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Loops of any size and Loops of any size and 
Hamilton cyclesHamilton cycles

in random scalein random scale--free networksfree networks
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Complex networks: Their degree Complex networks: Their degree 
distribution and clustering distribution and clustering 
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Motifs           Function Motifs           Function 

SubgraphsSubgraphs which appear with higher 
frequency than in randomized 
networks are called  motifsmotifs of the 
network.

The motifs are relevant to The motifs are relevant to 
understand  the function of the understand  the function of the 
network.network.

Modules in the transcriptome
network of e.coli.
(S.S. Shen-Orr, et al., Nature Genetics 
31,64 (2002)).

→



To which extent 
large-scale properties

effect
subgraphs frequency?



LoopsLoops

Loops are a special kind of network 
subgraphs

• They are responsible for the multiplicity of 
paths going through generic nodes of the 
network 

• They are relevant for load distribution 
• They are neglected in local tree-like 

approximations.



Direct counting Direct counting 
of loops of finite size of loops of finite size LL

If we have access to the entire adjacency matrix           
with                  the number of loops of finite size L is given by
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Direct counting Direct counting 
of loops of finite size of loops of finite size LL

If we have access to the entire adjacency matrix           
with                  the number of loops of finite size L is given by
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Average number of loops in Average number of loops in 
regular random networksregular random networks
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The number of small loops
with                            is finite 
in infinite graphs

The number of large loops
is exponentially large, where
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The Hamiltonian cycles (L=N)
are present only for

NL /=l



Number of Number of LL--loops in the loops in the 
BA networkBA network

While the BA network grows new loops 
are formed. These loops include 
necessarily the last node of the 
network.

For small loops it is possible to show
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G. Bianconi and A. Capocci Phys. Rev.Lett. 90, 078701 (2003).

Indication: 
scale-free graphs 
might have a large 
number of small 
loops



Motivation for counting Motivation for counting 
loops on random scaleloops on random scale--free free 

networksnetworks

We would like to understand which are the 
consequences of pure scale-free distribution
on subgraphs frequency

1. for having a reliable null model to compare real 
networks with;

2. for having a reference point for counting 
loops in correlated networks.



Ensembles of random scaleEnsembles of random scale--
free networksfree networks
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M. Molloy and B. Reed,(1995).
G. Caldarelliet al., PRL (2002)



The two ensembles:The two ensembles:
pro and contra pro and contra 

for counting loopsfor counting loops

• The Molloy Reed ensemble
For  scale-free degree distributions there are multiple link in the network. 

• The fitness ensemble
There is no control on the smallest value of the connectivity.
In particular there can be some network realization with nodes of 
connectivity ki=0,1. This is an important aspect to take into account when 
counting very large loops like for example Hamiltonian cycles. 



Average number of loops in Average number of loops in 
the MR ensemblethe MR ensemble

To count the average number of loops of 
size L one have 

1. to calculate in how many ways one 
can choose L nodes, nk nodes with 
connectivity k for every allowed 
value of the connectivity k with 

2. in how many ways one can order the 
nodes and choose the links

3. how many are the networks in the 
ensemble which contain the 
chosen loop.
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Formula manipulationsFormula manipulations
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Starting from

1. Applying the Stirling approximations for factorials valid in the 
N>>L>>1 limit, 

2. Using the integral representation of the delta, 
3. Performing the sum over nk one gets the expression

Which can be evaluated with a saddle point approximationsaddle point approximation



Small loops Small loops 
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Small loops Small loops 
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Scale-free networks have a large number of small loops for γ<3.



Small loops Small loops 
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Larger loopsLarger loops
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Scale-free networks have an exponential  
number of large loops.
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The most frequent loop size 
is of order N, and given  by



Hamilton cycleHamilton cycle

The random scale-free network is 
not Hamiltonian also for a 
minimal connectivity
as long as  γ<γ∗ in the ∞→N

3≥m

It can be shown that the critical m
for having an expected number of 
Hamiltonian cycles in the ensemble
grater than zero goes like  

1)2()( −−≈ γγcm

For γ<γ∗ it is not
possible to extract 

a regular random  graph 
with  c=3   m form the SF
network

≤



Loops passing through a Loops passing through a 
node of the networknode of the network
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The number of loops of small size L passing 
through a node of degree k is given by

The clustering coefficient of a scale-free network with
γ<3 decreases with the network size as

while for γ>3
1−≈ NCi



Loops passing through a Loops passing through a 
node of the networknode of the network
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The number of loops of small size L passing 
through a node of degree k is given by

For a finite network with γ<3 loops of size L become
relevant if one looks at nodes with connectivity



Comparison with direct Comparison with direct 
counting resultscounting results

• We simulate a Molloy Reed 
graph without multiple links.

• We use the Johnson 
algorithm to count directly 
each loop of a network of size 
N=30 and m=3 averaged over 
different realization.

• We use the same degree 
distribution to compare the 
direct counting results with the 
analytic results. 

D. B. Johnson, SIAM J. Comput., 4 77 (1975).



Loops in the hidden variable Loops in the hidden variable 
ensembleensemble
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The expression for the average number of loops change 
as in the following

The scaling results remain the same as in the Molloy Reed 
ensemble but the equation for the most frequent loop 
change and the value of γ* also changes. 



ConclusionsConclusions
Random scale-free networks are characterized by a 
1. a large number of small loops;
2. an exponential number of loops of length of order N;
3. the most probable loop size of order N with the proportionality 

constant depending on the considered random graph ensemble.
4. Random scale-free graphs can fail to have an Hamilton cycle even 

when they have a minimal connectivity grater of equal to 3 in the 
large N limit  provided that    the power-law exponent γ is sufficiently 
close to two, i.e. γ<γ∗ with γ∗ depending on the ensemble.
G.B. and M. Marsili (JSTAT 2005)

Further steps:
• Calculate the fluctuations in the number of loops and the probability 

that the number of loops present in the typical network is grater than 
zero

• Generalize the calculation to correlated scale-free networks.


