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ABSTRACT:
Is a large inter-connected network of elements (e.g., power grids, 
ecologies, computer networks) more stable or less stable to 
perturbations as more and more elements are added to it ? 
Results based on random matrix theory due to Wigner & May, 
seem to suggest that complexity implies fragility in a large network. 
This runs counter to many empirical studies which claim that 
diversity is essential for stability, and, has led to the famous 
complexity vs. stability debate in ecology. 

We have shown that the two main objections against the May-
Wigner argument, namely, (i) it is based on local stability and (ii) 
it is only valid for random networks, are not tenable and that the 
original May-Wigner result may be universally applicable to 
networks. 
We also show that, in the specific context of a network assembly
model, the apparently contradictory claims of the opposing 
groups in the complexity vs. stability debate can be resolved. In our 
study of model networks assembled over time subject to stability
constraints, we observe that while stronger interactions and 
increased connectivity do indeed result in smaller networks, yet, 
given a large, highly connected network generated by the 
assembly process, it is much more likely to be robust than its 
smaller, sparsely connected counterpart. The network growth 
algorithm proposed by us acts as a very efficient search 
algorithm for stable yet complex network structures which are 
very rare in the space of all possible networks.

•S. Sinha and S. Sinha, 2004, nlin.AO/0402002
•S. Sinha, Physica A, 2005, 346, 147.

•C. C. Wilmers, S. Sinha and M. Brede, Oikos, 2002, 99, 3.



Non-local effects of delays in air 
traffic network!

Fog in Delhi delays flights from 
Chennai to Kolkata ! 

How do perturbations at one node 
propagate through the network and 
affect other distant nodes ?

Example: Transportation Network Example: The Internet

Instability of complex networks affect our lives at all times



New York power outage (Aug New York power outage (Aug 
14, 2003)14, 2003)

Example: Failures in the power Failures in the power 
transmission networktransmission network

Example:Example: Instabilities in the global Instabilities in the global 
financial networkfinancial network



Collapse of complex societiesCollapse of complex societies

EmpireEmpire



…and even longer timescales 

•• Collapse of ecosystemsCollapse of ecosystems

•• Cascades of extinction events Cascades of extinction events 
triggered by small fluctuationstriggered by small fluctuations

•• Ecosystem management:Ecosystem management:
Effect of human intervention Effect of human intervention 

•• Is higher diversity good or bad for an Is higher diversity good or bad for an 
ecosystem ?ecosystem ?

The The ScotianScotian Shelf food webShelf food web

The relation of stability to 
complexity has been debated for a 
long time in the context of food 
webs and ecological interaction 
networks.



Aim
To understand the stability of network dynamics with many interaTo understand the stability of network dynamics with many interacting components:cting components:

Species ( Ecology ): predatorSpecies ( Ecology ): predator--prey, competitive & cooperative interactions.prey, competitive & cooperative interactions.

Markets/economic agents ( Economics ): producerMarkets/economic agents ( Economics ): producer--consumer, competitive and consumer, competitive and 
cooperative interactions.cooperative interactions.

Biological distributed information processing (Neural networks)Biological distributed information processing (Neural networks): excitatory & : excitatory & 
inhibitory interactions.inhibitory interactions.

Human groups ( Social networks )Human groups ( Social networks )

The Question
How does the stability (response to perturbations) of networks cHow does the stability (response to perturbations) of networks change as a function hange as a function 
of :of :

•• network size (number of interacting components in the network)network size (number of interacting components in the network)

•• degree of connectivity between the nodes of the networkdegree of connectivity between the nodes of the network

•• the strength of interaction between the nodes of the networkthe strength of interaction between the nodes of the network



The Empiricists’ View

Complexity is essential for network Complexity is essential for network 
stabilitystability
Charles Elton (1958)Charles Elton (1958)
Simple ecosystems less stable than Simple ecosystems less stable than 
complex onescomplex ones
Field observations:Field observations:
••Violent fluctuations in population Violent fluctuations in population 
density more common in simpler density more common in simpler 
communities.communities.
•• Simple communities more likely to Simple communities more likely to 
experience species extinctions.experience species extinctions.
•• Invasions more frequent in cultivated Invasions more frequent in cultivated 
land.land.
•• Insect outbreaks rare in diverse Insect outbreaks rare in diverse 
tropical forests tropical forests –– common in less diverse common in less diverse 
subsub--tropical forests.tropical forests.

