A Framework for AGN Heating in Cluster Cores

Energetics of the ICM

MS 1054-0321 / Donahue et al. (1998)

 $kT \approx 10 \text{ keV}$

Fe/H ≈ 0.3 solar

z = 0.83

E_{SN} ≈ 1 keV/particle

E_{AGN} ≈ ? keV/particle

Observing AGN Feedback

Perseus Cluster & 3C 84

Sound Waves in Perseus

Motivating Questions

- Is AGN heating necessary to explain cluster properties?
- Does AGN feedback stop star formation in high-mass galaxies?
- What can observations tell us about the characteristics of AGN feedback?

Motivating Questions

- Is AGN heating necessary to explain cluster properties?
- Does AGN feedback stop star formation in high-mass galaxies?
- What can observations tell us about the characteristics of AGN feedback?

Evidence for AGN Heating

L-T Relation

AGN Heating in Groups

Radio-loud groups (circles) tend toward the low-L, high-T side of L-T relation

Croston et al. 2004

Dramatic Heating Events

MS0735 (McNamara et al.)

Hydra A (Nulsen et al.)

Entropy in Cluster Cores

Intracluster Entropy

$$K = P\rho^{-5/3} \propto Tn_e^{-2/3}$$
 (keV cm²)

- Entropy distribution in ICM determines a cluster's equilibrium structure
- Entropy distribution retains information about cluster's thermodynamic history
- Feedback changes K more than T

Entropy Profiles of "Active Clusters"

Entropy Profiles of "Active Clusters"

Core entropy profiles very regular

Entropy inversions are minor and lie at r < 10 kpc

Entropy Profiles of "Active Clusters"

Pure cooling model plus a 10 keV cm² pedestal reproduces observed profiles

Episodic Heating

 $\Delta t \approx 10^8 \text{ yr } (K/10 \text{ keV cm}^2)^{3/2} (T/5 \text{ keV})^{-1}$

- Heating episodes required every ~10⁸ yr
- Central entropy level remains near input level for most of duty cycle
- Central entropy input cannot greatly exceed 10-20 keV cm²

Entropy Profiles of "Passive Clusters"

"Cooling flow"
clusters without
signs of
feedback
appear to have
high central
entropy and
cooling time
~ 1 Gyr

Entropy Profiles of "Passive Clusters"

Heating of Cluster Cores

- Entropy inversions are rare
- Iron gradients monotonically decrease
- Central entropy input ~ 10-20 keV cm²

- Entropy inversions are rare
- Iron gradients monotonically decrease
- Central entropy input ~ 10-20 keV cm²

Consistent with AGN outbursts of:

- kinetic power ~10⁴⁵ erg s⁻¹
- lasting for > $2 \times 10^7 \text{ yr}$ $\sim 10^{60} \text{ erg}$
- occurring every 10⁸ yr

Independent of inferences from X-ray cavities

- Entropy inversions are rare
- Iron gradients monotonically decrease
- Central entropy input ~ 10-20 keV cm²

Consistent with AGN outbursts of:

- kinetic power ~10⁴⁵ erg s⁻¹
- lasting for > $2 \times 10^7 \text{ yr}$ $\sim 10^{60} \text{ erg}$
- occurring every 10⁸ yr

- Entropy inversions are rare
- Iron gradients monotonically decrease
- Central entropy input ~ 10-20 keV cm²

Consistent with AGN outbursts of:

- kinetic power ~10⁴⁵ erg s⁻¹
- lasting for > $2 \times 10^7 \text{ yr}$ $\sim 10^{60} \text{ erg}$
- occurring every 10⁸ yr

Independent of inferences from X-ray cavities

Zones of AGN Heating

• Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$

• Energy dominated: $E \sim \rho r^3 v^2$, $v \approx f_E (E/\rho r^3)^{1/2}$

• Bubble dominated: $\Delta E \approx V_{\text{bub}} \text{ IdP/drl } \Delta r$

Pre-Outburst Configuration

$$K(r) \approx 150 \text{ keV cm}^2 (r/100 \text{ kpc})$$

$$T(r) \approx T_{5,100} (r/100 \text{ kpc})^{1/3}$$

$$n_e(r) \approx 0.006 \text{ cm}^{-3} T_{5,100}^{3/2} (r/100 \text{ kpc})^{-1}$$

Entropy Jump Condition

$$K_2 \approx \frac{v^2}{3(4\rho)^{2/3}} + 0.84 K_1$$

$$\Delta K \approx \frac{V^2}{3(4\rho)^{2/3}} - 0.16 \,\mathrm{K}_1$$

$$M \approx 2.1 (\Delta K/K_1)^{1/2}$$

• Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $v \propto r^{-1/3}$, $\Delta K \propto v^2 \rho^{-2/3} \propto const.$

- Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $v \propto r^{-1/3}$, $\Delta K \propto v^2 \rho^{-2/3} \propto const.$
 - Constant power naturally produces $\Delta K(r) \sim \text{const.}$
 - No entropy inversion; no convective mixing
 - Inner entropy scale directly related to power input

$$M(r) \approx \sqrt{\frac{\Delta K}{10 \text{ keV cm}^2} \frac{30 \text{ kpc}}{r}}$$

• Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$

$$\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5,100}^{-2}$$

- Constant power naturally produces $\Delta K(r) \sim \text{const.}$
- No entropy inversion; no convective mixing
- Inner entropy scale directly related to power input

$$M(r) \approx \sqrt{\frac{\Delta K}{10 \text{ keV cm}^2}} \frac{30 \text{ kpc}}{r}$$

• Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$

 $\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5,100}^{-2}$

- Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5,100}^{-2}$
- Energy dominated: $E \sim \rho r^3 v^2$, $v \approx f_E (E/\rho r^3)^{1/2}$

- Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5,100}^{-2}$
- Energy dominated: $E \sim \rho r^3 v^2$, $v \approx f_E (E/\rho r^3)^{1/2}$ $\Delta K \approx 19 \text{ keV cm}^2 L_{45} t_7 f_E^2 T_{5.100}^{-5/2} (r/20 \text{ kpc})^{-4/3}$

• Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5,100}^{-2}$

• Energy dominated: $E \sim \rho r^3 v^2$, $v \approx f_F (E/\rho r^3)^{1/2}$

 $\Delta K \approx 19 \text{ keV cm}^2 L_{45} t_7 f_{\text{E}}^2 T_{5.100}^{-5/2} (r/20 \text{ kpc})^{-4/3}$

can cause entropy inversion

- Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5,100}^{-2}$
- Energy dominated: $E \sim \rho r^3 v^2$, $v \approx f_E (E/\rho r^3)^{1/2}$ $\Delta K \approx 19 \text{ keV cm}^2 L_{45} t_7 f_E^2 T_{5,100}^{-5/2} (r/20 \text{ kpc})^{-4/3}$
- Bubble dominated: $\Delta E \approx V_{\text{bub}} \text{ IdP/drl } \Delta r$, $E_{\text{bub}} = f_{\text{bub}} E$

- Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5.100}^{-2}$
- Energy dominated: $E \sim \rho r^3 v^2$, $v \approx f_E (E/\rho r^3)^{1/2}$ $\Delta K \approx 19 \text{ keV cm}^2 L_{45} t_7 f_E^2 T_{5,100}^{-5/2} (r/20 \text{ kpc})^{-4/3}$
- Bubble dominated: $\Delta E \approx V_{\text{bub}} \text{ IdP/drl } \Delta r$, $E_{\text{bub}} = f_{\text{bub}} E$ $\Delta K \approx 0.7 \text{ keV cm}^2 f_{\text{bub}} f_{\text{E}}^{-2} (r_{\text{ss}}/30 \text{ kpc}) (r/r_{\text{ss}})^{-3/2}$

- Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $\Delta K \approx 23 \text{ keV cm}^2 L_{45}^{2/3} f_P^2 T_{5,100}^{-2}$
- Energy dominated: $E \sim \rho r^3 v^2$, $v \approx f_E (E/\rho r^3)^{1/2}$ $\Delta K \approx 19 \text{ keV cm}^2 L_{45} t_7 f_E^2 T_{5,100}^{-5/2} (r/20 \text{ kpc})^{-4/3}$
- Bubble dominated: $\Delta E \approx V_{\text{bub}} \text{ IdP/drl } \Delta r$, $E_{\text{bub}} = f_{\text{bub}} E$ $\Delta K \approx 0.7 \text{ keV cm}^2 f_{\text{bub}} f_{\text{E}}^{-2} (r_{\text{ss}}/30 \text{ kpc}) (r/r_{\text{ss}})^{-3/2}$

can cause entropy inversion

Net Entropy Change Per Cycle

Use pure cooling model as initial state

Time between outbursts set by balancing heating and cooling at 2 kpc

Heating beyond the Core

Dramatic Heating Events

Hydra A (Nulsen et al.)

Beyond the Core $(\rho \propto 1/r^2)$

• Sustained Luminosity: $L \sim \rho r^2 v^3$

 $V \sim 1600 \text{ km s}^{-1} L_{46}^{1/3} (7/5 \text{ keV})^{-1/3}$

 $\Delta K / K \sim 0.4 L_{46}^{2/3} (T/5 \text{ keV})^{-5/3}$

Beyond the Core $(\rho \propto 1/r^2)$

• Sustained Luminosity: $L \sim \rho r^2 v^3$

$$v \sim 1600 \text{ km s}^{-1} L_{46}^{1/3} (T/5 \text{ keV})^{-1/3}$$

$$\Delta K / K \sim 0.4 L_{46}^{2/3} (T/5 \text{ keV})^{-5/3}$$

Preserves shape of original K profile!

A Role for Conduction?

A Role for Conduction?

$$\lambda_{\rm F} = \sqrt{\frac{\kappa T}{n_e^2 \Lambda}} \sim 10 \text{ kpc } (K/18 \text{ keV cm}^2)^{3/2} f_{\rm c}^{1/2}$$

- Conduction cannot stabilize radiative cooling in "active clusters"
- Conductive stabilization is possible in "passive clusters" for $f_{\rm c} \sim 0.3$ 1
- Large AGN outburst can raise core to conductively stabilized state (bifurcation?)

AGN Heating in Cluster Cores

Entropy Profile Shapes:

"Active clusters" have ~10 keV cm² pedestal "Passive clusters" have higher central entropy

Heating by AGN Outflows:

Constant-power outflow can produce $\Delta K \sim \text{const.}$

Core profiles imply $\sim 10^{45}$ erg/s for ~ 30 Myr

Bubble heating (or wave heating) at > 30 kpc

Conduction may cause bifurcation in cores

• Outflow dominated: $L \sim \rho r^2 v^3$, $v \approx f_P (L/\rho r^2)^{1/3}$ $v \propto r^{-1/3}$, $\Delta K \propto v^2 \rho^{-2/3} \propto const.$

- Constant power naturally produces $\Delta K(r) \sim \text{const.}$
- No entropy inversion; no convective mixing
- Inner entropy scale directly related to power input $M(r) \approx (\Delta K / 10 \text{ keV cm}^2)^{1/2} (r / 30 \text{ kpc})^{-1/2}$