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Abstract. We review recent results on the dynamics of social networks which suggest that the
interplay between the network formation process and volatility may lead to the occurrence of
discontinuous phase transitions and phase coexistence in a large class of models. We then investigate
the effects of negative links – links inhibiting local growth of the network – and of a geographical
distribution of the agents in such models. We show, by extensive numerical simulations, that both
effects enhance this phenomenology, i.e. it increases the size of the coexistence region.

INTRODUCTION

Recent phenomenological studies on complex networks in the social sciences have
uncovered ubiquitous nontrivial statistical properties, such as scale free distribution
of connectivity or small world phenomena [1, 2, 3]. These properties have striking
consequences on the processes which take place on such networks, such as percolation
[4], diffusion [5, 6], phase transitions [7, 8] and epidemic spreading [9]. The research on
complex networks raises questions of a new type as it addresses phenomena where the
topology of interactions is part of the dynamic process. This contrasts with traditional
statistical mechanics, where the topology of the interaction is fixed a priori by the
topology of the embedding space.

Phenomena of this type are quite common in social sciences where agents purpose-
fully establish cooperative links [10]. Links between individuals in a social network sup-
port not only the socioeconomic interactions that determine their payoffs, but also carry
information about the state of the network. This aspect has important consequences in
the long run if the underlying environment is volatile. In this case, former choices tend to
become obsolete and individuals must swiftly search for new opportunities to offset neg-
ative events. The role of the network for information diffusion is particularly apparent,
for example, pertaining to the way in which individuals find new job opportunities. For
example, it has been consistently shown by sociologists and economists alike [11, 12]
that personal acquaintances play a prominent role in job search. This, in turn, leads to a
significant correlation in employment across friends, relatives, or neighbours. The com-
mon thesis proposed to explain this evidence is that, in the presence of environmental
volatility, the quantity and quality of one’s social links – sometimes referred to as her
social capital [13]– is a key basis for search and adaptability to change.

A recent statistical mechanics approach to simple models of social networks has
recently shown that the interplay between volatility and the quest for efficiency leads, in



a broad class of models, to a positive feedback loop between the network’s structure and
its dynamics [14, 15]. As a result, social networks may exhibit sharp phase transitions –
i.e. a dense network may emerge or disappear [16] suddenly – coexistence of different
network phases for the same parameters and resilience – i.e. robustness of a dense
social network even when external conditions deteriorate beyond the point where a
dense network first came into existence. This generic conclusion was derived in two
qualitatively different setups: Ref. [14] addressed the interplay between volatility and
search in a model where agents use their links to look for new fruitful collaborations.
Ref. [15] found instead the same phenomenology in generic models where proximity
or similarity favours the formation of links among agents and, conversely, the presence
of links between two agents enhances similarity. As discussed in Ref. [15], there are
several socio-economic phenomena, ranging from job contact networks and research
collaborations to the spread of crime and other social pathologies, for which anecdotal
evidence has been reported.

Such dynamic effects (e.g. sharp transitions) are much more difficult to detect in
empirical studies than static properties (e.g. scale-freeness or small-worldness). Hence,
the empirical verification of the scenarios proposed in Refs. [14, 15] requires very
accurate data, which is rarely available in socio-economic sciences. A different way
to check the validity of the scenario in generic cases is to challenge its robustness
on theoretical grounds, including effects which have been neglected so far. Here, in
particular, we address two simplifying assumptions of the models of Ref. [14, 15]: i)
that network formation is long ranged, i.e. independent of a geographical distribution of
the agents and ii) that links always have a positive effect on the link formation process.

We discuss these effects in the framework of the model of Ref. [14] where they enter in
an important way into the dynamics of the network (see later). In both cases, we find by
extensive numerical simulations, that inclusion of these effects enhances the character
of our conclusions (i.e. it increases the co-existence region in parameter space). This
supports the conclusion that sharp transitions, co-existence and resilience are generic
dynamic properties of social networks.

In what follows we shall first review the model of Ref. [14], then turn to the study of
negative links and finally discuss the inclusion of geographical effects.

SEARCHING PARTNERS IN A VOLATILE WORLD

Ref. [14] proposes a stylized model of a society that embodies the following three
features: (i) agent interaction, (ii) search and (iii) volatility (i.e. random link removal).
Individuals are involved in bilateral interactions, as reflected by the prevailing network.
Through occasional update, some of the existing links have their value deteriorate and
are therefore lost. In contrast, the individuals also receive opportunities to search that,
when successful, allow the establishment of fresh new links.

Formally, the network is given by a set of nodes N and the corresponding adjacency
matrix A(t) with elements ai j(t) = 1 if there is a link connecting nodes i and j at time
t, and ai j = 0 otherwise (we assume no on-site loops, aii = 0 and un-oriented links
ai j = a ji). Denote by Fi = { j|ai j = 1} the set of neighbours (“friends”) of the node i.