Robert Robert MacArthurMacArthur: theoretical : theoretical 
attempt at justification attempt at justification 
Multiple links Multiple links ≡≡ Insurance !Insurance !

The Physicists’ View
Increasing complexity leads to Increasing complexity leads to 

network instabilitynetwork instability

--11 --1.151.15 00 0.330.33
--1.661.66 --11 0.170.17 2.182.18
0.120.12 00 --11 --0.140.14
0.290.29 00 0.730.73 --11

Robert May (1972)Robert May (1972)
Randomly constructed  networks Randomly constructed  networks 

become less stable with complexitybecome less stable with complexity

J =J =

Construct Construct randomlyrandomly
generated matrices generated matrices 

representing interaction representing interaction 
strengths in a network, strengths in a network, 

whose individual nodes whose individual nodes 
are stable (are stable (JJiiii = = --1) 1) 

Obtain the Obtain the eigenvalueseigenvalues λλ of J and  use the criterion of J and  use the criterion 
that if that if λλmaxmax> 0, the system is unstable.> 0, the system is unstable.
MayMay--WignerWigner Theorem: Theorem: Stability of a network Stability of a network 
decreases as its size, connectivity and interaction decreases as its size, connectivity and interaction 
strength increasesstrength increases



The Empiricists’ View

Complexity is essential for network stabilityComplexity is essential for network stability

Charles Elton (1958)Charles Elton (1958)
Simple ecosystems less stable than complex onesSimple ecosystems less stable than complex ones

Field observations:Field observations:
••Violent fluctuations in population density more common in simpleViolent fluctuations in population density more common in simpler r 
communities.communities.
•• Simple communities more likely to experience species extinctionSimple communities more likely to experience species extinctions.s.
•• Invasions more frequent in cultivated land.Invasions more frequent in cultivated land.
•• Insect outbreaks rare in diverse tropical forests Insect outbreaks rare in diverse tropical forests –– common in less diverse subcommon in less diverse sub--
tropical forests.tropical forests.

Robert Robert MacArthurMacArthur: theoretical attempt at justification : theoretical attempt at justification 
Multiple links Multiple links ≡≡ Insurance !Insurance !



The Physicists’ View
Increasing complexity leads to network instabilityIncreasing complexity leads to network instability

--11 --1.151.15 00 0.330.33
--1.661.66 --11 0.170.17 2.182.18
0.120.12 00 --11 --0.140.14
0.290.29 00 0.730.73 --11

Robert May (1972)Robert May (1972)
Randomly constructed  networks become less stable with complexitRandomly constructed  networks become less stable with complexityy

J =J =

Construct Construct randomlyrandomly generated matrices representing generated matrices representing 
interaction strengths in a network, whose individual nodes interaction strengths in a network, whose individual nodes 
are stable (are stable (JJiiii = = --1) 1) 

Obtain the Obtain the eigenvalueseigenvalues λλ of J and  use the criterion that if of J and  use the criterion that if λλmaxmax> 0, the system is unstable.> 0, the system is unstable.

MayMay--WignerWigner Theorem: Theorem: Stability of a network decreases as its size, connectivity and Stability of a network decreases as its size, connectivity and 
interaction strength increasesinteraction strength increases



Experimental evidence:
Common garden experiments (e.g. Cedar Creek)

• diversity treatments divided over 
hundreds of experimental plots.

• examine response of population and 
community level biomass to 
environmental perturbation.

``Bottle’’ Experiments: Ecotron

Setup allows manipulation of diversity while Setup allows manipulation of diversity while 
maintaining food web structure.maintaining food web structure.

Diverse systems are more productive and Diverse systems are more productive and more resistant, but…
no effect on population variability and may indicate averaging eno effect on population variability and may indicate averaging effect.ffect.

Also, its unclear how these results scale to real communities.Also, its unclear how these results scale to real communities.



Stability of large networks:
State of the network of N nodes:  NState of the network of N nodes:  N--d vector  d vector  xx = (= (xx1 1 ,,xx22,,……, , xxNN), ), xxii : state of the : state of the iithth node.node.

