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1 – Introduction

• Done in collaboration with Andrew Liddle (Sussex), Juan Garcı́a-Bellido and Marı́a

Beltrán (Madrid)

• Work in progress

• Bayesian parameter estimation is a well established procedure with MCMC as a

standard method

• Parameter estimation will “estimate” parameters, regardless of whether the model is

appropriate or not.

• Bayesian model comparison allow one to compare models. It picks the most suitable

model based on

– ability to fit the data

– complexity
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2 – Introduction

• Basic quantity that describes the relative probability of a model is Evidence:

– it is a Bayesian equivalent of χ2

– Occam’s razor built in

– integral of likelihood over the prior:

E =
∫

L(x)π(x)dn
x (1)
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3 – Example

Isocurvature models (astro-ph/0501477):

Parameter Prior Range Model

ωb (0.018,0.032) AD-HZ,AD-ns,ISO

ωdm (0.04,0.16) AD-HZ,AD-ns,ISO

θ (0.98,1.10) AD-HZ,AD-ns,ISO

τ (0,0.5) AD-HZ,AD-ns,ISO

ln[1010Rrad] (2.6,4.2) AD-HZ,AD-ns,ISO

ns (0.8,1.2) AD-ns,ISO

niso (0,3) ISO

δcor (−0.14,0.4) ISO
√

α (−1,1) ISO

β (−1,1) ISO

Model ln(Evidence)

AD-HZ 0.0 ± 0.1

AD-ns 0.0 ± 0.1

CDI −1.0 ± 0.2

NID −1.0 ± 0.2

NIV −1.0 ± 0.3
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4 – Thermodynamic integration

• The iso-curvature paper was a proof of concept

• The Evidence was calculated by the thermodynamic integration:

E =
∫ 1

0
dλ 〈log L〉Lλπ (2)

• Computationally extremely inefficient: 106 samples required for reasonable accuracy

• Method “learns” about the extend of the prior by seeing how samples behave at low

lambda: clearly inefficient.

• Naive approaches don’t work:

– random sampling never hits high L region

– average of burned-in samples L is evidence if prior=posterior (bad!)

5



5 – Thermodynamic integration

We attempted several methods to get evidence, or an approximation of evidence from

burned-in samples alone:

• Would put evidence calculation into mainstream allowing people to reuse parameter

estimation chains

• Must put in prior width by hand (good!)

• Gaussian approximation + expansion

• Savage - Dickey approach
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6 – Gaussian + perturbative expansion

• Approximate posterior by a Gaussian and calculate evidence.

• Allows one to add Skewnes, Kurtosis and higher moments to improve fit.
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7 – Gaussian - example

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

• A non-gaussian function made by

summing two Gaussians

• Approximate by Gaussian with the

same mean / covariance

• Add skewness and kurtosis correc-

tions
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8 – Gaussian - example
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9 – Gaussian - example
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10 – Gaussian - example
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11 – Gaussian - example
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• Works extremely well

• Evidence the same to better that 1%

• Leading error comes from overall

normalisation of the fitting function
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12 – Speed of convergence
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13 – In practice

• In principle it should be easy:

– Calculate means, Covariances and higher order matrices if necessary

– Plug them into equation and voila

• Turns to be fairly difficult thing to do accurately

• Expanding around mean gives different results that expanding around most likely

point

• Inherently prone to systematics if prior small

• Problem with overall normalisation

• Gives imaginary evidence occasionally (yuck!)
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14 – Preliminary results

6-param flat basic

model

NID isocurvature

model (10 param)

Thermodynamic integration -855.1 -856.1

Gaussian expansion around mean -855.5 -853.6

+Skew+Kurtosis expansion around mean -854.5 -855.1

+fitting likelihood normalisation -856.5 -857.5

Gaussian expansion around MaxLike -854.2 -850.6

+Skew+Kurtosis expansion around MaxLike -855.6 x

+fitting likelihood normalisation -856.6 x

Works fine for basic model but not for isocurvature models
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15 – Direct fitting of the likelihood function

• Do not infer the covariance matrix, etc. from moments, but rather fit directly.

• Much more stable and efficient (compared 1d Gaussian)

• No ambiguities wrt to where from to expand, normalise, etc.

• We minimise
∑

(log Ltheory − log Lsample)
2

• Becomes difficult problem again:

– 126 numbers to fit for a 6d problem

– 626 numbers to fit for a 10d problem

– need a supercomputer, but much faster than taking 106 samples

• Can actually estimate a typical error of the fitting function
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16 – Gaussian Fitting Results

6-param flat basic

model

NID isocurvature

model (10 param)

Thermodynamic integration -855.1 -856.1

Gaussian expansion -854.2 -847.5

rms error in log L 0.81 5.4

+Skew+Kurtosis -855.6

rms error in log L 0.6

Again, works fine for basic model but does not seem to converge to the correct minimum

for NID.
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17 – Savage - Dickey Method

• Recently advocated by R. Trotta (astro-ph/0504022).

• Works for nested models (for example flat models are nested in more general

variable Ωk models).

• No assumption about the shape of likelihood

• Essentially:

E ∝
# of samples in a model

prior volume
(3)
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18 – S-D in practice

NID vs basic model:

• NID has 4 more parameters: α, β, niso, δcross.

• α = 0 corresponds to purely adiabatic modes: β, niso, δcross unconstrained as they

do not affect likelihood.

• Adding an unconstrained parameter to a model doesn’t change its evidence.

• α = 0 is thus a nested adiabatic model
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19 – S-D in practice

Real sampling never hits α = 0. So we approximate the adiabatic model by α < ε.
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20 – How to choose ε

• Want to hit the plateau at small ε

• α < ε must be a good approximation to α = 0

• Compare first and second moments of distributions from α < ε/2 and

ε/2 < α < ε.
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21 – S-D results

• Dominating source of uncertainty is sampling error - calculate error from scatter from

different chains

• ∆Enid−ad = −1.9 ± 0.15

• Inconsistent with thermodynamic results of −1.0 ± 0.2 (but issues wrt to Gaussian

errors)

• Very fast!
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22 – Conclusions

• Can do model comparison, but computationally extremely expensive

• At the moment no-one is doing it regularly, but given the right tools, people would

use it (?!)

• We are developing these methods: not quite there, but close.
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