale free networks with exponents v < 3 is almost
impossible to produce a network avoiding self and double edges.

The procedure outlined above, although very effective, has the drawback that
the it does not allow to change the size of the network during its construction.
Any new vertex at the end finds no free vertices to share edges. Therefore the
final state of the network is locked. Note also that in principle also in a random
graph it is possible to add new nodes at any time, connecting them to already
existing ones with probability p.

30That is to say we are not considering multigraphs