Time evolution of Time evolution of xx is given by a set of equations (e.g., is given by a set of equations (e.g., VolterraVolterra--LotkaLotka))
d d xxii / d / d tt = = ffii ( ( x x )   (i = 1, 2, )   (i = 1, 2, ……, N), N)
Fixed point equilibrium of the dynamics :  Fixed point equilibrium of the dynamics :  x x 0 0 = (= (x x 001 1 , , x x 0022, , ……, , x x 00N N ) such that ) such that ff ((x x 00 ) = 0 ) = 0 

Local stability of Local stability of x x 0  0  : : LinearizingLinearizing about the about the eqlbmeqlbm:: δδx x = = xx −− x x 00

d d δδxx / d / d tt = A = A δδx x where where JacobianJacobian A: A A: A ijij = = ∂∂ ffii / / ∂∂ xxjj ||xx = = x x 00

Long time behavior of Long time behavior of δδxx dominated by dominated by λλmax max (the largest real part of the (the largest real part of the eigenvalueseigenvalues of A) of A) 
| | δδx x | ~ exp | ~ exp ((λλmaxmax tt))
The equilibrium  The equilibrium  xx = = x x 00 is stable if is stable if λλmaxmax < 0.< 0.

What is the probability that for a network, What is the probability that for a network, λλ maxmax << 0 ?0 ?

Each node is independently stable Each node is independently stable ⇒⇒ diagonal elements of A < 0 (choose A diagonal elements of A < 0 (choose A iiii = = --1).1).
Let A = B Let A = B -- I  where B is a matrix with diagonal elements 0 and I is N I  where B is a matrix with diagonal elements 0 and I is N ××N identity matrix.N identity matrix.

For matrix B, the question: For matrix B, the question: What is the probability that What is the probability that λλ’’ maxmax << 11 ??



Applying Random Matrix Theory:

Simplest approximation: Simplest approximation: no particular structureno particular structure in the matrix B, i.e., B is a random matrix.in the matrix B, i.e., B is a random matrix.

B has B has connectanceconnectance C, i.e., B C, i.e., B ijij = 0 with probability 1 = 0 with probability 1 -- C . C . 

The nonThe non--zero elements are independent random variables from (0, zero elements are independent random variables from (0, σσ2 2 ) Normal distribution.) Normal distribution.

For large N, For large N, WignerWigner’’ss theoremtheorem for random matrices apply.for random matrices apply.

Largest real part of the Largest real part of the eigenvalueseigenvalues of B is of B is λλ’’maxmax = = √√(N C (N C σσ22 ).).

For For eigenvalueseigenvalues of A: of A: λλmaxmax== λλ’’max max -- 11

For large N, probability of stability For large N, probability of stability →→ 0  if  0  if  √√(N C (N C σσ22 ) > 1, ) > 1, 
while, the system is while, the system is almost surely stablealmost surely stable if if √√(N C (N C σσ22 ) < 1.) < 1.

Large systems exhibit Large systems exhibit sharp transitionsharp transition from stable to unstable behavior when N or C or from stable to unstable behavior when N or C or σσ22

exceeds a critical value.exceeds a critical value.

Numerical computations in good agreement with theory (Gardner & Numerical computations in good agreement with theory (Gardner & Ashby, 1970; May, 1973).Ashby, 1970; May, 1973).



Objections to the May-Wigner theorem :
Complexity → Instability

Based on Based on linear stabilitylinear stability (does not take into account periodic or (does not take into account periodic or 
chaotic dynamics of populations)chaotic dynamics of populations)

Assumes Assumes randomrandom network of interactions (although the presence of network of interactions (although the presence of 
trophictrophic levels clearly imply the existence of structures in the networklevels clearly imply the existence of structures in the network))

Does Does notnot consider consider evolutionevolution of the network (in terms of network of the network (in terms of network 
growth by incorporating new nodes and links, or, reduction in sigrowth by incorporating new nodes and links, or, reduction in size of ze of 
network through extinction of nodes and/or deletion of links)network through extinction of nodes and/or deletion of links)



A Fresh look at Complexity → Instability

Consider networks with full dynamics (fixed point, oscillatory, Consider networks with full dynamics (fixed point, oscillatory, 
chaotic) at  each nodechaotic) at  each node

S. Sinha and S. Sinha, Phys Rev E, 2005, 71, 020902 (R).

Consider networks which have structures in the arrangement of thConsider networks which have structures in the arrangement of their eir 
interactionsinteractions

Small-world connectivity: S. Sinha, Physica A, 2005, 346, 147.
Hierarchical modular connectivity: R. K. Pan and S. Sinha, forthcoming

Consider networks which grow or shrink over time through additioConsider networks which grow or shrink over time through addition n 
(migration) or deletion (extinction) of nodes(migration) or deletion (extinction) of nodes

C. C. Wilmers, S. Sinha and M. Brede, Oikos, 2002, 99, 3.



In nature, networks are not In nature, networks are not randomrandom –– they have they have structure.structure.

