

SMR.1656 - 17

School and Workshop on Structure and Function of Complex Networks

16 - 28 May 2005

Modeling Strategic Formation of Social Networks

Matthew O. JACKSON Division of the Humanities & Social Sciences California Institute of Technology, 228-77 301D Baxter Hall Pasadena, CA 91125 U.S.A.

These are preliminary lecture notes, intended only for distribution to participants

Modeling Strategic Formation of Social Networks

Matthew O Jackson

Trieste Summer School on Networks

Example of Social Network with Strategic Formation

What do we know?

- Networks are prevalent
 - Job contact networks, crime, trade, politics, ...
- Network position and structure matters
 - rich sociology literature
 - Padgett example Medicis not the wealthiest nor the strongest politically, but the most central
- ``Social'' Networks have special characteristics
 - small worlds, degree distributions...

Questions:

 How does network structure affect interaction and behavior? (tomorrow, Tuesday)

• Which networks form?

- random modeling
- Game theoretic reasoning

- When do efficient networks form?
 - Intervention design incentives?

- Welfare analysis agents get utility from networks
- Decision making agents form links and/or choose actions

Notation

- {1,..,i,...,j,...,n} nodes or players
- g network, n by n matrix with entries 0 or 1
- ij in g iff g_{ij}=1
- g+ij add link/edge ij to g; g-ij delete link ij from g
- u_i(g) utility to i from network g

Efficiency and Stability

(Jackson and Wolinsky (1996))

- Efficiency:
 - argmax ∑ u_i(g)
- Pairwise Stable networks:
 - $u_i(g) \ge u_i(g-ij)$ for each i and ij in g
 - $u_i(g+ij) > u_i(g)$ implies $u_i(g+ij) < u_i(g)$ for each ij not in g

``Connections Model''

- 0≤δ_{ij}≤1 a benefit parameter for i from path connection between i and j
- 0≤c_{ii} cost to i of link to j
- d(i,j) shortest path length between i,j

$$u_i(g) = \sum_j \delta_{ij}^{d(i,j)} - \sum_{j \text{ in } N_j(g)} C_{ij}$$

Example: Symmetric Connections Model

- benefit from a friend is $\delta < 1$
- benefit from a friend of a friend is $\delta^2,...$
- cost of a link is c>0

 $u_2 = 3\delta + \delta^2 - 3c$

Efficient Networks

- low cost: $c < \delta \delta^2$
 - complete network is efficient
- medium cost: $\delta \delta^2 < c < \delta + (n-2)\delta^2/2$
 - star network is efficient

- high cost: $\delta + (n-2)\delta^2/2 < c$
 - empty network is efficient

``Proof''

- $c < \delta \delta^2$ obvious that complete is efficient
- δ-δ²< c
 - players who are connected should be connected in a star:
 - minimal number of links to connect
 - connection at length 2 is more valuable than at 1 (δ -c< δ^2)
 - value of a star is
 - $2(n-1) \delta + (n-1)(n-2)\delta^2 2(n-1)c = 2(n-1) [\delta + (n-2)\delta^2/2 c]$
 - Star of size m+n more valuable than star(m)+star(n)
 - Star has positive value only when $c < \delta + (n-2)\delta^2/2$

Pairwise Stable Networks:

- low cost: $c < \delta \delta^2$
 - complete network is pairwise stable
- medium/low cost: $\delta \delta^2 < c < \delta$
 - star network is pairwise stable
 - others are also pairwise stable
- medium/high cost: $\delta < c < \delta + (n-2)\delta^2/2$
 - star network is not pairwise stable (no loose ends)
 - nonempty pairwise stable networks are over-connected and may include too few agents
- high cost: $\delta + (n-2)\delta^2/2 < c$
 - empty network is pairwise stable

Example – Pairwise Stable but not efficient

• δ- δ² < c < δ-δ³, n=4

•
$$\delta - \delta^3 < c < (\delta + \delta^2 + \delta^3)(1 - \delta^2)$$

(unique nonempty pairwise stable structure if $\delta < c < (\delta + \delta^2 + \delta^3)(1 - \delta^2)$, n=6)

Directed Connections

[Bala and Goyal (2000)]

- same payoffs as before except
 - directed network and
 - one way flow link is only useful to whom incurs cost
 - two way flow one player pays, but link is useful to both
- Now links are formed unilaterally
 - use Nash equilibrium to model stability

