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Network (graph): a set of nodes
connected pairwise by edges

To be able to construct and analyze a cellular network, we need
to clearly define what we identify as a node and what we
represent with an edge.

The nodes and edges have to be at least similar to each other,
e.g. represent the same type of cellular component (protein,
chemical) or the same type of interaction (mass transfer,
regulation).

Modifications possible: different types of nodes and edges, edge
weights
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1. Protein interaction networks

nodes: proteins
edges: protein-protein interactions (binding)

Map of yeast protein-protein
interactions, by Hawoong
Jeong

? Red: essential protein
 Yellow: growth- affecting protein
: Green: non-essential protein




2. Biochemical reaction networks

Several types of nodes
reactants (substrates) or products of the reactions
enzymes — catalyze the reactions
reactant-enzyme complex (“reaction node”)

Edges reflect reactions or catalysis (regulation)
one possibility: directed edges from reactants/enzymes to
complex, from complex to products/enzyme
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3. Gene regulatory networks

At least two types of nodes: mRNA , protein

Edges: mass flow (continuous) or regulation (dashed)
Regulatory edges acting on edges — similar to catalysis
Edges can be activating or inhibiting.

Transcription factor protein — DNA interaction represented as
regulation, or protein- mMRNA directed edge
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4. Signal transduction networks

Nodes: proteins, molecules

Edges: reactions and processes (e.g. ligand/receptor binding
protein conformational changes); common to all is that they reflect
information transfer

Signal transduction networks have defined inputs and outputs.
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1. Protein-protein interactions are identified
on the genomic level by using the yeast two-
hybrid method

Transcription factors bind to the

promoter regions of genes Transcription Activation Domain (AD)
. . . . Activator (TA) Binding Damain (BD}

They have a DNA binding domain and

an aCtivation domain. Promoter Gene

In the two-hybrid method the two
domains are separated, and fused

to two proteins. g X AD&
If the two proteins interact by binding, Qeo 7
the transcription factor activates the ¥
expression of a reporter gene. AD
Systematic experiments with all @_ﬂw

proteins in a given organism lead to promoter Reporter
genome-wide protein interaction maps.



Protein interaction maps now contain
thousands of nodes and edges

lto (yeast): 8868 interactions between 3280 proteins
Uetz (yeast): 4480 interactions, 2115 proteins

Giot (Drosophila): 4780 interactions among 4679 proteins
Li (C. elegans): 5534 interactions, 3024 proteins

Although usually tested in a given
bait/prey setting, protein interactions
are considered symmetrical

All networks have giant connected
components.

The topological properties of diverse
protein interaction networks are
similar.
H. Jeong et al.Nature 411, 41-42 (2001)
S.-H Yook, Z.N. Oltvai, A.-L. Barabasi, Proteomics 4, 928 (2004)




Degree distribution of the yeast protein
network is a power law with exponential cutoff
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Degree distribution of C. elegans and D.
melanogaster protein networks

D Drosophila m.
[
C. elegans S - -
ke § * Allinteractions
1 e o High-confidence interactions
] 8
o “.\
01 "’C" % — o “q\.\
= ° u
L0 o « "%,
o Q — [ ™
= (. elegans baits _— S o ° )
0.001 - C. elegans preys D g " PR
-+ 8. cerevisiae £ A
= ot v
0.0001 . , 5 | o -
1 10 100 - A %
k o - [ 3
] [ 3%
WD
(=] -"L‘-.
— - o000 0--‘.- a8
| | | | | | ] ]
1 2 5 10 20 50 100 200

P(k) = Ak’ eXP(—ﬂk) Number of interactions

The degree distribution gets closer to a power-law as more interactions are mapped.



Average path length larger, short cycles
more abundant than in randomized networks

Shortest path
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The bad news: protein interaction maps are far
from perfect

)

Protein interaction networks are incomplete .| ., 613 3814

_ false negatives s D

Little overlap (~7%) between maps 401
constructed by different labs L

Est. coverage of Drosophila map is 21%, i = e
for C. elegans it 1s 10% '

« A significant percentage (~20%) of interactions observed by the two-
hybrid method are not biologically relevant - false positives

* Independent verification of interactions needs be done by alternative
methods such as co-immunoprecipitation or co-affinity purification pull-
down assays.

