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4.   Some new ideas



1. Random graph models
Why is it important to model networks as 

completely as possible?
Modelling allows

precise inferences about the nature of regularities in networks and network-
based processes from empirical observations

Quantitative estimates of these regularities (and their uncertainties) are important
small changes in these regularities can have substantial effects on global system 

properties

Modelling allows 
an understanding of the relationship between (local) interactive network 

processes and aggregate (subsets of actors, group, community) outcomes

Modelling allows 
formal assessment of goodness-of-fit (sorely lacking in much work today)



Approach to modelling networks

Guiding principles:

1. Network ties are the outcome of unobserved processes that tend to be local, 
interactive, and stochastic 

2. There are both regularities and irregularities in these local interactive 
processes.  Goal is to model both.  Usually irregularities dominate

3.  Focusing attention on just the degree (usually outdegree) distribution 
implicitly assumes a uniform random graph model, conditional on the 
degrees (which then implies that ties for a given individual actor are 
completely random (!!!!))

Hence we aim for a stochastic model formulation in which:

local interactivity is permitted and assumptions about “locality” are explicit
regularities are represented by model parameters and estimated from data
consequences of local regularities for global network properties can be understood 

(and can also provide an exacting approach to model evaluation)
contains more structure than usually assumed by standard power law models



What do we model?

We model observations at the level of nodes, network ties, …

For example:

node attribute variables:    Y =[Yi]         Yi = attribute of node i

tie variables:  X = [Xij]      Xij = 1 if i has a tie to j
0 otherwise

realizations of node-level variables Y and tie-level variables X

(very recently, a third set of variables (settings) has come into play)
(and ties may be very multivariate and valued)



Models for interactive systems of variables
(Besag, 1974;   Frank and Strauss, 1986;  

Wasserman and Pattison, 1996)

Two variables are associated if they are conditionally dependent given the 
observed values of all other variables 

A neighborhood is a set of mutually dependent variables
A model for a system of variables has a form determined by its 

neighborhoods Hammersley-Clifford theorem

This general approach leads to:
Pr(X = x)            p* -- an exponential family of random graph models

Extension to directed dependence assumptions:
Pr(X = x|Y = y) social selection models Robins et al 2001
Pr(Y=y | X = x) social influence models Robins et al 2002 (and many 

others)
Pr(X = x|S = s) setting-dependent models Pattison & Robins 2002 

(new!)



2.  An exponential family of random graph (p*) models

The Hammersley-Clifford Theorem uses defined neighborhoods 
(or cliques in a dependence graph) and states:

Pr (X = x) = (1/c) exp{∑Q γQzQ(x)}

normalizing quantity parameter network statistic 

the summation is over all neighborhoods Q

zQ(x) = ΠXij∈Qxij is an indicator reflecting whether c = ∑xexp{∑Q γQzQ(x)}
all ties in Q are observed in x



3.  Tools, Methods & Models

There are (at least) three general classes of statistical models for static networks:

1) Models of the network itself
The statistical question is how an observed network fits into the class 
of all possible random graphs with a given set of topological 
characteristics.  The whole network is the substantive unit of analysis.

Examples:   p* models (Wasserman, Pattison, Robins, 
Snijders, Handcock) 

2) Models of individual behavior that incorporate network characteristics
The statistical question is whether or not network properties affect 
individual behaviors…. Social influence models  

Examples:  Network regressive-autoregressive models (Doriean), 
Peer influence models (Friedkin)

3)  Models of degree distributions



3.  Homogeneous network models

Pr (X = x) = (1/c) exp{∑Q* γQ* zQ*(x)}}

If we assume that parameters for isomorphic configurations are the same:

edges  [θ] 2-stars [σ2] 3-stars [σ3] … triangles [τ] 
then there is one parameter γQ* for each class Q* of isomorphic 

configurations and the corresponding statistic zQ*(x) is a count of such 
observed configurations in x



Homogeneous Markov random graphs 
(Frank & Strauss, 1986)

Pr(X = x) = (1/c) exp{θL(x) + σ2S2(x) + … + σkSk(x) + … + τT(x)}

where: L(x) no of edges in x

S2(x) no of 2-stars in x

…

Sk(x) no. of k-stars in x …

…

T(x) no of triangles in x



References …

• Chapters in Carrington, Scott, and Wasserman (2005).  Models and 
Methods in Social Network Analysis.   New York:  Cambridge 
University Press…..    

take a look at those chapters in this volume authored by Robins,
Wasserman, Pattison, Koehly, Snijders, Huisman, and van Duijn



4.   New ideas and new thoughts

a.  Homogeneous Markov models 

Handcock (2002) defines homogeneous Markov random graph models to be degenerate if 
most of the probability mass is concentrated in small parts of the state space

Regions of parameter space that are not degenerate may be quite small (Handcock, 2002)
Star parameters are particularly problematic
Simulation-based parameter estimation methods often wander into degenerate regions of 

parameter space (unless steering is excellent).   Pseudo-likelihood estimation can be 
disastrous

Robins (2003) showed empirically that parameters estimated from data (using SIENA [Snijders, 
2002]) can be quite close to degenerate regions

There are theoretical reasons to doubt the adequacy of a homogeneous Markov 
assumption



b.   Better parameter estimation 

“Logistic” Maximum Pseudo-Likelihood estimation:

http://www.sfu.ca/~richards/Pages/pspar.html

Markov chain Monte Carlo maximum likelihood estimation:

Ongoing work by Mark Handcock (statnet), Tom Snijders (SIENA)



c.  New parameter specifications

1. alternating k-star statistics
2. other degree functions
3.    more complicated “neighborhood/settings” parameters


