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Graph theory

« 1736 Euler solved the
problem of Konisberg

D

Does it exist a path that goes through each bridge only once and come
back to the starting point ?
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Random graphs

1947 Erdos paper introduce a R
probability space in graph
theory.

*n nodes
*n(n-1)/2 total number of possible links
«2n(n-1)/2 total number of possible graphs
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(Q2,5,P) -probability space
Q family of graphs with n nodes
& is the family of all subset of Q

P s the probability measure of each graphs
1 realization (G Q) <



G(n,p) & G(n,M)

G(n,p) -Each couple of nodes are linked
with probability p

n nodes
I links-random P(G)= p’(l _ p)n(n—l)/Z—l
variable

<I>=pn(n-1)/2

G(n,M)- Graphs with exactly M links

n nodes n(n-1)/2\"
M links P(G)=
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Rule of thumb:
Asymptotic equivalence
between G(n,p) and G(n,M)
when n goes to infinity and p(n)n(n-
1)/2=M(n)

In the following we will always refer to G(n,p) as Erdos
and Renyi graphs
)
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Small subgraphs appears
abruptly when we increase p
(p=n7)
or equivalently
the average number of links in the
network
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Small subgraphs in ER networks

The average number of subgraphs G of v nodes and e links is given by

0 p<<n’

n !
E(XG) _ [vj ) 2 e(l . p)v(v—l)/Z—e ~ nvpe N {

aut(G) P o p>>n"

Thus we have

) @m:o(n ifp<D

pr

5
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Probability of having a
subgraph G

The probability that the number of subgraphs of type G
is greater than zero satisfy a slightly more subtle

condition
0 p<<nm® Abrupt chan@

~1/m(G)

PQXG>O)—>{
1 p>>n

Where m(G) is the density of the denser subset of G

n forH c G}

Yy
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Inituition of the previous result

Suppose we want to look of subgraphs of type G : we
know for sure that for p<<n-/¢ we don’t have the
network, what about p>>n-/6?

H G
For these p value still this
network G does not exist!

n-5/6<p<n-4/5

Let’s consider the subgraph H we know for sure that
this graph is not present in the network for p<<n-4/>
which is grater than n-5/%!




Subgraph thresholds

prn’

T4

Subgraphs which appear at a

given z value.

Finite
connectivity



Finite connectivity random
graphs
p(n)=c/n



Degree distribution of ER networks

 For each node we extract n-71 times a random number
with probabillity p.

* The probability that the node has k links is then

Poisson distribution

X
Pk

=0



But the properties
of real graph are different!
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P(k)

Scale-free degree distribution

P(k)oc k™

with  2<y <3

Well defined average
connectivity <k>

but diverging fluctuation around
the mean <kZ2>

with 1<y <2

Diverging average
connectivity <k>

and fluctuation around the

Huds ~
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Clustering Coefficient-Average distance
Clustering: My friends will likely know each other!

1 ) Probability to be connected C » p

@
’\1 / 3 C - # of links between 1,2,...k neighbors

N‘ - ki(ki-1)/2
k.

i
4 Network C Crand L N
WWW 0.1078 | 0.00023 3.1 153127
Internet [ 0.18-0.3 | 0.001 |3.7-3.76 | 0>
Actor 0.79 0.00027 3.65 225226
Coauthorship 0.43 0.00018 5.9 52909
Metabolic 0.32 0.026 2.9 282
Foodweb 0.22 0.06 2.43 134
3 C. elegance 0.28 0.05 2.65 282




V=0 =

Degree-degree correlations
for example in Internet

k., (k) mean value of the

connectivity of neighbors 0}

sites of a node with
connectivity k

If

and a<0 the network is
called disassortative while if
oa>0 the network is
assortative

oC(k) @verage clustering

coefficient of nodes with
connectivity k.

If the network is
called modular.
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Community detection in the
network of italian ministers

Givan, Newman algorithm

MANCUSO-DINICLD! . = ngn .
o 2w = for_ fln_dlng communities in the network
of italian ministers
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Lets building up a
random graph
which has at least one of all these
properties:
the degree
distribution
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Ensembles of random
graphs with given degree

distribution
* Molloy-Reed ensemble

To each node of the network i it is assigned a degree
k; from the desired degree distribution. Then edges
are randomly matched.

 Hidden variable ensemble

To each node it is assigned a random variable q; from the
desidered degree distribution. Each couple of nodes is linked
with probability s

pi j
RCIL




Ensembles of random
graphs with given degree
distribution

Molloy-Reed ensemble Hidden variable

9 ansemble
=3
W, q
k=2 ¢~

k=1 - / .
N A

Pk) ke[m, K] P(q) qe[m K]
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In these ensembles one gets the
high clustering for free!

In fact the clustering coefficient of a node is given by the average number of
triangles divided by the total number of possible triangles passing through
that node.