Two way flow

- Efficiency as before, except c/2 and link in either direction (but not both)
- Nash Stable:
 - low cost: c< δ-δ²
 - two-way ``complete'' networks are pairwise stable
 - medium/low cost: $\delta \delta^2 < c < \delta$
 - all star networks are pairwise stable, plus others
 - medium/high cost: $\delta < c < \delta + (n-2)\delta^2/2$
 - peripherally sponsored star networks are stable (no other stars, but sometimes other networks)
 - efficient and stable can be empty:
 - $\delta \delta^2 < c < 2(\delta \delta^2)$ complete is efficient, not equilibrium

A toy co-author model

•
$$u_i(g) = \sum_{j: ij in g} [1/n_i + 1/n_j + 1/(n_i n_j)]$$

- n is even:
 - efficient networks: pairs
 - pairwise stable networks: completely connected components, where for any two components, one has more than the square of the number of nodes in the other

Some Settings stable=efficient

Buyer-Seller Networks: Corominas Bosch (2002):

- Sellers each with one identical object value 0
- Buyers each desire one object at value 1
- Alternating offers bargaining

Experiments Charness, C-B, and Frechette

(normalized from their 2500 base and 200 reservation value)

general algorithm for solution

- is there group of at least two sellers connected to just one buyer?
 - if so, remove, buyer gets 1, sellers 0
- is there group of at least k+1 sellers connected to just k buyers?
 - if so, remove, buyers get 1, sellers 0
- iterate
- repeat with buyers/sellers reversed
- remaining players get 1/2

Pairwise stable = efficient

- [I] buyer gets 1 implies some linked seller gets 0 (and vice versa)
- [II] component all buyers get ½ if and only if for all k and subsets of k buyers they are linked to at least k distinct sellers and vice versa
- pairwise stable and cost to link implies no 0's. so by
 [I] must be that all players get 1/2
- if not pairs find subnetwork that links them into pairs

 extra links can be deleted and still satisfy [II],
 same payoff at lower cost

 If bargaining is such that split is not 0,1 in ``unbalanced'' networks, then could get inefficiency

Stable and Efficient only coincide in special cases

- Can transfers help in other cases?
- What can we say about when conflict exists
- What can we say about transfers helping?
- What about other formation processes?

Transfers can help

- Change utilities from $u_i(g)$ to $u_i(g)+t_i(g)$
 - $\sum_{i \text{ in } C} t_i(g) = 0$ within each component C
 - respect anonymity
- E.g., peripheral players pay center of star in connections model to maintain connections

Can Prove: Transfers can lead to at least one efficient network being pairwise stable provided:

- v is anonymous, and
- in some efficient network all nodes have degree >1.
 [ugly proof]

But note: need to charge players who form links - not just subsidize (here penalizing for forming links)

What is needed to avoid this?

- Break Anonymity
- Make transfers part of formation process or allow transfers to be contingent on network

Bargaining when forming links Can Help

- Currarini and Morelli (2000)
 - Order players (breaks anonymity)
 - Player demands payoff and suggests links
 - Link is formed if both players announce it, and component is feasible in terms of demands

Bargaining in the example

- 1 announces {2,3} and demands 6.5
 - 1 cannot ask for more than x>6.5 or 2 can respond with {3} and slightly below x and will get x and 1 will get nothing
- 2 announces {1} and demands 6.5
 - 2 cannot say {3} (or {1} or {1,3}) and ask for more than 6.5
- 3 announces {1} and demands 0
 - 3 cannot do better

If v(g+ij)> v(g) whenever g+ij has more components than g, then all (subgame perfect) equilibria of the above game lead to efficient networks.

- Game is contrived introduces asymmetries, requires endpoint
- But ability to endogenize transfers as part of the formation process is important

Can economic models match observables?

- Small worlds derived from costs/benefits
 - low costs to local links high clustering
 - high value to distant connections low diameter
 - high cost of distant connections few distant links

Geographic Connections (Johnson-Gilles (2000), Carayol-Roux (2003), Galeotti-Goyal-Kamphorst (2004), ...)