Regular NetworkRegular Network Random NetworkRandom Network““SmallSmall--worldworld”” NetworkNetwork

Watts and Watts and StrogatzStrogatz (1998): Many biological, technological and (1998): Many biological, technological and 
social networks have connection topologies that lie between the social networks have connection topologies that lie between the 
two extremes of completely regular and completely random.two extremes of completely regular and completely random.

Increasing RandomnessIncreasing Randomness

p = 0p = 0 p = 1p = 10 < p < 10 < p < 1

Example: Example: smallsmall--worldworld networksnetworks

Montoya and Sole (2001):Montoya and Sole (2001):
Ecological networks are Ecological networks are 
smallsmall--world!world!
Challenged by Dunne et al Challenged by Dunne et al 
(2002)(2002)Question:Question:

Does smallDoes small--world world 
topology affect the topology affect the 
stability of a network ?stability of a network ?

Sinha (2005): Eigenvalue
distribution for networks 
with different topologies.
Extended tail of the eigenvalue
distrn for p < 1.



Probability of stability in a network Probability of stability in a network 
Finite size scaling:Finite size scaling: N = 200, 400, 800 and 1000.N = 200, 400, 800 and 1000.

ν ≈ 2.0 ν ≈ 1.5ν ≈ 1.72

x = x = √√(N C (N C σσ22) ) -- 1, 1, 

xxcc →→ 0 as N 0 as N →→ ∞∞

The stabilityThe stability--instability transition instability transition 
occurs at the occurs at the samesame critical value but critical value but 
gets sharper with randomnessgets sharper with randomness

The The eigenvalueeigenvalue plainplain

N = 1000, C = 0.021, σ = 0.206

p = 1p = 1 p = 0p = 0

√(NCσ2)

Stability-instability transition in Small-World Networks
(Sinha, 2005)

Regular vs Random Networks



Hierarchical Modular Networks (Pan & Sinha, forthcoming)

•• rr = 1 : randomly coupled network.= 1 : randomly coupled network.
•• rr = 0: isolated sub= 0: isolated sub--networks (modules)networks (modules)
•• 0 < 0 < rr < 1 : hierarchically structured < 1 : hierarchically structured 
network.network.

Chesapeake Bay Chesapeake Bay foodwebfoodweb ((UlanowiczUlanowicz et al)et al)

Modularity in ecological networksModularity in ecological networks



Hierarchical Modular Networks (Pan & Sinha, forthcoming)

•• rr = 1 : randomly coupled network.= 1 : randomly coupled network.
•• rr = 0: isolated sub= 0: isolated sub--networks (modules)networks (modules)
•• 0 < 0 < rr < 1 : hierarchically structured network.< 1 : hierarchically structured network.

C. C. ElegansElegans synaptic connectivity matrixsynaptic connectivity matrix

r = 1

r = 0

Increasing 
modularity

Increasing 
levels of 

hierarchy

l = 0

l = 3

C. C. ElegansElegans neural network: neural network: 302 neurons302 neurons

Synaptic links: degree distributionSynaptic links: degree distribution



Networks with structure

Introducing certain structures in the network topology does Introducing certain structures in the network topology does 
notnot significantly change the Maysignificantly change the May--WignerWigner result!result!



Is linear stability a proper measure ?Is linear stability a proper measure ?

Nodes may have Nodes may have nonnon--trivial dynamics. trivial dynamics. (Sinha & Sinha, 2005)(Sinha & Sinha, 2005)

Introduce explicit dynamics at the nodesIntroduce explicit dynamics at the nodes : X (n+1) = F( X (n))X (n+1) = F( X (n))

What happens when such nodes are coupled together via a sparse rWhat happens when such nodes are coupled together via a sparse random andom 
network ?network ?

Network dynamics



(Sinha & Sinha, 2005)(Sinha & Sinha, 2005)Dynamics of network nodesDynamics of network nodes : X (n+1) = F( X (n))X (n+1) = F( X (n))

Example: Example: Discrete exponential logistic growth modelDiscrete exponential logistic growth model

X X n+1n+1 = X = X nn exp [r( 1 exp [r( 1 –– X X n n )])]

FixedFixed--point, periodic point, periodic 
and chaotic and chaotic 
dynamicsdynamics

extinctionextinction

Network dynamics: Network dynamics: 

Xi (n+1) = F( Xi (n) [ 1+Xi (n+1) = F( Xi (n) [ 1+ΣΣ JijJij XjXj (n) ] )(n) ] )

A node is extinct if A node is extinct if ΣΣ JijJij XjXj < < --11

Question:Question: How many nodes survive asymptotically ?How many nodes survive asymptotically ?