1 _(k,-DK'&-DK"G"-Dk,  _ <k(k=1)>’

C(k)=
(k:) k. (k —1) <k>’ " <k>’

l @ no correlation@

For 2<y<3 the numerator diverges afid we have a clustering coefficient
much higher than the one of afidom graphs

Ck)=cost = N """ > C, =N~




Giant component
In random graphs
with finite connectivity
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Generating functions

P(k) Probability distribution

F(z)= Zk: P(k)z' Generating function

The derivatives of the generating function provides the all the
moments of the distribution

F()=<k>
F ()=<k(k-1)>



Properties of generating functions

U} F(z)

{h} H(z) S=51+52
h=3115.,.
H((z)=F(z)

Then it is clear that if

% s=s1+s2+..sk ‘ H(z)=F(z)*

==
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Generating functions for the degree
distribution

Generating function for
the degree distribution {Pk}

mm) G(2)= ;szk

, _ kp,
Generating function for Pia="_p >} = G (2) ——kak
the degree of the nodes that
we arrive at by following a
link
_ _ ez
For a ER graph Go (z) — Gl (Z) =€




Generating functions for the cluster
distribution

Generating function for the probability

distribution that following a link we reach a

cluster of finite size s |i_| Cﬁ
Hl(z) — zGl (Hl(z))

S=1 s=1+s1 s=1+
+s1+s2 .

Generating function for the probability
distribution that choosing a node randomly
we reach a cluster of finite size s

H, (2)= zGo (Hl (2))

-0



Giant component

Probability that following a link we are not
In the giant component u satisfy: H (1) =u=G,(u)

. B

A

G'(1)= <k(k=1)> >1u<1 thereisa GC Gi(u)
) <k>

G'(1)=<k(k_1)>31u=1 there is no GC

k <k>

In scale-free graphs with <3 there is always a GC
‘In ER graphs there is a phase transition
the birth of the GC at c=<k>=1

-0
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Birth of the giant component
In ER graph

As we change c in a random ER graph we find a
phase transition at c=1:

one cluster of size of order n emerges.

This phase transition is exactly the same as
percolation in infinite dimension and is naturally
described by statistical mechanics methods.



_ 2
) o=2

Description of the phase transition

Size of the giant component

P=~(c-1)
-~ Average size of the finite
< 8§ > ‘c — 1‘ ’ components
o o1 —sle-1[” Distribution of the finite
n~s§s e€ components
p=y=yr=l1
3

T
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Size of the giant component in ER
graph

« S=1-u is the probability that following a link we end in the

giant component.

* Pis the probability that choosing randomly a node it
belongs to the giant component

* Ina ER graph S satisfy

1
S=1-e“~cS——c’S° <= H()=1:G,(H (2)
2 1-S=G(1-5)
2(c—1)
S = .
C
~ ~ _ 1\F _ & H, (z)=2G,(H (2))
3 P=S=(c-1)" p=1 PGl 8)
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Average size of finite components

The average sizes of finite components are given by moment of H’y(1).

» Lets calculate how the average
size of these components diverges
with (7-c) for c<1

 For ¢c>1 one has to be careful
and calculate everything at z=1,
and H,(1)=u, one finds

%9

<s>=1+

G', 1)

et @
C

1-G' 1)  1-

< §>=

1 1

1-G' (1) 1-c(1-S)




==

Distribution of the size of finite
clusters

O
) Distribution of clusters

n ~s " exp(-sjc—1

P(s)=s™ exp(—s\c -1

P(s)=s™ exp(—s\c -1

%

o Distribution of cluster of size s
) when choosing a random node

Distribution of cluster of size s
when choosing a random link

)




Distribution of clusters
found following a link

If we suppose
then

P(s)=s"D(slc—1]")

H(e)=u—-a 'h(alc-1°

)

==

In fact we have

H((e")=u- jds S TD(se’)(1—e™)

—u—oa  hla/&%)

Where

ez‘c—l‘




V=)=

T and c exponents

Hl(z) — zGl (H1(z))

l-a"h(x)=1-a)1—-ca h(x)+ %cza“'zhz(x)) +0(@’™")

1
(1-c)a " h(x)—a+ Ecza“‘zhz (X)+...=0

1
x—aar—1+o-h(x)_a+EczaZr—th(x)_l_.”=0
" 3
T = —
) 2
o =2
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Average distance in ER graph

The network is locally a tree the number of nodes z, at distance m is
given by

The average distance is given by d such that

>z ~c'=n

m=0,d

Thus d scales as the logarithm of the network size

d ~log(n)/log(c)
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%

Summary

Introduction to random graphs ensembles
— ER graphs
— Given degree distribution random graphs

Abrupt appearance of small subgraphs in ER graphs

Condition for existence of the giant component in any
type of random graphs

Description of the birth of the giant component in ER
graphs
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