* These methods are small scale and slow, thus there is a need for
prediction methods able to give a short list of candidates.



Not all observed interactions are
simultaneously active

Compendium )
P n,__m""“ﬁ — 71 Calculate the correlation between the
i genes encoding the first neighbors of
A hub proteins.
2 Two peaks — two different types of hubs.
£40 U5 0 05 10
£ Pheromone treatment :
’:Eﬁ | n=45 {—x \//— |
“ 4 \ | ;% |
; \ fea-i
i * \j_f_/ gj
5 Date hub; same time
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Han et al, Nature 443, 88 (2004) same time
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Loss of date hubs much more severe than
loss of party hubs

d
0.oto 16
Ramewing 14
0,008 BE ramdom
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y 2
= i £ 5;:” m o ’ LI .05 0.10 015 030 0.25
Size of largest componant ; 1 e N .
random node removal date hub removal
preferential node removal party hub removal

Party hubs are inside connected modules that interact simultaneously.
Date hubs connect different modules.



Networks of ¢
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METABOLIC PATHWAYS

Click one of the categories.
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Reaction Stoichiometry

Reactions
i,’ 1 2
Reaction Pathway S Sie
Stoichiometric 9 ® A

A+B—C+D (1) Matrix (S) gg B I

A+D—E (2 82 c 1 0

B+C—F (3 Y% D 1 -
»

2 E o0 1

2 r fg

S; = Number of molecules of substrate / participating in reaction j

Sy <0 if substrate i is a reactant in reaction j
S; > 0 if substrate / is a product in reaction j
i=1,2,...,N = # of substrates = # rows
j=1,2,...,M = # of reactions = # columns



Network Representation — Bi-partite Graph

Bi-partite Graph (“S-Graph”)
Reaction Pathway A B C D E

A+B—C+D (1)
A+D—E (2)
B+C—F (3)

@ Substrate Node
» Two types of nodes:

Il Reaction Node

» Directed arcs

» No direct arcs between nodes of the same type



Bi-partite Graph
A B C D E F

1 2 3
Substrate Graph Reaction Graph

A B 1
Derived
" I/\I
. 2 3
D C

Connect two reactions if they share a

Connect two substrates if they participate substrate.

in the same reaction.



Key Properties of Metabolic Networks

> Metabolic networks are scale-free

P(k) = Probability that a given substrate
participates in k reactions = kY x

»In- and out- degree of substrate
nodes in the bi-partite representation

Pm(k) ~ k_z'z

-2.2
P, (k)~k <
&
» Existence of “hub” substrates such sk
as ATP, ADP, NADP, NADPH PO SIS RN [ SRR
. . 10 10 10 10° 10 10 10 10
(Carrier Metabolites) k K
a: A. fulgidus d: C. elegans
> Re|ative|y Sma” and Constant b: E. coli e: Average (43 organisms)

(across organisms) network diameter H. Jeong et al., Nature 407, 651 (2000)



Key Properties of Metabolic Networks

» Networks are “modular” in nature
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3. Genome-wide transcription networks
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« Contract mMRNA and protein into a single node, describe transcriptional
regulation as a directed gene-gene edge, thick — activation, thin - inhibition

» Sources: TFs that are not regulated at the transcriptional level

« Sinks: non-TF genes, others are both regulators and regulated



Out-degree distribution long -
tailed, in-degree distribution
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Abundant regulatory motifs

feedforward loop single input module (SIM) dense overlapping regulons (DOR)
X . L _
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« Feedforward loop: convergent direct and indirect regulation
possible role: noise filter

« Single input module: one TF regulates several genes
possible role: temporal program

« Dense overlapping regulons: groups of genes regulated
combinatorially



Condition-dependent transcription sub-networks
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Representation of chemical reactions+

regulation
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4. Signal transduction pathways
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ABA signal transduction network
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Network analysis needs to be
complemented by dynamics

» Topology intertwined with function and dynamics

* Not all interactions are realized (active) at the same time!
 Topological analysis needs to be focused towards answering
function — oriented questions

* Dynamical modeling is necessary to investigate the timecourse of
the processes represented by networks

O—»0—»0 3O synergy

linear pathway
A . crosstallk
branching point

filter v v J\PI ; homeostasis

feed-forward loop positive negative
feedback loop feedback loop

amplification