Global stability of network ~ Probability of persistence of actiGlobal stability of network ~ Probability of persistence of active nodesve nodes

~ C ~ C --11~ N ~ N --11

~ ~ σσ --1.41.4

~ r~ r --33

Scaling of Scaling of ΣΣ JJijij XXjj distribution confirms the Maydistribution confirms the May--
WignerWigner resultsresults

~ C ~ C --11

~ ~ σσ --22

Probability of stability depends not on details of map Probability of stability depends not on details of map 
dynamics dynamics ……but on the extent of the attractor as ~ but on the extent of the attractor as ~ 
[x[xrr

maxmax]]--33



No change in results for global stability with dynamics at nodesNo change in results for global stability with dynamics at nodes: : 
Complexity Complexity →→ InstabilityInstability

Universal feature of network dynamics!Universal feature of network dynamics!

Network dynamics

Probability of stability ~ N -1
~ C -1
~ σσ --22



Puzzle !
How can complex networks be robust at all ?How can complex networks be robust at all ?

Possible solution: Network Evolution

Networks  do not occur fully formed but gradually evolve over tiNetworks  do not occur fully formed but gradually evolve over timeme

Example:Example: Assembling ecological communitiesAssembling ecological communities

How are ecological networks gradually organized over How are ecological networks gradually organized over 
time by species invasion and/or extinction ?time by species invasion and/or extinction ?

Community Assembly rules decide  which species can Community Assembly rules decide  which species can 
coexist in an ecosystem, and the sequence in which coexist in an ecosystem, and the sequence in which 
species are able to colonize a habitat.species are able to colonize a habitat.



WSB Network Assembly Model : Algorithm
(Wilmers-Sinha-Brede, 2002)

• Start with one node. Start with one node. 

• Add another node with Poisson distributed number of links, Add another node with Poisson distributed number of links, 
and Normal (0,and Normal (0,σσ22 ) distributed interaction strengths ) distributed interaction strengths aaijij ..

aa1212
←←
→→
aa2121

• Check stability of the resultant network interaction matrix:Check stability of the resultant network interaction matrix:
If unstable, remove a node at random and analyze the If unstable, remove a node at random and analyze the 

stability again.stability again.
If stable, add another node.If stable, add another node.

Network Evolution



Network initially grow in size monotonically and then settles Network initially grow in size monotonically and then settles 
down to a pattern of growth spurts and collapses.down to a pattern of growth spurts and collapses. Communities with overall Communities with overall 

weaker interactions support a weaker interactions support a 
larger mean number of species larger mean number of species 
→→ weak links are stabilizing (R. weak links are stabilizing (R. 
May).May).

Agrees with May (1972)Agrees with May (1972)

The randomness in network connectivity is The randomness in network connectivity is quenchedquenched
→→ longlong--range range memory!memory!

Probability of stability of random Probability of stability of random 
network (network (annealedannealed randomness)randomness)

gaussiangaussian PDF PDF 
for for annealedannealed
randomnessrandomness

observed PDF for observed PDF for 
quenchedquenched
randomnessrandomness



Surprise! For the evolved networks : complexity → robustness
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Larger networks are less variable (i.e., more robust) and more rLarger networks are less variable (i.e., more robust) and more resilient esilient 
(resilience = (resilience = normalized mean return time to average network size)
Frequency Distribution of Extinction Cascades:
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Larger networks have smaller chance of a large magnitude collapsLarger networks have smaller chance of a large magnitude collapse e →→ increased resistanceincreased resistance



Conclusion
Introducing dynamics  and/or structure into networks does Introducing dynamics  and/or structure into networks does notnot change change 

stabilitystability--instability transition at increased complexity.instability transition at increased complexity.

Introducing network evolution Introducing network evolution →→
synthesis of opposing views in stability/diversity debatesynthesis of opposing views in stability/diversity debate

Stronger interactions & increased connectivity lead to smaller Stronger interactions & increased connectivity lead to smaller networks, networks, 
yet,yet,

given a large, highly connected network it is more likely to begiven a large, highly connected network it is more likely to be robust robust 
than its smaller, sparsely connected counterpart.than its smaller, sparsely connected counterpart.