The matrix A(t) follows a stochastic process governed by the following three processes:

Long distance search: At rate η , each node i gets the opportunity to make a link to a
node j randomly selected (if the link is already there nothing happens).

Short distance search: At rate ξ , each node i picks at random one of its neighbours
j ∈ Fi and j then randomly selects (i.e. “refers to”) one of its other neighbours
k ∈ Fj\{i}. If k �∈ Fi then the link between i and k is formed. If Fi = /0 or Fj = {i}
or k ∈ Fi nothing happens.

Decay: At rate λ , each existing link decays and it is randomly deleted.

Over time, this process leads to an evolving social network that is always adapting to
changing conditions. For ξ = 0, the dynamics is very simple and the stationary network
is a random graph with average degree c = 2η/λ . For η � λ the network is composed
of many disconnected parts. Fig. 1 reports what happens when the local search rate ξ
is turned on. For small ξ , network growth is limited by the global search process that
proceeds at rate η . Clusters of more than 2 nodes are rare and, when they form, local
search quickly saturates the possibilities of forming new links. Suddenly, at a critical
value ξ2, a giant component connecting a finite fraction of the nodes emerges. The
average degree c indeed jumps abruptly at ξ2. The distribution p(c) of ci is peaked with
an exponential decrease for large c and a power law p(c) ∼ cµ for c small. The network
becomes more and more densely connected as ξ increases further. But when ξ decreases,
we observe that the giant component remains stable also beyond the transition point
(ξ < ξ2). Only at a second point ξ1 does the network lose stability and the population
gets back to an unconnected state. There is a whole interval [ξ1,ξ2] where both a dense-
network phase and one with a nearly empty network coexist. This behaviour is typical
of first-order phase transitions. The coexistence region [ξ1,ξ2] shrinks as η increases.

In loose words, the model shows that the continuous struggle of agents’ continuous
search must be strong enough to offset volatility if a dense and effective social network
is to be preserved. On the other hand, search can be effective only in a densely networked
society. So information diffusion and a dense network of interactions are two elements
of a feedback self-reinforcing loop. As a result, the system displays a discontinuous
phase transition and hysteresis, enjoying some resistance to a moderate deterioration
of the underlying environmental conditions. Such a resilience can be interpreted as
consequence of the buffer effects and enhanced flexibility enjoyed by a society that has
accumulated high levels of social capital.

These features are captured by a mean field theory which is in good qualitative agree-
ment with numerical simulation results (see Ref. [14]). This theory highlights the partic-
ular role that clustering plays in the dynamics of the model. Indeed search is particularly
effective when clustering is low whereas it is suppressed in a high clustered society. The
average clustering coefficient q – defined as the fraction of pairs of neighbours of i who
are also neighbours among themselves1 – shows a non-trivial behaviour. In the uncon-
nected phase, q increases with ξ as expected. In this phase, q is close to one because the
expansion of the network is mostly carried out through global search, and local search

1 The averaging is done only over nodes with at least two neighbours.
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FIGURE 1. Average degree c (top) and clustering coefficient q (bottom) from numerical simulations
with η/λ = 0.01 for populations of size n = 1000. Here and in all other figures, runs were equilibrated
for a time teq = 3000/λ before taking averages for a further 3000/λ . The network was started in both
the low connected and high connected state for each value of ξ . For the central coexistence region, the
two distinct points for each ξ represent the two different starting configurations. The arrows show the
hysteretic region, the rightmost arrows indicating ξ2. The right hand graph shows the phase diagram,
black squares denote the coexistence region, red circles the regions in which only the low (lower left) or
high (upper right) phases are stable.

quickly saturates all possibilities of new connections. On the other hand, in the dense-
network phase, q takes relatively small values. This makes local search very effective.
Remarkably we find that q decreases with ξ in this phase, which is rather counterin-
tuitive: increasing the rate ξ at which bonds between neighbours form through local
search, the density q of these bonds decreases. In fact, similar behaviour is found if,
fixing ξ and η , the volatility rate λ decreases.

These conclusions rest on two basic assumptions, which might be unrealistic in
practical cases. The first is that links have always a positive effect on the formation
of other links. Indeed, “negative” links (i.e. animosity) may have an important effect
in inhibiting link formation. If one of the my possible friends has a negative relation
with a friend of mine, I might not wish to form the link with him/her, because this
would increase the “frustration” of my social neighbourhood. It is indeed a well accepted
fact in social science [17] that social relationships evolve in such a way as to decrease
frustration.

The second assumption of the model, is that agents are treated equivalently in the
global search process. In many real cases, agents are located in a geometrical space and
this influences the likelihood with which they establish new links among themselves.
Notice that a dependence of the link formation rate on proximity in space has arguably
strong consequences on clustering, which is a key aspect of the model.

In both cases, as we shall see, the inclusion of these effects enhances the non-linear
effect and result in an even wider region of coexistence.



