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Graph theoryGraph theory
• 1736 Euler solved the 

problem of Konisberg
bridges

A

B

C

D

Does it exist a path that goes through each bridge only once and come 
back to the starting point ?

A

B

D

C



Random graphsRandom graphs
1947 Erdos paper introduce a 

probability space in graph 
theory.

•n nodes 
•n(n-1)/2 total number of possible links
•2n(n-1)/2 total number of possible graphs

(Ω,F,P) -probability space
Ω family of graphs with n nodes
F is the family of all subset of Ω

P is the probability measure of each graphs 
realization (G Ω) ⊂



G(n,pG(n,p) & ) & G(n,MG(n,M))
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G(n,pG(n,p)) -Each couple of nodes are linked 
with probability p

nn nodesnodes
ll linkslinks--random random 
variablevariable
<<ll>=>=pn(npn(n--1)/2 1)/2 

nn nodesnodes
MM linkslinks

G(n,MG(n,M))-- Graphs with exactly M links



Rule of thumb:Rule of thumb:
Asymptotic equivalence Asymptotic equivalence 

between between G(n,pG(n,p) and ) and G(n,MG(n,M))
when when nn goes to infinitygoes to infinity and and p(n)n(np(n)n(n--

1)/1)/2=M(n)

In the following we will always refer to G(n,p) as Erdos
and Renyi graphs



Small Small subgraphssubgraphs appears appears 
abruptly when we increase p abruptly when we increase p 

(          )(          )
or equivalently or equivalently 

the average number of links in the the average number of links in the 
network network 

znp −≈



Small Small subgraphssubgraphs in ER networksin ER networks
The average number of subgraphs G of v nodes and e links is given by
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Probability of having a Probability of having a 
subgraphsubgraph GG
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The probability that the number of subgraphs of type G 
is greater than zero satisfy a slightly more subtle 
condition
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Where m(G) is the density of the denser subset of G 

Abrupt change



InituitionInituition of the previous resultof the previous result

Suppose we want to look of subgraphs of type G : we 
know for sure that for p<<n-5/6 we don’t have the 
network, what about p>>n-5/6?

Let’s consider the subgraph H we know for sure that 
this graph is not present in the network for p<<n-4/5

which is grater than n-5/6! 

n-5/6<p<n-4/5

H G

For these p value still this 
network G does not exist!



∞z

znp −≈
2   3/2       4/3            5/4                    1           2/3            1/2

Subgraph thresholdsSubgraphSubgraph thresholdsthresholds

Finite 
connectivity

Subgraphs which appear at a 
given z value.



Finite connectivity randomFinite connectivity random
graphsgraphs

p(np(n)=)=c/nc/n



Degree distribution of ER networksDegree distribution of ER networks

• For each node we extract n-1 times a random number 
with probability p.

• The probability that the node has k links is then

Poisson distribution
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But the properties But the properties 
of real graph are different!of real graph are different!



ScaleScale--free degree distributionfree degree distribution

32 << γ

γ−∝ kkP )(

with

Well defined average 
connectivity <k>
but diverging fluctuation around 
the mean <k2>

21 << γwith

Diverging average 
connectivity <k>
and fluctuation around the 
mean <k2>



Clustering CoefficientClustering Coefficient--Average distanceAverage distance
Clustering: My friends will likely know each other!

Probability to be connected C » p

C =
# of links between 1,2,…ki neighbors

ki(ki-1)/2

Network C Crand L N

WWW 0.1078 0.00023 3.1 153127

Internet 0.18-0.3 0.001 3.7-3.76 3015-
6209

Actor 0.79 0.00027 3.65 225226

Coauthorship 0.43 0.00018 5.9 52909

Metabolic 0.32 0.026 2.9 282

Foodweb 0.22 0.06 2.43 134

C. elegance 0.28 0.05 2.65 282

1 2

3

4

i

ki



DegreeDegree--degree correlationsdegree correlations
for example in Internet for example in Internet 

αkkknn ≈)(

δ−≈ kkC )(

•knn (k) mean value of the 
connectivity of neighbors 
sites of a node with 
connectivity k
If 
and and αα<0 the network is <0 the network is 
called called disassortativedisassortative while if while if 
αα>0 the network is >0 the network is 
assortativeassortative

••C(kC(k)) average clustering average clustering 
coefficient of  nodes with coefficient of  nodes with 
connectivity k.   connectivity k.   
If               the network is If               the network is 
called called modularmodular..