The results imply that the traditional approach of taking snapsThe results imply that the traditional approach of taking snapshot views hot views 
of networks may be inadequate to build an understanding of theirof networks may be inadequate to build an understanding of their
stability.stability.

Implications not just for ecology, but from cell to society!Implications not just for ecology, but from cell to society!



OIKOS 99: 363–367, 2002

Examining the effects of species richness on community stability:
an assembly model approach

Christopher C. Wilmers, Sitabhra Sinha and Markus Brede

Wilmers, C. C., Sinha, S. and Brede, M. 2002. Examining the effects of species
richness on community stability: an assembly model approach. – Oikos 99: 363–367.

We build dynamic models of community assembly by starting with one species in our
model ecosystem and adding colonists. We find that the number of species present
first increases, then fluctuates about some level. We ask: how large are these
fluctuations and how can we characterize them statistically? As in Robert May’s
work, communities with weaker interspecific interactions permit a greater number of
species to coexist on average. We find that as this average increases, however, the
relative variation in the number of species and return times to mean community levels
decreases. In addition, the relative frequency of large extinction events to small
extinction events decreases as mean community size increases. While the model
reproduces several of May’s results, it also provides theoretical support for Charles
Elton’s idea that diverse communities such as those found in the tropics should be
less variable than depauperate communities such as those found in arctic or agricul-
tural settings.

C. C. Wilmers, Dept of En�ironmental Science, Policy and Management, 201 Wellman
Hall c3112, Uni�. of California, Berkeley, CA 94720-3112, USA (cwilmers@
nature.berkeley.edu). – S. Sinha, Dept of Physics, Indian Institute of Science, C V
Raman A�enue, Bangalore, India. – M. Brede, Institute of Theoretical Physics, Uni�.
of Leipzig, Leipzig, Germany.

Theoretical studies have generally supported the notion
that as community complexity increases, stability de-
creases (Gardner and Ashby 1970, May 1972, Gilpin
1975, Pimm and Lawton 1978, Hogg et al. 1989).
Authors of such work typically analyze the local or
species-deletion stability of randomly organized interac-
tion matrices and/or Lotka-Volterra systems. With few
exceptions (e.g. in donor-controlled communities) theo-
retical research has shown a negative relationship be-
tween stability and complexity (Pimm 1982). Conversely,
empirical work generally shows that as communities
increase in species richness they also increase in stability
(McNaughton 1978, Tilman and Downing 1994, Tilman
et al. 1996, Naeem and Li 1997). Studies conducted in
controlled microcosms demonstrate a positive relation-
ship between species richness and aggregate measures of
community stability such as total biomass (Tilman et al.

1996, Naeem and Li 1997). Though this disconnect
between theory and experiment is partially due to vary-
ing definitions of stability, it has nevertheless led to what
has become the ‘diversity-stability debate’ in ecology
(McCann 2000).

An alternative approach to modeling communities as
randomly constructed entities is to assemble them one
species at a time. Models of this kind typically draw
species from a limited pool of resources and consumers
until a final community state is reached (Post and Pimm
1983, Drake 1990, Law and Morton 1996). A clear
advantage to this approach is the realism embodied in
the methodology. As such, models of this kind have
closely corroborated experimental manipulations in mi-
crocosm experiments. While much effort has been fo-
cused on analyzing the invasibility of these models, there
has been little work analyzing their statistical properties.
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Here we construct dynamic models of community
assembly starting with one species and then adding
colonists to our hypothetical ecosystem. As with previ-
ous studies, we find that the number of species initially
increases, then fluctuates about some level. We ask:
how large are these fluctuations and how can we char-
acterize them statistically? We present the results
through an ecological lens, though much like previous
work in this area, the model may have broader applica-
tion to other networked systems such as those found in
economics, sociology and computing.

Methods

We begin with one species in our model ecosystem and
add colonists to the network one at a time. New
colonists interact with resident species with probability
p, where p is chosen such that the resultant connectance
C (where E(C)=p), of our ecological network approx-
imates the values reported in empirical food web stud-
ies. We compare scenarios p=0.05, 0.10 and 0.15. Once
a link has been established between two species, interac-
tion strengths are then assigned from a specified distri-
bution. We focus our analysis on normal (0, �)
distributed interactions, where � is a joint measure of
the population of a species and average interaction
strength between species. For the remainder of the
paper we refer to � simply as interaction strength,
though it can be (as in equations containing nonlinear
terms) a weighted measure of interaction strength and
populations size depending on the specific form of the
underlying equations. We focus on normally distributed
interactions because weak interactions are thought to
be more common in nature than strong ones but we
also test uniform (−a, a) and beta (r, s) distributions
where beta parameters r and s are chosen such that the
distribution of interaction strengths is basin shaped
thus emphasizing strong interactions. Species interac-
tions in our community are represented by a matrix A
with elements aij such that perturbations of species
from a community equilibrium satisfy the equation,