THE EFFECT OF NEGATIVE LINKS

Here we extend the model to include the effect of negative links. In addition to the long-
range search, introduction of friends, and decay of links, we also include negative links.
These links model the effect of animosity between nodes. Thus, when two nodes i and j
are introduced, before they form a positive link they check through all their neighbours
to see if any of them have a negative link with their prospective neighbour. They are
in effect using their contacts to check the ’references’ of their prospective neighbour. If
there are one or more negative links (or if i and j already have a negative link) then the
new connection is not formed.

Negative links themselves are formed by the ‘souring’ of existing positive links at
a rate γ . In other words, every link is positive when it is created, but it may turn to
negative at rate γ . Once formed, negative links decay at rate λ− which we set equal to λ
for simplicity except when stated otherwise.

This additional mechanism has two effects on the network: firstly, positive links now
disappear at a rate λ + γ rather than λ as before. Secondly, the rate of introduction of
nodes through mutual friends (the ξ process) is reduced. Since it is the nonlinearity
of the ξ process that produces the coexistence region, one might expect this to have
important effects on the size and location of the coexistence region.

Figure 2 shows plots for four values of γ . As γ is increased, the value ξ2 above which
the low connected state becomes unstable increases markedly – indeed for γ = 0.1 the
value of ξ at which the transition occurs (for the times of 3000 + 3000 studied here)
is around ξ = 20. Also, the average degree of the network in the connected region
decreases and the value ξ1 below which the connected region collapses moves slightly
up. The overall effect is that the coexistence region gets larger and moves slightly to
higher values of ξ when γ increases.
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FIGURE 2. Average degree c (top) and clustering coefficient q (bottom) from numerical simulations
with η/λ = 0.01 for populations of size n = 1000. Original case γ = 0 (black circle), γ = 0.01 (red
square), γ = 0.02 (green plus), and γ = 0.1 (blue cross). The arrows indicate the approximate locations of
ξ2 for each value of γ .

More dramatic effect occurs for large values of γ . Figure 3 shows that the system may
enter into a regime where the network undergoes successive rises and crashes due to the
spread of animosity. This behavior also sets in if negative links are much more stable



than positive ones (λ− � λ , lower panel of Fig. 3). Then once a connected society
is formed, its network of relationships gets slowly poisoned with long lasting negative
links, which inhibit the formation of other positive links.

We believe that the occurrence of such time-dependent behaviours is intimately re-
lated to the phase coexistence of the original system. Here the low connectivity state is
unstable, over some mean waiting time, to the formation of the highly connected state.
However the highly connected state is also not stable once a sufficiently large number of
links have turned to negative links. The system thus alternates between the two states,
but not in a periodic manner due to the stochastic nature of the process.
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FIGURE 3. Average positive degree c (black) and negative degree (red) plotted against time. From
numerical simulations with populations of size n = 100. For the upper graph the parameters are: λ =
λ− = 1, η = 1, γ = 10, ξ = 400. For the lower graph the parameters are: λ = 1, λ − = 2×10−4, η = 10−2,
γ = 10−3, ξ = 8. Note that in this case λ � λ−.

THE EFFECT OF GEOMETRY

We now consider another important effect not considered in the original model, that
of the physical space in which the agents live. We introduce a modified version of the
model which accounts for the fact that agents embedded in space are more likely to make
random acquaintances with other agents who are geographically near to them.

We modify the original model in the following way: We embed the agents on a one-
dimensional periodic lattice of length n, with agent i being placed at a distance i from
the origin. When creating long-range links (the η process), we select site i at random
and then site j with a probability P(di j) which decays with the distance di j between i
and j on the lattice.2 We studied distributions of the form P(d) ∝ d−α (α > 0) decays
with distance.

Notice that the local search process ξ can only connect members of a community
of already connected agents. It is only by the η process that such a community can
reach agents further away. Hence we expect that a sharp decay of P(d) with distance has

2 Notice that because of periodic boundary conditions, if i < j then di j = min( j− i, i− j +L).
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FIGURE 4. Average degree c (top) and clustering coefficient q (bottom) from numerical simulations
for populations of size n = 1000. The left-hand plots show results for η/λ = 0.01, plotted against ξ . The
right-hand plots show results for ξ/λ = 6, plotted against η . The points are: original case α = 0 (black
circle), α = 1 (red square), α = 2 (green plus). The arrows indicate the points at which transitions occur
and the directions in which the system moves within the hysteretic region. Notice that the coexistence
region is extended for α = 2.

strong effects on the η process, which is the limiting factor in the nucleation of a dense
network,3 thus increasing the stability of the low density phase. Figures 4 confirm this
expectation for the case P(d) ∼ d−α with α = 1,2. The main change occurs for α = 2
where the stability of the low connectivity phase and hence the coexistence region is
significantly extended. Notice also that well inside the dense network phase there is no
significant effect. This confirms that this phase is sustained by the local search process
alone: once a global network spanning the whole system is formed, geometry has no
effect.
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