Islands connections model (Jackson-Rogers (2004))

- players live on islands
- cost c of link to player on the island
- cost C>c of link to player on another island

Results:

- High clustering within islands, few links across
- small distances

Rich literature on strategic formation

- loosen anonymity (Dutta-Mutuswami (1997))
- directed networks (Bala-Goyal (2000), Dutta-Jackson (2000),...)
- bargaining when forming links (Currarini-Morelli(2000), Slikkervan den Nouweland (2000), Mutuswami-Winter(2002), Bloch-Jackson (2004))
- dynamic models (Aumann-Myerson (1988), Watts (2001), Jackson-Watts (2002ab), Goyal-Vega-Redondo (2004), Feri (2004), Lopez-Pintado (2004),...)
- farsighted models (Page-Wooders-Kamat (2003), Dutta-Ghosal-Ray (2003), Deroian (2003),...)
- allocating value (Myerson (1977), Meessen (1988), Borm-Owen-Tijs (1992), van den Nouweland (1993), Qin (1996), Jackson-Wolinsky (1996), Slikker (2000), Jackson (2005)...)
- modeling stability (Dutta-Mutuswami (1997), Jackson-van den Nouweland (2000), Gilles-Sarangi (2003ab), Calvo-Armengol and Ikilic (2004),...)
- experiments (Callander-Plott (2001), Corbae-Duffy (2001), Pantz-Zeigelmeyer (2003), Charness-Corominas-Bosch-Frechette (2001), Falk-Kosfeld (2003), ...)

Nonexistence of Pairwise Stable

Advantages of an economic approach

- Payoffs allow for a welfare analysis
 - Identify tradeoffs incentives versus efficiency
- Tie the nature of externalities to network formation...
- Put network structures in context outcomes of network interaction
- Account for (and *explain*) some observables

What's missing from Game theoretic formation models?

- Stark network structures emerge
 - need to mix with random models
- over-emphasize choice versus chance determinants for some *large* applications?

Models of Networks in Context

- crime networks (Glaeser-Sacerdote-Scheinkman (1996), Ballester, Calvo, Zenou (2003),...)
- markets (Kirman (1997), Tesfatsion (1997), Weisbach-Kirman-Herreiner (2000), Kranton-Minehart (2002), Corominas-Bosch (2005), Wang-Watts (2002), Galeotti (2005), Kakade et al (2005)...)
- labor networks (Boorman (1975), Montgomery (1991, 1994), Calvo (2000), Arrow-Borzekowski (2002), Calvo-Jackson (2004ab,2005), Cahuc-Fontaine (2004),...)
- insurance (Fafchamps-Lund (2000), DeWeerdt (2002), Bloch-Genicot-Ray (2004),...
- IO (Bloch (2001), Goyal-Moraga (2001), Goyal-Joshi (2001), Belleflamme-Bloch (2002), Billard-Bravard (2002), ...)
- international trade (Casella-Rauch (2001), Furusawa-Konishi (2003),...)
- public goods (Bramoulle-Kranton (2004), Galeotti and Vega (2005),...)
- airlines (Starr-Stinchcombe (1992), Hendricks-Piccione-Tan (1995))
- network externalities in goods (Katz-Shapiro (1985), Economides (1989, 1991), Sharkey (1991)...)
- organization structure (Radner (), Radner-van Zandt (), Demange (2004)...)
- learning (Bala-Goyal (1998), Morris (2000), DeMarzo-Vayanos-Zweibel (2003), Gale-Kariv (2003), Choi-Gale-Kariv (2004),...)

Whither now?

- Bridging random/mechanical economic/strategic
- Networks in Applications predictions of behavior as dependent on network structure
 - Labor, mobility, voting, trade, collaboration, crime, public goods, ...
- Empirical/Experimental
 - many case studies lack key economic variables, tie networks to outcomes, utilities
 - enrich modeling of social interactions from a structural perspective
- Furthering game theoretic modeling, equilibrium, dynamics,...
- Foundations and Tools– centrality, power, allocation rules, community structures, ...

Setting stable=efficient depends on who bears link cost

Buyer-Seller Networks: Kranton-Minehart (2002):

- Sellers each with one identical object
- Buyers each desire one object, private valuation
- links only costly to buyers
- sellers hold simultaneous ascending auctions

Example: values iid U[0,1], 1 seller

	Each buyer's expected utility	Seller's expected utility	Total social value
n buyers	1/[n(n+1)]	(n-1)/(n+1)	n/(n+1)
n+1 buyers	1/[(n+1)(n+2)]	n/(n+2)	(n+1)/(n+2)
change	-2/[n(n+1)(n+2)]	2/[(n+1)(n+2)]	1/[(n+1)(n+2)]