dx

dt
=Ax, (1)

where A is the Jacobian matrix resulting from a Taylor
expansion of a set of nonlinear first-order differential
equations around one of their equilibrium points, re-
taining only the linear terms. The variable x indicates
deviation from the equilibrium. As in May (1972), we
do not specify the form of these equations, so that our
model remains simple and general. This also means that
we do not need to consider feasibility issues (Roberts
1974) since such considerations are only relevant when
explicit dynamics (e.g. Lotka-Volterra) are specified.

Diagonal terms aii are set to −1 so that populations
are self regulated and normalized with respect to their
intrinsic growth rates. We then analyze the local stabil-
ity of the system by calculating the eigenvalues of the
community matrix A. We use the condition that if the
real part of the dominant eigenvalue is greater than
zero, then the equilibrium point at which the commu-
nity exists is unstable (May 1972). If it is unstable, we
remove a species at random. Conversely, if it is stable,
we add another species with a binomial (n, p) dis-
tributed number of links, where n is the number of
species, and randomly chosen interaction strengths as
described above. We then analyze the local stability of
the system and repeat the process. The model is then
allowed to run for 5×105–106 iterations, which is more
than sufficient to assess the statistical properties of the
system.

Fig. 1. (A) The number of species in the model ecosystem is
plotted over time for a connectance=0.05 and interaction
strength �=0.4 from a normal distribution. (B) The corre-
sponding distribution of species diversity of such communities
is plotted for three different mean interaction strength levels �.
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Results

Communities in our model initially grow monotonically
and then settle into a pattern of growth spurts and
collapse (Fig. 1A). This process of community growth
and decline ultimately defines a stationary stochastic
process in the sense that a limiting distribution of states
is approached asymptotically. A Fourier transform of
the resulting time series can be modeled by a power law
of the form,

P=�f �, (2)

where P is the power spectral density of the time series,
f is the frequency and � and � are constants. An
exponent of �� −3 indicates that the process of com-
munity growth and collapse is more correlated than a
random walk, which has exponent �� −2 (Feller
1966).

Previous studies, both empirical and theoretical, have
shown that as communities grow, they settle into a
climax state thus becoming less invasible (Post and
Pimm 1983, Dickerson and Robinson 1986, Robinson
and Edgemon 1988, Drake 1990, Law and Morton
1996). Studies of this kind focus on a limited set of
species interacting over a narrow time horizon. The
pattern we observe is similar to other community as-
sembly models in its initial growth, but it differs
markedly in that a final climax state is never reached.
Our model may be thought of as acting on a longer
time scale such that a balance of colonization and
extinction is maintained.

In Fig. 1B we illustrate the size distribution of the
communities for the values 0.4, 0.45 and 0.55 of aver-
age interaction strength � from a normal distribution.
The mean of the distribution shifts to higher values as
� decreases. This indicates that communities with over-
all weaker interactions can support a larger number of
species, which agrees, in principle, with the general
theoretical result that weak links are more stabilizing
(May 1974, McCann et al. 1998). Communities with
strong links in our system cannot sustain as many
species as those with weaker links because the probabil-
ity of becoming unstable, as species are added to com-
munities with strong interactions, increases more
rapidly than in communities with weaker interactions.

Due to the stationarity of this stochastic process, it is
appropriate to analyze the stability of the system in
terms of variation in community size. Communities that
vary widely around the mean are less stable than com-
munities that stick more closely to the mean. A cursory
glance at the variance of community distribution (Fig.
1B) indicates that it gets larger as community size
increases. We do not believe, however, that variance is
an accurate descriptor of stability here, so instead we
investigate the variability of our communities by calcu-
lating the coefficient of variation (CV), which standard-

Fig. 2. (A) The coefficients of variation and (B) return times
to equilibrium are plotted for communities with different mean
number of species for three different connectance levels C.

izes the measure of fluctuation in community size for
different means. Large communities are more likely to
lose more species than small communities because they
have more to lose. It is how many species these commu-
nities lose on a percentage basis that we are concerned
with.