Community detection in the Community detection in the 
network of network of italianitalian ministersministers

Givan, Newman algorithm 
for finding communities in the network
of italian ministers



Lets building up a Lets building up a 
random graphrandom graph

which has at least one of all these which has at least one of all these 
properties:properties:
the degreethe degree
distributiondistribution



Ensembles of randomEnsembles of random
graphs with given degree graphs with given degree 

distributiondistribution
• Molloy-Reed ensemble

To each node of the network i it is assigned a degree 
ki from the desired degree distribution. Then edges 
are randomly matched. 

• Hidden variable ensemble
To each node it is assigned a random variable qi from the 

desidered degree distribution. Each couple of nodes is linked 
with probability

nq
qq

p ji

ji =,
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k=3

k=2

k=1

Molloy-Reed ensemble Hidden variable 
ensemble

q=2

q=4 
q=3

q=2

k=2
k=2

Ensembles of randomEnsembles of random
graphs with given degree graphs with given degree 

distributiondistribution

nq
qq

p ji
ji =,
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kk

p ji

ji =,



In these ensembles one gets the In these ensembles one gets the 
high clustering for free!high clustering for free!

In fact the clustering coefficient of a node is given by the average number of 
triangles divided by the total number of possible triangles passing through 
that node. 
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For 2<γ<3 the numerator diverges and we have a clustering coefficient 
much higher than the one of random graphs 

12/)1(cost)( −−− ≈>>≈≈ NCNkC ER
γ

But no correlations!!!But no correlations!!!



Giant componentGiant component
in random graphsin random graphs

with finite connectivitywith finite connectivity



Generating functionsGenerating functions
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Probability distribution

Generating function

The derivatives of the generating function provides the all the
moments of the distribution



Properties of generating functionsProperties of generating functions

{ }sh

{ }sf F(z)

H(z)

∑ +=
21

2121
,

,
ss

ssssss ffh δ

2)()( zFzH =

s=s1+s2

s=s1+s2+..sk H(z)=F(z)k

Then it is clear that if



Generating functions for the degree Generating functions for the degree 
distributiondistribution
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Generating function for
the degree distribution 

Generating function for
the degree of the nodes that 
we arrive at by following a 
link

For a ER graphFor a ER graph



Generating functions for the cluster Generating functions for the cluster 
distributiondistribution

))(()( 111 zHzGzH =

))(()( 10 zHzGzHo =

Generating function for the probability 
distribution that following a link we reach a 
cluster of finite size s 

Generating function for the probability 
distribution that choosing a node randomly 
we reach a cluster of finite size s

=       +           +           +

S=1 s=1+s1  s=1+
+s1+s2 ….



Giant componentGiant component
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•In scale-free graphs with γ<3 there is always a GC
•In ER graphs there is a phase transition 
the birth of the GC at c=<k>=1

Probability that following a link we are not
In the giant component u satisfy:

u1

G1(u)



Birth of the giant componentBirth of the giant component
in ER graphin ER graph

As we change c in a random ER graph we find a 
phase transition at c=1:
one cluster of size of order n emerges.

This phase transition is exactly the same as 
percolation in infinite dimension and is naturally 
described by statistical mechanics methods.



Description of the phase transitionDescription of the phase transition
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Average size of the finite 
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Distribution of the finite 
components



Size of the giant component in ER Size of the giant component in ER 
graphgraph

• S=1-u is the probability that following a link we end in the 
giant component. 

• P is the probability that choosing randomly a node it 
belongs to the giant component

• In a ER graph S satisfy
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Average size of finite componentsAverage size of finite components
The average sizes of finite components are given by moment of H’0(1). 

• Lets calculate how the average 
size of these components diverges 
with (1-c) for c<1

• For c>1 one has to be careful 
and calculate everything at z=1, 
and H1(1)=u, one finds 
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Distribution of the size of finite Distribution of the size of finite 
clusters clusters 

)1exp(1 στ −−≈ −− cssns

)1exp()(1
στ −−≈ − csssP

)1exp()(0
στ −−≈ − csssP

Distribution of clustersDistribution of clusters

Distribution of cluster of size s Distribution of cluster of size s 
when choosing a random nodewhen choosing a random node

Distribution of cluster of size s Distribution of cluster of size s 
when choosing a random linkwhen choosing a random link



Distribution of clustersDistribution of clusters
found following a linkfound following a link

If we suppose
then

In fact we have
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ττ and and σ σ exponentsexponents
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Average distance in ER graphAverage distance in ER graph
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The network is locally a tree the number of nodes zm at distance m is 
given by

)log(/)log( cnd ≈

The average distance is given by d such that 

Thus d scales as the logarithm of the network size



SummarySummary
• Introduction to random graphs ensembles

– ER graphs
– Given degree distribution random graphs

• Abrupt appearance of small subgraphs in ER graphs
• Condition for existence of the giant component in any 

type of random graphs
• Description of the birth of the giant component in ER 

graphs
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