Our results indicate (Fig. 2A) that increasing mean
community size leads to decreasing values of CV indi-
cating that more diverse communities are less variable.
To be more specific, diverse communities in absolute
terms lose more species than depauperate ones, but as a
percentage of their members they lose less.

The distribution from which interaction strengths
were drawn did not change our results qualitatively.
Communities assembled from uniform and basin
shaped beta distributions both showed the same pattern
of decreasing CV with increasing diversity. What ap-
pears to be driving the reduction in CV is the assembly
process itself. Figure 2A also reveals that as connec-
tance C increases for a given community size, CV
decreases.
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Another way to investigate the variation of our com-
munities is to look at the size distribution of species
extinction cascades. Communities with more large cas-
cades relative to small ones may be thought of as more
variable than communities with more small cascades
relative to large ones. The distribution of these extinc-
tion cascades generally showed a power law variation
with exponent � (represented as slope on a log-log plot)
over one decade followed by an exponential cut-off due
to the finite size of our system (Fig. 3). Specifically,

N=�S−� (3)

where S is the cascade size, N is the number of such
cascades and � and � are constants. The value of �

increases with increasing mean community size where �

and � are greater than zero. The larger the value of the
exponent, the more negative the slope of the power law
and thus the smaller the frequency of large cascades,
corroborating our previous result that communities de-
crease in variation as they get larger.

In addition to analyzing the variation in community
size, we investigated return times to mean community
size. We did this using two approaches. In the first, we
used the mean of our time-series as a threshold, and
evaluated the number of time-steps between each de-
parture and subsequent return to this threshold. In the
second, we looked at return times to the mean from
points a maximum or minimum distance away from the
mean. The length of each of these interval periods was
stored in a vector. We then take the mean of this vector
and divide by the variance of the time series. Normaliz-
ing the mean by the variation is analogous to the
normalization procedure we previously used for vari-
ance. In that case we compared the variance of distribu-
tions drawn from different means. Here, we compare
means drawn from distributions of different variance.
The qualitative results of both measures of return time
were the same. Namely, as seen in Fig. 2B, return times
decrease with increasing mean community size and
decreasing connectance.

Discussion

Robert May’s results and subsequent work indicate
that large randomly assembled ecosystems tend to be
less dynamically stable as they increase in complexity
(May 1972, Gilpin 1975, Pimm 1982, Hogg et al. 1989).
Specifically, if �2nC�1 then the system will almost
surely be unstable. Real ecosystems are not randomly
constructed, however, but rather gradually assembled
through a long series of invasions and extinctions. This
is a non-equilibrium situation where – driven by exter-
nal factors such as weather, species invasion or some
other kind of disturbance – the system is constantly

changing over time. Our assembly model simulates this
process of gradual formation, and thereby builds a
more realistic ecosystem.

Fig. 3. The distributions of extinction cascades is plotted for
communities with a mean of (A) 20 species (B) 52 species and
(C) 98 species. Cascade distributions are power law with
exponential tails due to the finite size of the system. As
community size increases the slope of this power law decreases
indicating that the smaller a community gets, the more likely it
is to experience large extinctions on a relative basis.
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Our model shows the same directional relationship
between the variables �, n and C on community size
that May demonstrated on community stability. Be-
cause our method of constructing communities pro-
gresses according to a specified algorithm that reflects
the community assembly process, however, our systems
are not subject to the same stability criterion as May.
In order to build larger and larger communities, we
must decrease mean interaction strength or connec-
tance, but once a community is established, species-rich
communities are less variable and return more quickly
to mean levels than do less diverse ones.

Our results lend theoretical support to the view,
espoused by Charles Elton, that more diverse ecosys-
tems such as those found in the tropics are less prone to
large oscillations in species abundance, and hence more
stable, than less diverse ecosystems such as those found
in the arctic or horticultural fields (Elton 1958). This
idea originally received theoretical justification based
on the assumption that a multiplicity of predator-prey
associations in a community frees it from dramatic
changes in abundance when one of the prey or predator
species declines in density (MacArthur 1955). May’s
result, however, ran counter to this argument. Our
model corroborates both views. Stronger interactions
and increased connectivity lead to smaller communities,
yet when the system is diverse and highly connected, it
is likely to be less variable than its sparsely connected
and less diverse counterpart.

Our focus on CV should give conservation biologists
pause. Are we worried about species loss on an abso-
lute basis or on a relative basis? Because large commu-
nities have more species, we should expect them to lose
more species. The fact that we predict that they will
lose less on a percentage basis, however, implies that
being large is stabilizing.
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